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Abstract
One difficulty with existing theoretical work on HTN
planning is that it does not address some of the planning
constructs that are commonly used in HTN planners for
practical applications. Although such constructs can make it
difficult to ensure the soundness and completeness of HTN
planning, they are important because they can greatly
improve the efficiency of planning in practice. In this paper,
we describe a way to achieve some of the advantages of
such constructs while preserving soundness and
completeness, through the use of what we will call external
conditions. We describe how to detect some kinds of
external conditions automatically by preprocessing the
planner’s knowledge base, and how to use this knowledge to
improve the efficiency of the planner’s refinement strategy.
We present experimental results showing that by making use
of external conditions as described here, an HTN planner
can be significantly more efficient and scale better to large
problems.

Introduction   

Problem Description
Applied work in AI planning has typically favored
approaches based on hierarchical decomposition rather
than causal chaining. In particular, most successful
planners for practical applications have used hierarchical
task network (HTN) planning (Sacerdoti 1977; Tate 1977;
Currie and Tate 1991; Wilkins 1990), an AI planning
methodology that creates plans by task decomposition. This
is a process in which the planning system decomposes
tasks into smaller and smaller subtasks, until primitive
tasks are found that can be performed directly. HTN
planning systems have knowledge bases containing
methods (also called schemas by some researchers). Each
method includes (1) a prescription for how to decompose
some task into a set of subtasks, (2) various restrictions that
must be satisfied in order for the method to be applicable,
and (3) various constraints on the subtasks and the
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relationships among them. Given a task to accomplish, the
planner chooses an applicable method, instantiates it to
decompose the task into subtasks, and then chooses and
instantiates other methods to decompose the subtasks even
further. If the constraints on the subtasks or the interactions
among them prevent the plan from being feasible, the
planner will backtrack and try other methods.

Although HTN-style planners have been the ones most
used in practical applications (Aarup et al. 1994; Wilkins
and Desimone 1994; Agosta 1995; Smith et al. 1996; Estlin
et al.1 1997), most theoretical work to date is in the area of
partial-order refinement planners such as UCPOP
(Penberthy and Weld 1992) and more recently in graph-
and circuit-based planners (Blum and Furst 1997; Kautz
and Selman 1992).

One exception has been theoretical work on HTN
planning at the University of Maryland. This work has
shown HTN planning to be strictly more expressive than
planning with STRIPS-style operators (Erol et al. 1994b),
has established the soundness and completeness of HTN
planning algorithms (Erol et al. 1994a), and has explored
the complexity of HTN planning problems (Erol et al.
1996) and the efficiency of various search strategies
(Tsuneto et al. 1996; Tsuneto et al. 1997). The code for the
UMCP domain-independent planner (which we used for
the experiments reported in this paper) is available at
<http://www.cs.umd.edu/projects/plus/umcp>.

Unfortunately, the above work did not incorporate
several of the planning constructs used in previous HTN
planning systems, such as unsupervised conditions and
high-level effects (Tate 1977). Such constructs are often
used in practical applications of HTN planning because
they can be very useful for improving the efficiency of
planning—but the UMCP planner does not incorporate
them because they can make it difficult to guarantee the
planner’s soundness and completeness.

As an example, consider high-level effects. Some HTN-
style planners allow the user to state in the planner’s
knowledge base that various non-primitive tasks will
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achieve various effects. Such planners can use these high-
level effects to establish applicability conditions, and can
prune the partial plan if a high-level effect threatens an
applicability condition. This can interfere with the
planner’s soundness. For example, if a non-primitive task t
has a high-level effect o, but one of the sub-plans that t can
be decomposed into does not have the effect o, then this
may cause the planner to produce an inconsistent plan.
Also, even when there is a high-level effect to establish a
condition, there may be a threat to that establishment that
can only be found by looking at primitive tasks. This
problem can be overcome, but only by imposing
restrictions on how high-level effects are used (Bacchus
and Yang 1991, Young et al. 1994).

Despite these problems, the ability to recognize
important effects early is critical to the good performance
of a planner. By examining those actions most likely to
effect others, pruning of the search space can occur and
much backtracking can be avoided. Ways are needed to
provide the sort of information needed for this pruning
without sacrificing soundness or completeness.

Approach
In this paper, we describe one way to address the

problem discussed above, through the use of what we call
external conditions. We also show that if an HTN planner
recognizes and makes use of external conditions in an
appropriate fashion, this can greatly improve the efficiency
of HTN planning, while preserving soundness and
completeness.

External conditions can be described intuitively as
follows. Suppose that to accomplish some task in a plan P,
we decide to use some method M. Furthermore, suppose
that there is some condition C that must be satisfied in
order for M to be successful, but that there is no way to
decompose M into a sub-plan that achieves C. Then the
plan P may still be successful, but only if some other
portion of P achieves C. In this case, we say that the
condition C is external to the method M.

External conditions do not really have a good analog in
STRIPS-style planning, but they are somewhat analogous
to the unsupervised conditions used in the Nonlin planner
(Tate 1977) and external-condition goals used in the SIPE-
2 planner (Wilkins 1990). The main difference is that
instead of being specified explicitly as unsupervised
conditions or external-condition goals are, external
conditions occur as a result of the structure of the planner’s
knowledge base, and can be detected by examining the
knowledge base. We also believe that external conditions
may be a good way to capture many of the benefits found
in some planners via the use of high-level effects.

Background

How Constraints Are Handled in HTN Planning
Just as a STRIPS-style planning operator specifies

preconditions that must be satisfied before the operator can
be executed, an HTN method M may include specifications
of several different kinds of conditions that must be
satisfied in order for M to be used successfully. We
describe the most important ones here, using the notation
that is used for them in the UMCP HTN planner.
•  A predicate task, which is sometimes called a GOAL

node (Tate 1977) or an achievement task, is analogous to
a precondition in a STRIPS-style planning operator:  it is
a condition that must be true at the time that the method
M begins executing.

• An initial state constraint specifies a condition that must
be true in the initial state in order for M to be used. For
example, if M contains the constraint (initially (~Q ?x)),
this constraint can be satisfied only if it is possible to
bind the variable ?x to some value C such that (Q C) is
false in the initial state. Normally, one would use an
initial state constraint only to refer to a condition that
will never change throughout the plan.

•  A ‘before’ state constraint such as (before (P  ?x) n)
specifies a condition that must be true just before some
subtask n of the method M. This state constraint can be
established by a task T  if T  has the effect (P ?y), T
precedes the task n in the plan, and the variables ?x and
?y are instantiated to the same value. Similarly, (before
(P ?x) n) can be threatened by a task T if T has the effect
(~P  ?z), T  precedes the task n, no establisher of the
constraint occurs after T and before n, and the variables
?x and ?z are instantiated to the same value.

•  A ‘between’ state constraint specifies a condition that
needs to be true during a specific time interval. For
example, the ‘between’ state constraint (between (P ?x)
n1 n2) is satisfied if the condition (P ?x) is true from the
end of the task n1 to the beginning of the task n2. A
‘between’ state constraint can be established or
threatened in a manner similar to a ‘before’ constraint.

Task Selection and FAF
One characteristic of partial-order planners—regardless of
whether they use HTN decomposition or STRIPS-style
operators—is that they search a space in which the nodes
are partially developed plans. The planner refines the plans
into more and more specific plans, until either a completely
developed solution is found or every plan is found
incapable of solving the problem.

During this process, a planner may often have many
different options for what kind of refinement to perform
next. A planner that uses STRIPS-style operators may need
to choose which unachieved goal to work on next, which
operator to use to achieve a goal, or which technique to use
(promotion, demotion, or variable separation) to resolve a
goal conflict. An HTN planner usually has an even larger
array of options: it may need to choose which unachieved
task to work on next, which method to use to accomplish
the task, or which constraint (from among a number of
different possibilities) to impose on the plan. The planner’s
efficiency depends greatly on its plan refinement strategy,



which is the way it goes about choosing
among these options.

Of the various plan refinement
strategies that have been explored by
AI planning researchers, one of the best
that has been found so far is a strategy
that we call the “fewest alternatives
first” (FAF) strategy, which chooses the
refinement that has the fewest
immediate child nodes in the search.
The first use of FAF by planning
researchers seems to have occurred
relatively recently (Currie and Tate
1991), but a similar heuristic has been
known in the constraint satisfaction literature for more than
20 years (Bitner and Reingold 1975; Purdom 1983). In
recent experimental studies comparing various versions of
FAF with other well known plan refinement strategies
(Joslin and Pollack 1994; Tsuneto et al. 1996), FAF
outperformed the other refinement strategies on many
planning problems and planning domains. Furthermore,
theoretical analyses of FAF (Tsuneto et al. 1997) have
shown that FAF can produce exponential savings in the
size of the planner’s search space. Since FAF is a general
search heuristic,. however, it does not always do as well as
other strategies that use domain-specific planning
knowledge.

When there are two or more goal tasks in a problem, the
tasks can often be interleaved; i.e., an effect of one goal
task can be used to satisfy the state constraints of another
goal task. By interleaving goal tasks, the planner can create
plans that have fewer redundant actions—and in some
cases, interleaving may be the only way to generate a plan
at all.

While interleaving tasks is essential in HTN planning, it
is often hard for the planner to know which tasks can be
interleaved successfully. The planner does not know
exactly what effects a non-primitive task has until the task
is decomposed into primitive tasks; and the decomposition
process can introduce more state constraints to the plan that
may not already be established. The failure to interleave
tasks successfully often leads to a large backtracking cost.

Although FAF does generally better than other
strategies, its performance is still ragged for many
multiple-goal problems. If the planner is trying to establish
more than one constraint, often it will do so by trying to
interleave tasks; and if it tries to interleave several tasks at
once, then the number of possible ways to interleave them
can be combinatorially large. Thus, if the interleaving
doesn’t work, the planner can waste large amounts of time
exploring a large search space. In order to avoid such
difficulties, the planner needs to know which state
constraints should be established early by interleaving
tasks, and the task selection should use such knowledge to
arrange the search.

External Conditions

An external condition of a method is a state constraint that
cannot be established by any task that may result from the
method. Thus, if the method is to be used successfully in
a plan, the plan must establish this state constraint by
something external to the method (such as the initial state
or some other task in the planning problem).

More formally, let M = <T, φ> be a method, where T is
the set of subtasks created by the method and φ is the set of
constraints for the method. Then a condition c is an
external condition of M if:
1. c is a state constraint but not an initial state constraint;
2. c must be necessarily true to satisfy φ; and
3. no primitive descendants2 of tasks in T can establish c.
As an example, suppose you want to eat a breakfast of
either pancakes (made from pancake mix) or cereal. We
can encode this situation as an HTN planning problem in
which there is a task called Eat-Breakfast-Task that has two
decomposition methods: one to eat pancakes (as shown in
Figure 2) and one to eat cereal. As shown in Figure 2, the
pancake method decomposes Eat-Breakfast-Task into three
subtasks: Prepare-Table, Cook-Pancake-Task, and Eat. Let
us  assume  that  the  methods   for  these   tasks  involve
(1) putting the syrup, fork and knife on the table, (2)
cooking the pancakes, and (3) serving and eating the
pancakes, respectively.

The pancake method has four state constraints. The
following analysis shows that the only external condition
for this method is (between (Have pancake-mix) n0 n1):
•  (initially (Egg ?egg)) and (initially (Milk ?milk)) are not

external conditions, because they are initial state
constraints.

• (between (Have pancake-mix) n0 n1) is an external
condition, because preparing the table does not cause a
pancake mix to be there and no subtasks can occur
before n0.

                                    
2 A descendent of a task t is a task that appears as a result of
recursively decomposing t.
3 To distinguish between task names and predicate names (both
here and throughout this paper), we put the latter in italics.

n0: (Prepare-Table) (Cook-Pancake-Task ?pc ?egg ?milk) (Eat ?pc)n1: n2:

Constraints: (initially (Egg ?egg)) ∧ (initially (Milk ?milk))
∧ (between (Have pancake-mix) n0 n1) ∧ (before (Hot ?pc) n2)

(Eat-Breakfast-Task)

Figure 2: The pancake method for (Eat-Breakfast-Task). The downward-pointing arrows
represent task decomposition, and the right-pointing arrows represent precedence. The
tasks in the decomposition are labeled as n0, n1, and n2 so that they can be referred to in
the constraint formula.3



•  (before (Hot ?pc) n2) is not an external condition,
because the condition “the pancake ?pc is hot” is caused
by the task n1.

The ExCon Strategy

After some method M is instantiated as part of some partial
plan, every external condition of M becomes one of the
applicability conditions in the partial plan; i.e., it is a
condition that must be established somewhere in any
completion of the partial plan if the completion is to be
successful for the current problem. If the applicability
condition cannot be satisfied, the planner may not be able
to tell this until long after it has instantiated the method M,
in which case the planner will incur large backtracking
costs. In many situations, the planner has to backtrack over
more than one applicability condition, which multiplies the
backtracking costs.

Consider the breakfast example again. Suppose we have
a planning problem with two goal tasks, Shopping-Task
and Eat-Breakfast-Task (see Figure 3). Suppose that the
initial state does not contain (Have pancake-mix), but that
depending on what is on sale at the store, one possible
outcome of Shopping-Task is to buy a pancake mix. Given
the goal, a task-selection strategy such as FAF may choose
Eat-Breakfast to work on first. This will generate two
partial plans, one using the pancake method (Plan1 in the
figure) and the other using the cereal method. The planner
has to choose a non-primitive task such as Cook-Pancake-
Task or Shopping-Task in Plan1 to work on next.

:
 (between (Have pancake-mix) n0 n1)

Eat-Breakfast-Task

Shopping-Task
g2:

g1:

Applicability conditions: empty

I

Goal

Decompose g1Plan1 (Pancakes)

Plan2 (Cereal)

I

n0:
Prepare-Table

n1:
Cook-Pancake-Task

n2:
Eat

Applicability conditions:

g2:
Shopping-Task

Figure 3: A part of the search tree for the breakfast problem.
‘I’ represents the initial state.

If sometime later the planner finds that the Shopping-Task
does not actually buy a pancake mix, then the entire search
branch derived from Plan1 fails. The cost of such
backtracking can be significantly large if the planner
worked on the task Cook-Pancake-Task down to the
detailed level and then finds the failure while working on
the Shopping-Task.

The idea of the ExCon strategy is to shift the attention of
the planner to concentrate on establishing applicability

conditions in the partial plan. This requires the following:
1. When it loads its knowledge base, the planner must pre-

compute external conditions for every decomposition
method in the domain and store the information.

2. The data structure of a partial plan keeps the stack of
applicability conditions. Initially, the partial plan has no
applicability conditions. During a method instantiation,
the external conditions of the method are pushed onto
the top of this stack. The condition on top is the current
priority to the planner.

3. When selecting a task to decompose, the priorities are
given to (1) tasks which can possibly establish the
current top condition, or (2) tasks which can possibly
threaten the current top condition, based on the presence
of a primitive establisher.

The algorithm for the third step (selecting a task to
decompose) is shown in Figure 4. For selecting tasks in
Steps 1, 4, and 5, the algorithm uses whatever task-
selection strategy the user wishes (we use FAF for this
purpose in the experiments described in the next section).
We now describe the details of the algorithm.

Algorithm select-task-ExCon(PartialPlan)
1. If the applicability condition stack of PartialPlan is empty,

then select a task from PartialPlan and return the result.
2. Else, set c to the first element of the applicability condition

stack in PartialPlan.
3 .  If c is true in PartialPlan, then remove c from the

applicability condition stack and go back to Step 1.
4. If there is no primitive task that establishes c, then compute

possible establishers for c. Select a task among them and
return the result.

5. Else, compute possible threats for c. Select a task among
them and return the result.

6 . If there are no possible establishers or possible threats,
remove c from the applicability condition stack of
PartialPlan and go back to Step 1.

Figure 4: The task selection algorithm for ExCon.

In Step 1, if there are no applicability conditions to
achieve, then the planner selects and returns a task. When
there are applicability conditions, Step 2 picks the one on
top of the stack. If the current condition is already
established without threats in the partial plan, then Step 3
removes the condition from the stack and goes back to
select something else. Otherwise, Step 4 computes the non-
primitive tasks in the plan that can possibly establish the
condition, provided the condition is not established by any
primitive task currently in the plan. If it is established by a
primitive task, then possible threats are computed and one
is selected in Step 5. Otherwise, there are only primitive
tasks that might affect this condition, so Step 6 will remove
it from the stack and go back to select another one.

Note that since ExCon’s task-selection strategy merely
specifies the order in which a planner will prefer to expand
tasks, it has no effect on the planner’s soundness and
completeness: a planner that is sound and complete without



it will also be sound and
complete with it.

Experiments

We implemented FAF and
ExCon in UMCP version 1.0,
using Allegro Common Lisp
vers ion  4 .3  on  SUN
workstations. We ran two sets of
experiments: one on a small
artificial domain and one on the
Trans log  doma in .  We
incorporated each task selection
strategy into UMCP’s default
commitment strategy, and used
depth-first search for all the
experiments. Although we do not
show CPU-time results for the
experiments described below, the
CPU times in our experiments were basically proportional
to the node counts.

Implementation of ExCon in UMCP
Automatically extracting external conditions.
Computing precisely which state constraints are external
conditions is not a trivial matter since it requires the
planner to know the exact variable bindings that can occur
during the planning. To see which tasks affect which
constraints, UMCP uses a possible-effects table to store
information about which non-primitive tasks are capable of
causing various kinds of effects. Since the exact effect of
each non-primitive task depends on which decomposition
methods are used and how the variables are bound, the
table only specifies which non-primitive task can possibly
affect each predicate. The table is a table of pairs 〈p, t〉
where p is a positive or a negative predicate symbol and t is
a non-primitive task. A pair 〈p, t〉 is in the table if one of
the possible decompositions of the task t contains a
primitive  task s such  that  one of s’s effects  is the literal
(p arguments).

The possible effects table can be constructed by a
planner by preprocessing the domain. During the planning,
the planner can look up the table to see which non-
primitive task in the current partial plan can possibly
establish or threaten certain constraints in order to prune
partial plans that have no way of satisfying necessary state
constraints.

To extract the external conditions of each method in the
domain, we modified UMCP to look at each non-initial
state constraint and find all the subtasks that are not
explicitly ordered after the point where the condition needs
to be true. If none of those subtasks can possibly establish
the condition, the state constraint is marked as an external
condition. This method will not necessarily extract all
external conditions. We are currently trying to find a better
way to extract them.

Computing possible establishers and possible threats.
As shown in Figure 4, Steps 4 and 5 of ExCon’s task-
selection compute the possible establishers and the possible
threats of the applicability condition. In our
implementation, the planner uses the possible effects table
to compute them. First the planner finds all non-primitive
tasks in the partial plan that are not ordered after the point
where the condition needs to be true. It then looks up the
possible effects table to see if any of them can possibly
establish or threaten the condition, and returns the result.
Although this method returns (as possible establishers or
possible threats) some tasks that can never establish nor
threaten the condition, it finds every possible establisher
and possible threat to the condition.

Experiments on an artificial domain
We hypothesized that in comparison with FAF, ExCon

should perform best in problems that contain lots of
interleaved tasks, and also in problems where there are
many possible ways to interleave the same tasks. To test
these hypotheses, we experimented with ExCon on the test
domain described below.

The test domain contains methods for accomplishing
compound tasks called p-task, q-task, and r-task. As shown
in Figure 5, these methods decompose the compound tasks
into other tasks. Most of the other tasks are primitive tasks,
but a few of them (p, q, and r) are predicate tasks. Most of
the primitive tasks (do-p1, do-p2, do-q1, do-q2, do-r1 and
do-r2) have no preconditions and effects. Each predicate
task has two methods that are capable of achieving it: one
of the methods shown in Figure 5(d)–5(f), and a Do-
Nothing method.4

                                    
4 If a predicate task has already been established, it is said to be
phantomized because the planner will not need or want to
establish it yet again. There are several well known ways to
handle phantomization. UMCP handles it by inserting a Do-
Nothing method (basically a no-op) into the plan.

(a): a method for (p-task ?x)

n0:
(do-p1)

Constraints:

(between (p ?x) n1 n2)

n1:
(p ?x)

n2:
(do-p2)

(d): a method to achieve�(p ?x)

n0:
(del-p ?x ?y)

Constraints:

(before (~p ?x) n0) ∧
(before (p ?y) n0) ∧
(between (prep p) n0 n1)

n1:
(set-p ?x)

(b): a method for (q-task ?x)

n0:
(do-q1)

Constraints:

(between (q ?x) n1 n2)

n1:
(q ?x)

n2:
(do-q2)

(c): a method for (r-task ?x)

n0:
(do-r1)

Constraints:

(between (r ?x) n1 n2)

n1:
(r ?x)

n2:
(do-r2)

(e): a method to achieve (q ?x)

n0:
(del-q ?x ?y)

Constraints:

(before (~q ?x) n0) ∧
(before (q ?y) n0) ∧
(between (prep q) n0 n1)

n1:
(set-q ?x)

(f): a method to achieve (r ?x)

n0:
(del-r ?x ?y)

Constraints:

(before (~r ?x) n0) ∧
(before (r  ?y) n0) ∧
(between (prep r) n0 n1)

n1:
(set-r ?x)

Figure 5: The decomposition methods for the test domain. Each non-primitive task has exactly
one method specified. The tasks shown in boldface are primitive tasks.



The primitive task (del-p ?x ?y) has the effects (~p ?y)
and (prep p). The task (set-p ?x) has the effects (p ?x) and
(~prep p). The predicate task (p W) for some value W can
be achieved in two ways: by phantomizing it if the literal (p
W) is true at the beginning of the task (p W); or by doing
(del-p W Z) followed by (set-p W) if at the beginning of the
task (p W), the literal (p W) is false and the literal (p Z) is
true for some value Z. The tasks del-q and del-r are defined
similarly to the task del-p, and the tasks set-q and set-r are
defined similarly to the task set-p. An initial state for this
domain  consists of  three  ground  atoms (p wp) (q wq) and
(r wr), where wp, wq and wr are constant values randomly
chosen from the set {C1, C2, C3, C4, C5, C6}.

In this test domain, the amount of interleaving can be
altered by varying the arguments of the goal tasks: a
problem is highly interleaved if the arguments of most p-
task goal tasks are the same, and it is less interleaved if the
arguments of most p-task goal tasks are different.

I
g1: (q-task C2) g2: (r-task C3) g3: (p-task C6)

g4: (p-task C4) g5: (q-task C6) g6: (r-task C4)

(p C6)
(q C5)
(r C4)

Figure 6: A sample problem with 2 goals, 3 predicates and 50%
overlap.   I represents the initial state  which consists of  (p C6),
(q C4) and (r  C4).

We generated test problems as follows. Goals were
random sequences  of one  (p-task only), two (p-task  and
q-task) or three (p-task, q-task and r-task) different tasks
that need to be done. How many different tasks were in the
goals decided the number of predicates in the problems. A
problem consisted of two or three goals, with no ordering
constraints between them. We randomly assigned
arguments to the tasks based on an “overlap rate” of 10%,
50% or 90%. For example, if the overlap rate were 100%,
all the arguments of the p-task tasks would be identical to
the p value in the initial state. If the overlap rate were 0%,
the arguments for p-task’s and the p value in the initial
state would all be unique. If the overlap rate were 30%,
there would be a 30%  probability  that the argument of a
p-task is used in another p-task or the atom p in the initial
state. We varied the overlap rate to create problems with
various degrees of interleaving. We also varied the number
of predicates appearing in the problems to change the
chances that the planner tries to interleave multiple
predicate tasks. A sample problem is shown in Figure 6.

We created and tested 100 problems of 1, 2 or 3
predicates used, 10%, 50% or 90% overlap, and 2 or 3
goals, totaling 1800 problems tested. We counted the
number of search nodes, i.e. partial plans, created during
the planning and computed the average for each type of
problem. The results are shown in Table 1.

The ExCon strategy first extracts the external conditions
of each of the methods. The methods in Figure 5(a)–(c)
have  no  external  conditions while  the  methods  in
Figure 5(d)–(f) have two external conditions each (the first
two ‘before’ state constraints). Also, the Do-Nothing
method for each predicate task has one external condition.

(ex. the constraint (before (p ?x) n) is the external condition
for the Do-Nothing method of the task (p ?x). )

Table 1: The average numbers of search nodes created over the
100 randomly generated problems in the artificial test domain.

FAF ExCon FAF ExCon FAF ExCon

2 goals 1 predicate 2 predicates 3 predicates

90% 10.5 10.5 22.5 21.9 35.8 32.6
50% 12.3 12.3 30.2 26.2 56.2 38.3
10% 14.2 14.2 36.1 29.7 68.7 43.8

3 goals 1 predicate 2 predicates 3 predicates

90% 16.5 16.2 40.2 38.8 79.1 52.5
50% 34.5 34.8 176 64.4 1414 105
10% 53.6 53.5 473 101 3302 141

Table 1 shows our experimental results. At 90% overlap,
most predicate tasks can be phantomized and the amount of
backtracking is minimal. Thus, the performances of the two
strategies are almost the same. As the overlap rate
decreases to 50% and 10%, less and less predicate tasks
can be phantomized. The planner has a harder time trying
to order tasks consistently in such a way that
phantomization will work between the goals. For example,
consider the problem shown in Figure 6. If the planner
orders the task g3 before the task g4, the subtask (p C6) of
g3 can be phantomized by the initial state. On the other
hand, if the planner orders the task g6 before the task g2,
then the subtask (r C4) of g6 can be phantomized.
However,  the planner cannot phantomize both (p C6) and
(r C4) because of the ordering constraints.

100%

150%

200%

1 2 3
100%

150%

200%

1 2 3
100%
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Figure 7: The relative performance of FAF and ExCon on 2-goal
problems. The x-axis gives the number of predicates in the goals,
and the y-axis gives the ratio (# search nodes by FAF) / (# search
nodes by ExCon).

Figures 7 and 8 are graphs of the data in Table 1, that
show how the relative performance of FAF and ExCon
depends on number of predicates in the goal. Note that as
the number of predicates increases, FAF’s performance
degrades much more quickly than ExCon’s. This is
because FAF creates many more search nodes in order to
phantomize predicate tasks. Since ExCon works on one
predicate at a time until it is established or fails, the planner
does not have to backtrack over multiple predicates as it
does with FAF.
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Figure 8: The relative performances of FAF and ExCon for 3-goal
problems. The x-axis gives the number of predicates in the goals,
and the y-axis gives the ratio (# search nodes by FAF) / (# search
nodes by ExCon).

The graphs in Figure 9 show how the relative
performance of FAF and ExCon depends on the overlap
rate. For the problems with 1 predicate, the difference
between FAF and ExCon is insignificant. For the problems
with 2 or 3 predicates in the goals, FAF is clearly spending
more time backtracking than ExCon.
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Figure 9: The relative performance of FAF and ExCon on 3-goal
problems. The x-axis gives the overlap rate, and the y-axis gives
the ratio (# search nodes by FAF) / (# search nodes by ExCon).

ExCon does slightly worse than FAF on average for the
problems with 3 goals, 1 predicate, and 50% overlap. For
other types of problems, ExCon may perform worse than
FAF on certain problems but on average, ExCon performs
better. ExCon may not do well if search branches fail for
reasons such as the failure of variable bindings, or state
constraints except external conditions. We need to study
commitment strategies as a whole to improve such
situations. in the future

Experiments with the Translog Domain
We now describe our experiments with FAF and ExCon in
the Translog domain (Andrews, et al. 1995). Translog is a
transportation logistics domain specifying various delivery
methods for various types of packages. For example, it
specifies granular packages such as grain must be delivered
by hopper trucks. If the packages are the same type and the
itineraries are the same, then two delivery tasks can be
interleaved by using the same truck and carrying the
packages at the same time. Even if the itineraries are
different, if the destination of a package A is the initial
location of the other package B, then the task of moving
the truck to the initial location of B can be interleaved by
carrying and delivering package A first.

We tested (a) one-package delivery problems, (b) two
package delivery problems where the packages are of the
same package type and have the same initial location and
destination, (c) two package delivery problems where the
packages are of the same package type and the destination
of one of the packages is the same as the initial location of
the other package, (d) two package delivery problems
where the packages are of the same type but none of the
initial locations or the destinations are the same, and (e)
two package delivery problems where the packages are of
the different types. We randomly created 50 problems, 10
problems for each type of problems, with various package
types (regular, bulky, l iquid , livestock or granular) and
locations (among 15 locations). The results are shown in
Table 2.

Table 2: Average number of nodes generated by FAF and ExCon
on Translog problems. For two-package delivery problems,
“Package types” shows whether the packages have the same type
and so can be carried by the same delivery truck.

Problem Package
types

FAF ExCon FAF/ExCon

1pack (a)  67.9 67.9 1.00

2pack (b) same 932.6 1331.4 0.70
2pack (c) same 799.9 721.7 1.11
2pack (d) same 1415.9 731.9 1.93

2pack (e) different 1366.3 518.2 2.64

For one-package delivery problems, there is almost no
interleaving in the problem, so the performances of FAF
and ExCon are similar. For two-package delivery
problems, the performances of the two strategies depends
on how much tasks can be successfully interleaved
between two goal tasks. For the problems of type (b), the
task of moving trucks to the necessary locations can be
completely interleaved between the two goals. So FAF can
perform well on these problems. On our ten test problems,
FAF produced fewer search nodes on average than ExCon
although ExCon outperformed FAF on 7 out of 10
problems. For the problems of type (c), the task of moving
a truck to the initial location of the second package can be
interleaved by delivering the first package first. ExCon
does this more efficiently than FAF. For the problems of
type (d), although the two packages are of the same type,
and same trucks can be used, no interleaving can actually
work, since the locations are all different. Both ExCon and
FAF make attempts to interleave tasks, but ExCon realizes
the failure faster than FAF does. The similar occurrence
takes place for the problems of type (e) where the two
package types are different.

Conclusions

In this paper, we have shown how an HTN planner can
avoid many situations that cause complexity in multiple-
goal and interleaved problems, by identifying and handling



external conditions. We have presented ExCon, a task
selection strategy that makes use of these conditions.
ExCon causes the planner to explore tasks that are likely to
affect the applicability conditions of other tasks first,
significantly reducing backtracking. In our empirical
studies, ExCon consistently outperformed FAF on complex
problems, doing increasingly well on the problems where
the task interactions occurred recursively and where
multiple goals were involved.

Since ExCon enables the planner to establish conditions
in the plan at less detailed levels, it produces some of the
same improvements in planning efficiency that one might
try to get using planning constructs such as unsupervised
preconditions or high-level effects. In addition, it has the
following advantages:
• External conditions do not have to be specified explicitly

by the user, but instead are found automatically by the
planning system when it pre-compiles its knowledge
base. This will make it much easier for users to maintain
the knowledge base.

•  ExCon is a task-selection strategy, not a search-space
pruning heuristic: it simply specifies the order in which a
planner will prefer to expand tasks. Thus, it has no effect
on the planner’s soundness and completeness: a planner
that is sound and complete without it will also be sound
and complete with it.
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