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Introduction

As one of the challenges posed in their paper “Ten Chal-
lenges in Propositional Reasoning and Search,” Selman
et al. (1997) mention the development of Integer Pro-
gramming (IP) models and methods for propositional
reasoning. Even though it is straightforward to formu-
late a satisfiability problem as an integer programming
model, their concern is that the basic technique used
to solve integer programs—that is, the linear (LP) re-
laxation of the problem—does not guide the selection
of values in solving the the integer program. As a rea-
son for this, they mention that the LP relaxation of the
problem usually sets most values to %

Recently, we have begun to investigate the use of IP
methods in the planning domain. Even though we are
still in the early stages of our research, our preliminary
experiments strongly suggest that IP methods do have
something to offer for these problems. In particular,
it appears that the LP relaxation of the problem does
provide guidance in solving the IP. Below we briefly
summarize the IP formulations and the results of our
experiments.

Integer Programming Formulations

The class of planning problems we considered was based
on the STRIPS paradigm. STRIPS planning prob-
lem instances were formulated as integer programs us-
ing the SATPLAN encodings proposed by Kautz and
Selman (1996). In these encodings, a planning prob-
lem is converted to a satisfiability problem. Using
largely straightforward techniques (Hooker 1988; Blair,
Jeroslow, and Wang 1986) for converting clauses to
linear constraints, we formulated the resulting SAT-
problem as an integer program. The types of SAT-
PLAN encodings we considered were the following:

e Linear Encoding with Explanatory Frame Axioms
(Kautz and Selman 1996);

e Lifted Causal Encoding (Kautz, McAllester, and Sel-
man 1996).

In order to obtain a more concise formulation, exclu-
siveness constraints were modeled slightly differently.
This was done introducing constraints which state that
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the sum of mutually exclusive actions equals 1. For in-
stance, the fact that exactly one action a € A occurs at
each time instant ¢ is modeled as

Zatzl Vt.

acA

Another modification we made was that we didn’t re-
strict all variables 0-1 integers. In the linear encodings
for instance, the integrality of all fluents f was relaxed
to be 0 < f < 1. The reason for this is that the in-
tegrality of these variables is implied by the integrality
of the action variables. Similarly, in the causal encod-
ing only the variables representing links were restricted
to be integer. As a consequence of doing this, none of
the relaxed variables will be selected in the branch and
bound tree.

For the lifted encodings, the objective was set to max-
imize the sum of the goal state fluents (i.e. to maximize
the number of goal met). However, as we also included
the constraints that goal states are fulfilled at the fi-
nal time ¢ instant, this didn’t carry any information.
For the causal encoding, we set the objective to mini-
mize the sum of the ’before’ variable (i.e. to obtain a
“minimum” partial order).

Preliminary Experimental Results

The IP formulations mentioned above were tested on
the blocks world problem. The number of blocks were
varied from 3 to 9, and the number of moves required
from 3 to 7. All instances have multiple stacks of blocks.
The integer programs were solved using Cplex 4.0, us-
ing a SunSparc 5 workstation. The results are shown in
the following tables. In all tables, nodes represents the
number of nodes visited in the branch and bound pro-
cedure, and iterations the number of simplex iterations
performed. Times are in seconds.

While the computation times for both formulations is
generally not impressive, the number of nodes required
is generally very low. This suggests that the LP relax-
ation is strong and that it provides strong guidance in
the selection of variables to branch on. In fact, for in-
stance BW large A (Kautz and Selman 1996), the LP
relaxation itself finds an integer solution! For larger
instances however, the size of the LP formulation and



Table 1: Linear encoding, explanatory frame axioms.

blocks moves | nodes iterations time comment
3 3 2 61 0.07 anomaly
4 4 1 393 1.37
5 5 4 1507 10.80
7 7 13 9292 779.20
9 6 0 31639 1705.70 | BW large A

Table 2: Causal link planner. Reports are for the first integer solutions found.

blocks moves | nodes iterations time comment
3 3 3 414 0.81 anomaly
4 4 2 1168 6.41
5 5 28 5641  74.30
7 7 20 14266  535.60
9 6 2 5756 198.20 | BW large A
correspondingly the time needed to solve the LP relax- Acknowledgements

ation become too large.

Conclusions

Although Selman et al. (1997) reported difficulty in
making effective use of IP techniques for propositional
reasoning in general, our preliminary results suggest
that IP techniques may potentially work well for AI
planning problems. The fact that the test problems
have been solved with a very small number of nodes in-
dicates that the linear programming relaxation is strong
and that reduced computation times can be achieved by
engineering the LP solution process. We have not yet
tried to tune the LP solver for use on Al planning prob-
lems, but these problems appear to be excellent candi-
dates for constraint and column generation techniques,
which should allow for the solution of larger problems.

One reason why we find this prospect exciting is that
the IP formulation represents the planning domain as
a set of numeric equations, which should make it quite
easy to incorporate numeric constraints and computa-
tions into formulations of planning domains. The abil-
ity to do this is a critical need for real-world planning,
and it is not addressed adequately in most existing Al
planning systems (Nau et al. 1998).

Our work is still in its early stages, and the results
reported above are still preliminary. Although the first
results are encouraging, our first goal is to investigate
whether they generalize to other planning problems
(Logistics problem, Rocket problem). Also, we are look-
ing at alternative formulations, such as the graphplan
and SAT encodings (Kautz, McAllester, and Selman
1996). Further ahead, we might want to investigate the
use of constraint and column generation techniques, in
order to speed up the LP relaxation.

This work has been supported in part by NSF grants
EEC 94-02384 and IRI-9306580, and ARPA grant
DABT-95-C0037. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the funders.

References

Blair, C.E., Jeroslow, R.G., and J.K. Lowe. 1986.
Some results and experiments in programming tech-
niques for propositional reasoning. Computers and
Operations Research 13:633-645.

A. L. Blum and M. L. Furst. 1997. Fast Planning
Through Planning Graph Analysis. Artificial Intelli-
gence, 90(1-2):281-300.

J. N. Hooker. 1988. A quantative approach to logical
inference. Decision Support Systems 4:45—69.

Henry Kautz, David McAllester, and Bart Selman.
1996. Encoding plans in propositional logic. Proc.
KR-96.

Henry Kautz and Bart Selman. 1996. Pushing the en-
velope: Planning, propositional logic, and stochastic
search. Proc. AAAI-96.

D. S. Nau, S. J. Smith and Kutluhan Erol. 1998. Con-

trol strategies in HTN planning: theory versus prac-
tice. In Proc. TAAI-98, to appear.

B. Selman, H. Kautz, and D. McAllester. 1997. Ten
challenges in propositional reasoning and search. In
Proc. Fifteenth International Joint Conf. Artificial
Intelligence (IJCAI-97), Nagoya, Japan.



