
Plan-Refinement Strategies and Search-Space Size1

Reiko Tsuneto Dana Nau James Hendler
reiko@cs.umd.edu nau@cs.umd.edu hendler@cs.umd.edu

Department of Computer Science
and Institute for Systems Research

University of Maryland
College Park, MD 20742

USA

Abstract
During the planning process, a planner may have many options for refinements to
perform on the plan being developed. The planner’s efficiency depends on how it
chooses which refinement to do next. Recent studies have shown that several
versions of the popular “least commitment” plan refinement strategy are often
outperformed by a fewest alternatives first (FAF) strategy that chooses to refine the
plan element that has the smallest number of alternative refinement options.

In this paper, we examine the FAF strategy in more detail, to try to gain a better
understanding of how well it performs and why. We present the following results:

• A refinement planner’s search space is an AND/OR graph, and the planner
“serializes” this graph by mapping it into an equivalent state-space graph.
Different plan refinement strategies produce different serializations of the
AND/OR graph.

• The sizes of different serializations of the AND/OR graph can differ by an
exponential amount. A planner whose refinement strategy produces a small
serialization is likely to be more efficient than a planner whose refinement
strategy produces a large serialization.

• The FAF heuristic can be computed in constant time, and in our experimental
studies it usually produced an optimal or near-optimal serialization. This suggests
that using FAF (or some similar heuristic) is preferable to trying to guarantee an
optimal serialization (which we conjecture is a computationally intractible
problem).

Keywords: planning and search; refinement strategies; commitment strategies

1 This research was supported in part by grants from NSF (IRI-9306580 and EEC 94-02384),
ONR (N00014-J-91-1451), AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory
Planning Initiative (F30602-93-C-0039), the ARPA I3 Initiative (N00014-94-10907), the ARL
(DAAH049610297), and ARPA contract DABT-95-C0037. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the funders.

Partial plan P

goal g 1 … …
order nodes

n1 and n2

 ?x = v
1

… ?x = v
r

 … promote demote

constrain
variable ?x

operator
o1

…
operator

op

an item that needs
to be refined …

… and the
possible ways
to refine it

…

goal g 1…

 Figure 1. Possible refinement choices in planning.

1. Introduction
One characteristic of partial-order planners—regardless of whether they are
Hierarchical Task Network (HTN) planners such as UMCP [Erol, 1995] and O-Plan
[Currie and Tate, 1994], or planners that use STRIPS-style operators such as UCPOP
[Penberthy and Weld, 1992]—is that they search a space in which the nodes are
partially developed plans. The planner refines the plans into more and more specific
plans, until either a completely developed solution is found or every plan is found
incapable of solving the problem.

During this process, a planner may often have many different options for what
kind of refinement to perform next, as illustrated in Figure 1. A planner that uses
STRIPS-style operators may need to choose which unachieved goal to work on next,
which operator to use to achieve a goal, or which technique to use (promotion,
demotion, or variable separation) to resolve a goal conflict. An HTN planner usually
has an even larger array of options: it may need to choose which unachieved task to
work on next, which method to use to accomplish the task, or which constraint (from
among a number of different possibilities) to impose on the plan. The planner’s
efficiency depends greatly on its plan refinement strategy, which is the way it goes
about choosing among these options.

In the planning literature, the term “least commitment” generally refers to a
refinement strategy in which the planner postpones making some particular kind of
refinement until it is forced to do so. For example, if a planner uses a “least
commitment to step orderings” strategy, then whenever more than one ordering is
possible among the steps of a plan, the planner will avoid committing to a particular
ordering unless it must do so in order to proceed with the rest of the planning. The
“least commitment” idea was originally applied to step orderings [Sacerdoti, 1975],
but it has also been applied to other kinds of refinements. For example, Stefik’s
MOLGEN program [Stefik, 1981] used a “least commitment to constraint posting”
approach; and Tsuneto et al. [1996] have examined both a “least commitment to
variable bindings” strategy and a “least commitment to task achievement” strategy for
HTN planning.

One reason why least-commitment strategies are useful is that if the planner can
avoid making refinements prematurely, this can reduce the number of alternative
plans it might need to examine. However, it is not necessarily a good idea to apply
the same least-commitment strategy throughout the entire planning process. In order

to do planning at all, a planner has to refine something2—and thus, when a planner
postpones refining one aspect of the plan it is generating, this may make it
prematurely refine some other aspect of the plan. This suggests that it may be better
to choose dynamically among different kinds of refinements throughout the planning
process.

One way to choose what kind of refinement to make next is to look at all of the
items that need to be refined in the current partial plan, and choose whichever one has
the fewest number of alternative possible refinements. Two versions of this “fewest
alternatives first” heuristic have been examined in the AI planning literature. For
partial-order planning with STRIPS-style operators, Joslin and Pollack [1994; 1996]
found that a version of this strategy outperformed the “least commitment to step
orderings” strategy; and for HTN planning, Tsuneto et al. [1996] found that a version
of this strategy outperformed both a “least commitment to variable bindings” strategy
and a “least commitment to task achievement” strategy.
 Although AI planning researchers have begun to investigate the FAF heuristic only
recently, a similar heuristic has been known in the constraint satisfaction literature for
more than 20 years: Bitner and Reingold [1975] used it as a search rearrangement
method, and Purdom [1983] analyzed its application to SAT problems. One reason
why it has taken so long for this heuristic to become known to AI planning
researchers is that the relationship between control strategies for search algorithms
and refinement strategies for AI planning is a rather complicated one, whose precise
nature has not been clearly understood. In this paper, we examine that relationship in
detail, and present the following results:

• The search process that is carried out by an AI planning system corresponds to
taking an AND/OR graph and generating from it an equivalent state-space graph,
one OR-branch at a time. This process we call serializing the AND/OR graph.
Different plan refinement strategies produce different serializations of the
AND/OR graph.

• Different serializations of the AND/OR graph contain different numbers of
nodes, and the largest serialization can contain an exponentially greater number
nodes than the smallest one. In the worst case, the planner may need to examine
every node in the search space—so a planner whose search space is small is
likely to be more efficient than a planner whose search space is large.

• The FAF strategy uses a greedy heuristic: each time it needs to decide which OR-
branch to include next in the search space, it chooses the one that has the smallest
number of branches. This heuristic does not always result in the smallest
possible serialization—but it can be computed in constant time, and in our studies
it usually resulted in a serialization that was either optimal or near-optimal.

• We conjecture that when the planner needs to decide which OR-branch to include
next in the search space, the task of deciding which OR-branch is optimal (i.e.,
which OR-branch is in the smallest possible serialization) is an NP-hard problem.
If this conjecture is correct, this suggests that any plan refinement strategy that is
guaranteed to produce the smallest possible search space will incur an
unacceptably high overhead—and thus it is better for AI planning systems to use

2 Of course, this refinement need not necessarily be an irrevocable one. Most modern planning
systems use a tentative control strategy such as backtracking, so that they can go back and undo
decisions that do not work out.

a refinement strategy such as FAF which is quickly computable and gives good
results most of the time.

 2. Partial-Order Planning and AND/OR Graphs
 As illustrated in Figure 1, the space searched by a partial-order planner may be
thought of as an AND/OR graph in the following manner:

• In a partially developed plan, there may be several elements of the plan that need
to be refined in one way or another. These may include both unachieved goals or
tasks (which would be refined by finding ways to achieve them), and unsatisfied
constraints (which might be satisfied by binding variables or specifying node
orderings). All of these elements will sooner or later need to be refined—and
thus the choice of which refinement to make next corresponds to an AND-branch
in the planner’s search space.

• For each element that needs refining, there may be more than one way to refine it
(for example, several ways to instantiate a variable, or several operators or
methods applicable to an unachieved goal or task), generating different partial
plans. Any applicable refinement will be satisfactory provided that it produces a
satisfactory plan—and thus the choice of how to reduce an element corresponds
to an OR-branch in the planner’s search space.

If the refinements performed on a plan were independent in their effects on the plan, a
refinement planner could search the AND/OR graph directly, building up a solution to
the planning problem straightforwardly by finding independent solutions to
subproblems and composing them into solutions to higher-level problems. However,
since the goals usually are not independent, refinement planners usually do not
decompose the search space. Instead, when they refine some element of a plan, they
keep track not only of the element that is being refined, but also of the entire rest of
the plan. Thus, the planner searches a state-space graph that is a “serialization” of the
AND/OR graph.

Although the concept of serializing an AND/OR graph is conceptually
straightforward, the formal definition is rather complicated notationally. To keep the
notation simple, in this paper we give a formal definition only for the special case
where the AND/OR graph is binary (i.e., each non-leaf node has exactly two
children). We trust that it will be obvious to the reader how to generalize this
definition for the case where the AND/OR graph is not binary.

m

pb pi

ph

pepc

pd

pjpg

pf

pm

b i

h

e c

d

jg

f

bp ip

papT: aT: apTp:

hp

epcp

dp

jpgp

fp

mp

 Figure 2. A tree T, and the trees pT and Tp (where p is a node not in T).

First, we will need the following notation (see Figure 2 for examples). Let T be a tree
whose node set is N and whose edge set is E. If p is any node not in N, then:

• Tp is the tree with node set {np : n ∈ N} and edge set {(mp,np) : (m,n) ∈ E};

• pT is the tree with node set {pn : n ∈ N} and edge set {(pm,pn) : (m,n) ∈ E}.

If G is a binary AND/OR graph, there are three possible cases for what its
serializations are:

Case 1: G consists of a single node. Then the only serialization of G is G itself.

Case 2: G contains more than one node, and the branch at G’s root node g is a binary
OR-branch leading to two subgraphs H and I. If S and T are serializations of H
and I, respectively, then as shown in Figure 3, the tree R whose root is g and
whose subtrees are S and T is a serialization of G.

Case 3: G contains more than one node, and the branch at G’s root g is a binary
AND-branch leading to two subgraphs H and I. Let S and T be serializations of
H and I, respectively. Let S’s root be s and its leaf nodes be s1, s2, …, sp; and let
T’s root be t and its leaf nodes be t1, t2, …, tq. Then as shown in Figure 4, the
following trees are serializations of G:

• the tree R1 formed by taking the tree St, and attaching to its leaves s1t, s2t, …,
spt the trees s1T, s2T, …, spT, respectively;

• the tree R2 formed by taking the tree sT, and attaching to its leaves st1, st2, …,
stq the trees St1, St2, …, Stq, respectively.

G: g

I:H:
… …

R: g

T:S:
… …

 Figure 3. Case 2 of serializing an AND/OR graph.

G: g

I:H:
… … s1T:

st

s1t spt

s1t1 … s1tq spt1 … sptq

R1:
…

St:

spT:

st

st1 stq

s1tq … sptq

Stq:St1:

R2:
…

sT:

s1t1 … spt1

 Figure 4. Case 3 of serializing an AND/OR graph.

In Figure 4, both serializations of the AND/OR graph have the same number of
nodes—but this needs not always be the case. As an example, Figure 5 shows another
AND/OR graph, and three possible serializations of it. Note that in each serialization,
the set of leaf nodes is exactly the same. Furthermore, for each leaf node, the number
of paths—and the set of operations along each corresponding path—are also the same.
What differs is the order in which these operations are performed—and since different
operations produce different numbers of children, this means that different
serializations contain different numbers of nodes.

The idea of serializing an AND/OR graph occurs in a number of search
procedures, although the first case we know of where such a technique was described
explicitly was in the SSS* game-tree search procedure [Stockman, 1979]. One well

known example is Prolog’s search procedure (for example, see [Clocksin and
Mellish, 1981], which serializes AND/OR graphs in a depth-first left-to-right manner.
For example, in the graph G of Figure 5, suppose that each node corresponds to a
logical atom, each AND-branch corresponds to a Horn clause, and each OR-branch
corresponds to the different ways a literal might match the head of a Horn clause.
Then Prolog would do a depth-first search of the tree S1. In general, the number of
possible serializations of an AND/OR graph can be combinatorially large; for
example, there are ten possible serializations of the graph G of Figure 5. Which
serialization will actually be used depends on the search procedure. For example, a
procedure that achieves goals and subgoals in a depth-first left-to-right fashion (as
Prolog does) would serialize G into S1, but a procedure that achieves goals and
subgoals in a depth-first right-to-left fashion would serialize G into S3 instead.

Obviously, a planner will not necessarily examine every node in its serialized
search tree. It may prune some of these nodes as infeasible, and it may find its
desired solution before it examines all of the unpruned nodes. However, in the worst
case, the planner will need to examine every one of the nodes in the serialized search
tree. In such a case, a planner that searches the tree S3 of Figure 5 will be more
efficient than a planner that searches the trees S1 or S2.

G

a

fb

c d e g

i k

jh

S1

bf

cf df ef

chj dhj ehj

cik dik eik

cij dij eij

bf

cf df ef

chj dhj ehj

S2

cik dik eik

cij dhk eij

S3

bf

bhj

bhk

cik dik eik

bik

 Figure 5. A simple AND/OR graph G, and three serializations S1, S2, and S3.

4. Best and Worst Serializations
If we could find a serialization strategy that would always find the smallest
serialization of an AND/OR graph, how much would this help? To get an idea of the
answer, suppose we take the pattern shown in Figure 6a, and use it repeatedly to form
an AND/OR tree Gb,k of height 2k, as shown in Figure 6b. In Gb,k, the number of
occurrences of the pattern is

cb,k = 1+(b+1)+(b+1)2+…+(b+1)k–1 = Θ(bk),

so the total number of nodes in Gb,k is

n(Gb,k) = 1+(b+3)cb,k = Θ(bk).

Let T–
b,k and T+

b,k be the serializations of Gb,k that have the smallest and largest
node counts, respectively. Both of these trees have the same height, which can be
calculated recursively as follows:

h T h T
k

h Tb k b k
b k

i

i

k
k

() ()
,

()

.

, ,
,

− +

−
+

=

+

= =
=

+

= = −∑

2 1

2 2

2 2 2

1

1

1

if

otherwise

T–
b,k and T+

b,k both consist of 2k-1 levels of unary OR-branches interspersed with
2k-1 levels of b-ary OR-branches. However, T–

b,k has its unary OR-branches as near
the top as possible and its b-ary OR-branches as near the bottom as possible; and vice
versa for T+

b,k. As shown in Figure 6c, the branches at the top k levels of T–
b,k are all

unary, and those at its bottom 2k–1 levels are all b-ary; the reverse is true for T+
b,k.

Calculating the node counts for T–
b,k and T+

b,k is too complicated to do here, but in
a forthcoming technical report we show that the numbers of nodes in these trees are
n T bb k

k

() (),
− = Θ 2 and n T bb k

k k

() (),
+ = Θ 2 2 . Thus, the numbers of nodes in the worst

possible serialization and the best possible serialization differ by a multiplicative
factor of Θ(2k).

…

b

 (a) Basic pattern,
with parameter b.

 (b) AND/OR tree G2,3 produced by the pattern if b = 2 and k = 3.

 (c) The smallest possible serialization T–
2,3 of G2,3.

 Figure 6. An AND/OR tree formed by repetitions of a pattern; and the smallest possible
serialization of the AND/OR tree.

4. Fewest Alternatives First
During the course of its operation, an AI planning algorithm will generate a
serialization of an AND/OR graph one OR-branch at a time. For example, starting

from the node a in the AND/OR graph G shown in Figure 5, the first choice is
whether to expand the OR-branch rooted at b or the OR-branch rooted at f. If we
choose b then we will end up with a search space similar to S1 or S2; and if we choose
f then we will end up with a search space similar to S3. One way to choose which OR-
branch to expand next is to use the “fewest alternatives first” (FAF) heuristic of
Section 1. In many cases, this simple heuristic produces optimal results. For example,
in Figure 5, this heuristic would choose to expand f, h, and j before expanding b,
thereby producing the tree S3.

FAF also is easy to compute. The cost of computing FAF at any node n is
O(c(n)+g(n)), where c(n) is the number of n's children, and g(n) is the number of n's
grandchildren. Thus, if one assumes (as is typical in analyses of AI search
algorithms) that the branching factor of each node is bounded by some constant b,
then the cost of computing FAF is O(b + b2) = O(1).

In empirical studies on various planning domains, adaptations of the FAF
strategy have performed quite well in comparison with other popular refinement
strategies. The “least cost flaw repair” strategy investigated by Joslin and Pollack
[1994, 1996] uses the FAF heuristic to choose among all of the refinements available
to a STRIPS-style planner; and the “DVCS” strategy investigated by Tsuneto et al.
[1996] for HTN planning uses the FAF heuristic to choose among some (but not all)
of the refinements available to an HTN planner. In these studies, least-cost flaw
repair and DVCS outperformed a number of other strategies, including the well
known “least commitment to step orderings” strategy.

kj c

 f d

 e

 h

 g

S1 S2

cj ej gj

dj fj hj

bi

bk

ck ek gk

dk fk hk

bi

fi

dj fj hjdk fk hk

 a

ci giei

G

 Figure 7. A situation where the FAF heuristic fails to produce the best
serialization of an AND/OR graph. FAF chooses to expand i before b, thus
producing S1; but S2 contains fewer nodes.

Despite its good empirical performance, FAF does not always produce optimal
results. For example, consider the graph G of Figure 7. To serialize G, FAF would
choose to expand i before expanding b, thus producing the tree S1. However, if it had
chosen to expand b first, it would have been able to produce the smaller tree S2. This
situation is reminiscent of what happens in a number of NP-hard optimization
problems, in which the obvious greedy heuristics will make the best choice in a large
number of situations, but will sometimes make choices that cause greater costs to be
incurred later on. At least one example of this occurs in the AI planning literature,
involving a greedy heuristic for the block-stacking problem [Gupta and Nau, 1992]

To formalize the notion of “optimal results” in the previous paragraph, first we
define a minimal serialization of an AND/OR graph G to be a serialization T of G

such that no other serialization of G contains fewer nodes than T. Now, suppose we
have an AND/OR graph G whose root branch is an AND branch. Let the children of
the root node be n1, …, nk. Then for i = 1,…,k, the node ni is an optimal candidate for
expansion if there is a minimal serialization T of G whose root branch is formed by
expanding ni. For example, f is the optimal candidate in Figure 5, and b is the optimal
candidate in Figure 7. We conjecture that finding an optimal candidate for expansion
is NP-hard.

5. Experimental Studies of FAF
As discussed above, FAF usually seems to do better than other popular heuristics,

but can sometimes do poorly. This raises two important questions: how close FAF
comes (on the average) to finding the best possible serialization, and how it compares
(on the average) with the best, worst, and/or average serializations. We have begun an
experimental exploration to try to answer these questions.

We have compared the performance of FAF with an average serialization
performed on 50 different randomly generated AND/OR trees. The sample trees were
generated using a tree generation algorithm based on [Luke, 1997]. These trees had 1
to 5 branches at each node, with a maximum depth of 8. All nodes at even depths
were AND-nodes, while all nodes at odd depths were OR-nodes. Thus, leaves were
only placed at even depths. The algorithm was set to generate 50 random trees with an
average close to 30 and the average depth close to the maximum. In the population
that was actually generated, the average tree size (number of nodes) is 32.32 and the
average depth is 7.64. The smallest tree is of size 19 and the largest tree is of size 51.
The number of serializations for the trees varied from 1 through to over half a million.

To find the best and worst serializations, we developed a program to exhaustively
enumerate all serializations, keeping track of minimum, maximum and average size.
Due to the extreme number of serializations for many of the trees, we ran this
program for up to 50,000 serializations. If the first program had not enumerated all
serializations by this cutoff (i.e. there were more 50,000 serializations for the given
tree), we instead used a separate algorithm which randomly generated 50,000 trials.3

The minimum, maximum and average were again collected.
The FAF algorithm was also run on each tree, by applying the heuristic at each

AND-node expansion (when there were more than two smallest branches, the leftmost
one was chosen). Data on the number of serializations, minimum, maximum, average,
and FAF sizes are all shown in Table 1. The large variance in the sizes of the
serializations makes comparison of the raw data difficult. It is easy to see, however,
that in 32 of the 47 cases where there was more than a single serialization size, the
FAF algorithm found the optimal solution.

To see how the algorithm performs overall, and to compare the algorithm to the
averages, we needed a means to measure performance. In Figure 8—which shows the
performance of FAF versus the average—we normalized the results, with 0
representing the best overall serialization and 1 representing the worst. In 46 of the
47 cases, FAF performed better than the average. 32 times the optimal was found, and
44 further times the algorithm performed better than half way between optimal and
average. We believe these results are quite encouraging, showing that the FAF
algorithm performs quite well in the average case.

3 These 50,000 could not be guaranteed unique without prohibitive computational costs;
however a very large sample population was probabilistically guaranteed.

 Table 1. Experimental results.

Tree
Number of

possible
serializations

Size of
smallest

serialization

Size of
largest

serialization

Average
serialization

size

Size of
serialization

found by FAF
1 4228 38 64 43.6 39
2 4 33 34 33.2 33
3 >50000 156 275 185.0 154
4 352 64 73 66.3 64
5 >50000 123 204 143.6 121
6 >50000 71 126 86.0 71
7 7 18 25 20.0 18
8 56 19 30 22.1 19
9 >50000 259 321 277.6 259

10 17424 156 175 162.0 159
11 5284 61 67 62.9 61
12 >50000 1488 2170 1697.0 1450
13 >50000 267 340 292.7 267
14 >50000 253 463 331.0 255
15 >50000 229 274 246.8 235
16 >50000 158 254 196.6 158
17 >50000 744 861 791.5 746
18 16777 56 93 71.2 56
19 180 29 44 35.4 29
20 >50000 109 157 129.8 111
21 4 36 38 36.8 36
22 >50000 117 136 125.4 117
23 14 17 23 19.6 17
24 >50000 84 122 101.2 84
25 5792 49 56 52.1 49
26 >50000 334 434 374.0 322
27 146 40 49 44.2 40
28 100 106 115 110.2 108
29 8992 71 83 76.6 71
30 44 32 41 36.4 34
31 >50000 335 434 381.4 330
32 4 33 34 33.5 33
33 3 28 29 28.5 28
34 20 27 33 30.0 28
35 >50000 354 462 405.9 348
36 >50000 162 184 173.2 165
37 28 40 45 42.5 40
38 >50000 226 327 280.9 239
39 >50000 249 310 282.4 278
40 >50000 173 225 201.5 173
41 >50000 237 355 300.6 232
42 >50000 659 929 803.1 643
43 >50000 80 86 83.5 83
44 >50000 520 621 580.2 525
45 60 27 36 32.7 27
46 >50000 161 226 207.6 161
47 1014 70 82 79.6 82
48 1 15 15 15.0 15
49 2 17 17 17.0 17
50 4 24 24 24.0 24

Size of largest serialization

Size of smallest
serialization

Size of average serialization

Size of FAF’s
serialization

Serialization
size

(normalized)

0

0.2

0.4

0.6

0.8

1

 0 5 10 15 20 25 30 35 40 45

Problem number

 Figure 8. Sizes of FAF(◆) and average(+) serializations normalized with the
smallest and largest serialization sizes.

There was, however, one case in which FAF produced the worst serialization
(this is also the only case where FAF did worse than average). To see the cause of
this, we analyzed the particular tree (shown in Figure 9). In this case, FAF could have
produced the best serialization if it had chosen the right child of the root to expand
first instead of the left child. Since our program simply chose leftmost in the case of
the tie, FAF did poorly in our test. This does, however, show a potential weakness in
implementations of FAF for planning, since it have an additional heuristic for use in
this case. Examining what to do in this case could lead to further improvement of
planning choice mechanisms, and this is a topic we are currently exploring.

 Figure 9. The one tree in which FAF produced the worst serialization.

6. Conclusions
In this paper, we have studied a plan refinement strategy, the “fewest alternatives
first” (FAF) strategy, that chooses among various kinds of refinements depending on
which one has the smallest number of alternative choices. In recent studies by Joslin
and Pollack [1994, 1996] and Tsuneto et al. [1996], FAF usually outperformed

several different “least commitment” refinement strategies. In this paper, we have
examined the FAF strategy in more detail in an attempt to understand how well it
performs and why.

We have shown that the search process that is carried out by an AI planning
system corresponds to “serializing” an AND/OR graph—mapping it into an
equivalent state-space graph. Different plan refinement strategies thus correspond to
different ways to serialize the AND/OR graph representing the planning choice
points.

Different serializations of an AND/OR graph have different sizes, and the
smallest serialization can be exponentially smaller than the largest one. We have
shown that a planner whose plan refinement strategy produces a small serialization of
the AND/OR graph is likely to be more efficient than a planner whose plan
refinement strategy produces a large serialization.

Like most greedy heuristics, FAF does not always produce optimal results—but
in our studies it usually produced a serialization that was either optimal or near-
optimal. If our conjecture is correct that any strategy that guaranteed the smallest
possible serialization would be intractable to compute, then this suggests that it is
better for AI planning systems to use a plan refinement strategy such as FAF, that is
quickly computable and usually gives good results.

We believe these results explain why FAF performs well in the previous studies,
and opens several interesting issues for exploration. First, as we have noted, better
serializations produce smaller search spaces, thus potentially improving planning
behavior. However, the exact relationship between a given planner and this search
space is quite complex, and there may be cases where certain planners interact better
with certain serializations. Second, while FAF performs quite well, it is clear that
there is still plenty of room for improvement. This can include looking for algorithms
that can better optimize search space (serialization) size, improvements on FAF (for
example better tie-breaking rules), and identification of analytic techniques that could
analyze the tree formed by the operators and better select or prune the search spaces.

Finally, we are beginning to explore other effects of search control on planning
performance. Given the correspondence between these discussed in the paper, it
seems that other ways of controlling search, particularly pruning unpromising
branches, may also be successful. Gerevini and Schubert [1996] showed that various
pruning strategies have beneficial properties for the UCPOP planner, and we plan to
extend this work, examining how pruning can effect search in serializations of
planning trees as discussed in the paper.

References

[Barret and Weld, 1994] Anthony Barret and Daniel Weld. Partial-order planning:
Evaluating possible efficiency gains. Artificial Intelligence 67(1), pp. 71–112.

[Bitner and Reingold, 1975] James Bitner and Edward Reingold. Backtrack
Programming Techniques. CACM 18(11), pp. 651–-656.

[Clocksin and Mellish, 1981] W. Clocksin and C. Mellish. Programming in
PROLOG. Springer-Verlag.

[Currie and Tate, 1991] Ken Currie and Austin Tate. O-plan: the open planning
architecture. Artificial Intelligence 52, pp. 49–86.

[Erol, 1995] Kutluhan Erol. HTN planning: Formalization, analysis, and
implementation. Ph.D. dissertation, Computer Science Dept., U. of Maryland.

[Gupta and Nau, 1992] Naresh Gupta and Dana Nau. On the complexity of blocks-
world planning. Artificial Intelligence 56:2-3, pp. 223–254.

[Gerevini and Schubert, 1996] Alfonso Gerevini and Lenhart Schubert. Accelerating
Partial-Order Planners: Some Techniques for Effective Search Control and
Pruning. Journal of Artificial Intelligence Research 5, pp. 95– 137.

[Joslin and Pollack, 1994] David Joslin and Martha Pollack. Least-cost flaw repair: A
plan refinement strategy for partial-order planning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pp. 1004– 1009.

[Joslin and Pollack, 1996] David Joslin and Martha Pollack. Is “early commitment” in
plan generation ever a good idea? In Proc. Thirteenth National Conference on
Artificial Intelligence, pp. 1188-1193.

[Kambhampati et al., 1995] Subbarao Kambhampati, Craig Knoblock, and Qiang
Yang. Planning as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial Intelligence 76, pp. 167–238.

[Kumar, 1992] Vipin Kumar. Algorithms for constraint -satisfaction problems: A
survey. AI Magazine, pp. 32–44.

[Luke, 1997] Sean Luke. A Fast Probabilistic Tree Generation Algorithm.
Unpublished manuscript.

[Penberthy and Weld, 1992] J. S. Penberthy and Daniel Weld. UCPOP: A sound,
complete, partial order planner for ADL. Proc. KR-92.

[Purdom, 1983] Paul W. Purdom. Search Rearrangement Backtracking and
Polynomial Average Time. Artificial Intelligence 21, pp. 117– 133.

[Purdom and Brown, 1983] Paul W. Purdom and Cynthia A. Brown. An Analysis of
Backtracking with Search Rearragement. SIAM J. Computing 12(4), pp.717– 733.

[Sacerdoti, 1977] Earl Sacerdoti. A Structure for Plans and Behavior. American
Elsevier Publishing Company.

[Stefik, 1981] Mark Stefik. Planning with constraints (MOLGEN: part 1). Artificial
Intelligence 16, pp. 111–140.

[Smith et al., 1996] S. J. J. Smith, D. S. Nau, and T. A. Throop. Total-order multi-
agent task-network planning for control bridge. AAAI-96, pp.108-113.

[Stockman, 1979] G. Stockman. A minimax algorithm better than alpha-beta?
Artificial Intelligence 12(2), pp. 179–96.

[Tsuneto et al., 1996] Reiko Tsuneto, Kutluhan Erol, James Hendler, and Dana Nau.
Commitment strategies in hierarchical task network planning. In Proc. Thirteenth
National Conference on Artificial Intelligence, pp. 536-542.

[Veloso and Stone, 1995] Manuela Veloso and Peter Stone. FLECS: Planning with a
flexible commitment strategy. JAIR 3, pp. 25–52.

