UM -Translog-2: A Planning Domain Designed for AIPS2002

Dan Wu
Department of Computer Science
University of Maryland
College Park, MD 20742
E-mail: dandan@cs.umd.edu

Dana Nau
Department of Computer Science,
and Institute for Systems Research
Universty of Maryland
College Park, MD 20742
E-mail: nau@cs.umd.edu

First version: Jan. 8 2002
Revision: Sept. 18, 2002

This work was supported in part by the following grants, contracts, and awards: Air Force Research
Laboratory F3060D0-20505, Army Reearch Laboratory DAAL0197K0135, Naval Research
Laboaratory NO0173021G005, and the University of Maryland General Research Board. Opinions
expressed in this paper are those of authors and do not necessarily reflect opinion of the funders.



Abstract

This document describes UNIranslog2, which is an extended version of the UM Translog
planning domain. The extensions include some numedgalputation features to make the
domain a more realistic model of transportatiogistics problems. We are proposirigM-
Translog2 as a candidate domain for AIZR02 planning competition.



1 Background and Motivation

As planning systems grow in sophistication and capabilities, planning domains with matching
complexity need to be devised to assist in the analysiseamadluation of planning systems and
techniqgues. UM Translog [1] is a planning domain designed specially for this purpose. UM
Translog provides a rich set of entities, attributes, operators and conditions, which can be used to
specify rather complex planmg problems with a variety of plan interactions.

This document describes UiWranslog2, which is an extended version of the UM Translog
planning domain. The extensions include some numecaealputation features to make the domain
a more realistic modelfdransportatiorogistics problems.

We have written descriptions of UNIranslog2 both as an HTN planning problem, using the
SHOP2 [5] domairdefinition syntax, and as a PDDL2.1 planning problem. PDDL2.1 [3] is the
language developed for the AIPZR02 ganning competition: it is a significant extension of PDDL
that is intended to support representation of real time problem domains involving nurakersc
resources.

Section 2 describes domain testing, and Section 3 describes some current issuesatimuiaih.
Section 4 describes the domain, in PDDL format.



2. Domain Testing

Writing the HTN definition of UM Translog2 was relatively straightforward, since UM Translog
was also an HTN planning domain. However, writing a PDDL2.1 version of the safiatan
was more difficult.

In general, rewriting an HTN planning problem as a PDDL planning problem is not always
possible. Some HTN planning problems that have no equivalent in PDDL, because HTN planning
is strictly more expressive than classical plang. UM-Translog2 is not one of those problems:

such problems have an unbounded amount of recursion in their HTN methods, whereas the HTN
methods for UMTranslog2 have no recursion at all. However, even when an HTN planning
problem is translatable iata PDDL planning problem, the translation task can still be quite
complicated (see [4] for a description of some of the difficulties that can occur). As a result, it took
us several months to complete the translation and test it for correctness.

Here wa how we tested the translation for correctness:

a. We wrote a random problem generator for Ulvanslog2.

b. We implemented the domain for an actibased planner, namely TLPIlan [2]it would
have been better to use a fully automated planner that could tekeRDL2.1 description
as its only input—but such a planner was not available that could also solve the problems
efficiently. We also added some control formulas into the TLPlan version of the domain,
being careful only to specify control formulas that wauiot affect the correctness of the
translation.

c. We implemented UMIranslog2 domain for our HTN planner, SHOP2.

d. We ran ten problersets (10 problems in each set) generated by random problem generator
on both TLPlan and SHOP2. For all problems, we &eelcwhether both planners reached
the same conclusion, i.e. that there existed a solution or that there did not exist a solution.

For those problems in which both planners found plans, we translated the problem and the plans
into PDDL format, and used theDDL plan validator (which was provided to us by the chairs of
the AIPS2002 planning competition) to check if these plans were valid.



3. Current Issues

Here are some issues that still need to be addressed, especially with regards to testing theivalidity
the domain:

a. Because the domain is very complicated, it is hard for the random problem generator to
generate problems that are solvable with a good probability.

b. It would be better if we there were an actibased planner that could take PDDL2.1
directlyas input and was efficient enough to handle the domain.

c. Although we added some control formulas to TLPlan, we did not succeed in making it
efficient enough to handle big problems in the domaso we were unable to test those
problems using TLPlan. We ctalionly use small problems, and try to manipulate the
parameters in the random problem generator so that we could get cases that are as
comprehensive as possible.



4 Domain Description

4.1 Overview

As in UM Translog, in UMTranslog2, the planner is givelmne or more goals, where a goal is
typically the delivery of a particular package from an origin to a destination.

In UM-Translog2, we added some numerical computation features to make it more realistic and
suitable for AIPS2002 competition.

In orderto do this, we modeled additional aspects of transport logistics not present in the UM
Translog. These include the following restrictions:

» A vehicle can be moved only with enough gas, given the nemtlpduced numerical

distances between locations andrgmasoline consumed by a vehicle per mile.

» There is no refueling for vehicles

» Avehicle cannot load packages beyond its weight and volume capacity

* Avehicle has weight, height, length and width

» A package has weight and volume.

* An equipment like crane omot pick up a package beyond its weight and volume capacity

» Aroute cannot accommodate a vehicle beyond its height and weight capacity

* Alocation cannot accommodate packages beyond its volume capacity

* Alocation cannot accommodate vehicle beyond its tlenigeight and width capacity

The domain is described in more detail in the following sections. Section 4.2 introduces entities.
Predicates and functions are described in section 4.3 and operators are described in section 4.4.



4.2 Entities

Entities irclude regions, cities within each region, locations within each city and individual objects
(routes, vehicles, equipment, and packages). Each entity is described by a constant symbol (e.g.,
“Truck-1", “Package2”) and one or more functions and predicatbat are asserted by a user (in

the initial state given to the planner) or by the effects of instantiated plan operators. Predicates and
functions are summarized in section 4.3. Each entity has a type. Primary entity types include
region, city, location, route, vehicle, equipment and package, described in the following
subsections.

4.2.1 Region
Each region contains one or more cities (specified via predinategion).

4.2.2 City
Each city can have one or more locations (specified via predicatiy).

4.2.3 Location
Each location is located in a specific city (specified via predigateity).

Location subtypes include transportation centers (specified via predicatger) and non
transportation centers. Transportation center subtypes (spesiizegredicatetypel) include
airport and train-station. Non-transportation centers denote customer locations, such as
businesses, homes, etc.

A transport center can be used for air/rail direct and indirect transportation (see section 4.4).
Transportabn centers can be available (specified via predicatailablel) or unavailable. For
example, a particular airport may be temporarily unavailable due to bad weather.

A transportation center can optionally be specified as a transportation hutugviaredicate). Hub
transportation centers can be used for indirect transportation (see section 4.4). A transportation
center serves its own city. Thus, air or rail travel from a specific city must use a transportation
center in that city. Hub transport cens serve specific regions (specified via predicsgeves,

rather than cities. A hub serves a region if it has rail/air route connection to a transport center in
that region.

Locations can serve as the origin or destination of a package. Locatioashi&rvolume capacity
(specified via functionvolume-cap-l). The total volume of all packages (see section 4.2.7) in a
location (specified via functiorvolume-load-I) at any given time cannot exceed its volume
capacity.

Also, a location cannot accommiate a vehicle (see Section 4.2.5) whose length exceeds location’s
length capacity (specified via functiolength-cap-l) or whose width exceeds location’s width
capacity (specified via functiowidth-cap-l) or whose height exceeds location’s height cagacit
(specified via functionheight-cap-1). The distance between any two locations is specified via
functiondistance



4.2.4 Routes
Route includes type®ad-route, rail -route, andair-route.

Road routes connect two cities (specified via predicatenectcity). All locations within a city

are assumed to be connected by roads, and thus road routes between individual city locations are
not specified. Rail and air routes connect airports and train stations, respectively (specified via
predicateconnectloc).

Routes have an origin, a destination, and a route type (specified via predmatectcity or
connectloc). Note that routes are directional: traffic flows from the origin to the destination. Route
has an availability status (specified via predicat@ilabler). For example, a particular road route
may be temporarily unavailable due to construction. Routes types are compatible with particular
types of vehicles (see Section 4.2.5), as follows:

Route Type | Vehicle Type
road-route truck

rail -route train
air-route airplane

Routevehicle type compatibilities are specified via predicatecompatible.

A route cannot be used by a vehicle whose height exceeds route’s height capacity (specified via
function height-cap-r) or whose total weight (includingehicle weight and load) exceeds route’s
weight capacity (specified via functioweight-cap-r). The height and weight capacity of local
roads within a city are specified via functiolexal-height andlocal-weight.

4.2.5 Vehicle Types

Primary vehicle typg includetruck , airplane andtrain (specified via predicatyypevp). Each
vehicle also has a physical subtype (specified via predigat). The physical subtype for
airplane isair, and the physical subtype for trucks and trains are as following:

Physical | Examples
Subtype
regularv | tractortrailer truck, delivery van, boxcar, etc.
flatbed | flatbed truck, flatcar, etc.

tanker | tanker truck, tanker car, etc.

hopper | dump truck, hopper car, etc.

auto car carrier truck/train

A vehicle's primary type detsrines its compatibility with a particular route (see Section 4.2.4),
while its physical subtype determines its compatibility with a package (see Section 4.2.7).

A vehicle is at a location and has availability status (specified via prediatteshicleand
availablev, respectively). A vehicle may have other properties, depending on its subtype, as shown
in the following table:

Physical Subtype Predicates
air door-open, ramp connected




auto ramp-down

hopper chute-connected

regularv door-open

tanker hoseconnected, valveopen

A vehicle has weight (specified via functioveight-v), length (specified via functiolength-v),
width (specified via functionvidth -v) and height (specified via functidmeight-v).

A vehicle consumes gas when moving. The-gassumption rate of a vehicle is specified via
functiongpm (gallon per mile). A vehicle can be moved between two locations only if we have:

Gas left in the vehicle (specified via functigasleft) >= vehicle’sgpm * distance between two
locations.

The pbtal volume of all packages in a vehicle (specified via functiolume-load-v) cannot exceed
its volume capacity (specified via functimolume-cap-v) and the total weight of all packages in a
vehicle (specified via functioweight-load-v) cannot exceeds weight capacity (specified via
functionweight-cap-v).

4.2.6 Equipment Types

Equipment types arplane-ramp andcrane. Equipments of these types are used to load airplanes
and flatbed trucks/trains, respectively.

An equipment is at a location (spdeid via predicatet-equipment). And there is no action that
changes the location of an equipment.

The status of a plane ramp is described using predreat@-connected
The status of a crane is described using predieatpty. Also a crane cannot gk up a package
beyond its weight capacity (specified via functiseight-cap-c) or volume capacity (specified via

functionvolume-cap-c).

4.2.7 Package Types
Each packages has a physical subtype from the following list (specified via pretyica

Physical | Examples

Subtype

regularp | parcels, furniture, etc.

bulky steel, lumber, etc.

liquid water, petroleum, chemicals, efc.
granular | sand, ore, etc.

cars automobiles

mail mail




The physical subtype of a package must be compatible with the vehptig&cal subtype (see
Section 4.2.5). The following table lists compatible package and vehicle physical subtypes
(specified via predicatpv-compatible):

Package Subtype Vehicle Subtype
regularp regularv

bulky flatbed

liquid tanker

granular hopper

cars auto

regularp air

mail air, regularv

Each package has a location (specified via predietfgackageg, weight (specified via function
weight-p) and volume (specified via functiomolume-p). Fees need to be collected before a

package can be transportegpecified via predicatieescollected)

When package is at its destination, it will be delivered (specified via prediediteered).



4.3 Predicates and Functions

This section presents a summary of domain predicates and functions present in the P8 ver

The following are the domain predicates:

Predicates

Descriptions

(at-equipment ?e- equipment ?|- location)
(at-packagec ?p- package ?c crane)
(at-packagel ?p- package ?I- location)
(at-packagev ?p- package ?v- vehicle)
(at-vehicle ?v- vehicle ?I - location)
(availablel ?I - location)

(availabler ?r - route)

(availablev ?v- vehicle)

(chute connected ?w vehicle)

(clear)
(connectcity ?r - route ?rtype - rtype ?cl ?c2- city)

(connectloc ?r - route ?rtype - rtype ?11 ?12 -
location)

(delivered ?p- package ?d- location )
(door-open ?v- vehicle)

(empty ?c- crane)

(feescollected ?p- package)
(hoseconnected ?v vehicle)

(h-start ?p - package)

(hub ?I - location)

(in-city ?I - location ?c- city)

(in-region ?c- city ?r - region)

(move ?p- package) / (moveemp ?v- vehicle) / (over
?p - package)

(pv-compatible ?ptype- ptype ?vtype- vtype)

(ramp-connected ?v vehicle ?r- plane-ramp)
(ramp-down ?v - vehicle)

(rv-compatible ?rtype - rtype ?vptype - vptype)

(serves ?h-location ?r - region)

equipment ?e is at location ?|

package ?p is at crane ?c

package ?p is at location ?I

package ?p is at vehicle ?v

vehicle ?v is at location ?I

location ?| (a transport center) is availab
route ?r is available

vehicle?v is available

chute of vehicle ?v (hopper) is connecte
to (un)load cargo

bookkeeping predicate in the domain (s¢
section 4.4)

route ?r of type ?rtype connects city ?cl
city ?c2

route ?r of type ?rtype connects location
?11 to location ?12

package?p is delivered at location ?d
door of vehicle ?v is open

crane ?c is empty

fees have been collected for package ?(
hose connected for ?v (tanker) to (un)log
cargo

bookkeeping predicate in the domain (s¢
section 4.4)

location ?lis a hub

location ?| islocated in city ?c

city ?c is inside region ?r

bookkeeping predicate in the domain (sé
section 4.4)

package physical subtype ?ptype is
compatible with vehicle physical subtype
?vtype

plane ramp ?r is connected to vehicle ?\
(airplane)

ramp of vehick ?v (auto) is down to
(un)load cargo

route type ?rtype is compatible with
primary vehicle type ?vptype

le

o

e

—

o

e

e

location ?I (hub) serves region ?r




(tcenter ?I - location)

(typel ?I - location ?type- Itype)
(typep ?p- package ?type- ptype)
(typev ?v- vehicle ?type- vtype)
(typevp ?v- vehicle ?type- vptype)

(unload ?v - vehicle)

(valve-open ?v- vehicle)

(t-end ?p- package) / (tstart ?p - package)

location ?l is tcenter

section 4.4)

location ?I (tcenter) is of type ?tyfgain
station or airport)

package ?p has physical subtype ?type
vehicle ?v has physical subtype ?type
vehicle ?v has primary type ?type (truck
train, airplane)

bookkeeping predicate in the domain (s¢
section 4.4)

valve open for vehicle ?v (tanker) to
(un)load cargo

bookkeeping predicate in the domain (se

€

e

The following are the domain functions:

Functions

Descriptions

(distance ?I1 ?12- location)
(gasleft ?v - vehicle)

(gpm ?v - vehicle)
(height-v ?v - vehicle)
(height-cap-1 ?I - location)
(height-cap-r ?r - route)
(length-v ?v - vehicle)
(length-cap-l ?I - location)
(local-height ?c- city)

(local-weight ?c- city)

(volume-cap-c ?c- crane)
(volume-cap-l ?I - location)
(volume-cap-v ?v - vehicle)
(volume-load-I ?I - location)
(volume-load-v ?v - vehicle)
(volume-p ?p - pakcage)
(weight-cap-c ?c- crane)
(weight-cap-r ?r - route)
(weight-cap-v ?v - vehicle)
(weight-p ?p - package)
(weight-load-v ?v - vehicle)
(weight-v ?v - vehicle)
(width-v ?v - vehicle)
(width-cap-l ?I - location)

distance between two locations ?I1 and ?12
gallons of gadeft in vehicle ?v

gallons of gas ?v consumes per mile

height of vehicle ?v in feet

height capacity of location ?! in feet

height capacity of route ?r in feet

length of vehicle ?v in feet

length capacity of location ?| in feet

height capacity of local rahroute in city ?c in
feet

weight capacity of local road route in city ?cin
pounds

volume capacity of crane ?c in liters

volume capacity of location ?l in liters

volume capacity of vehicle ?v in liters

total volume of packages at location ?I in liters
total volume of packages in vehicle ?v in liters
volume of package ?p in liters

weight capacity of crane ?c in pounds

weight capacity of route ?r in pounds

weight capacity of vehicle ?v in pounds
weight of package ?p in pounds

total weight of packages in vatie ?v in pounds
weight of vehicle ?v in pounds

width of vehicle ?v in feet

width capacity of location ?I in feet




4.4 Operators

This section describes the symbols that denote operators iATkdslog2. Although UM
Translog2 is based on UM Translog, éhoperators in these two domains are quite different. UM
translog is developed for HTN planning systems while {k&anslog2 is written in actioAbased

format for competition purpose. Some bookkeeping predicates are needed during the translation
process adescribed below.

4.4.1 Administrative Operator s

Prior to carrying a package to its destination, fees should be collected. Each package must be
delivered to its destination. These activities are denoted by the operator sycolets-fees(?p)
anddeliver(?p, ?l), where ?p is a variable symbol denoting a package and ?| is a variable symbol
denoting a location. Fees for a package need to be collected only once, and a package can be
delivered only once.

4.4.2 Operators for Loading/Unloading

There are aumber of operators for loading and unloading packages into/from vehicles, depending
on the type of the vehicle and the package. In some cases, special equipment such as crane needs to
be used for that purpose.

Before loading a regular vehicle, the doof the vehicle must be open and after loading all
packages, the door of the vehicle must be closed. These steps are denoted byopetiedsor-
regular(?v), load-regular(?p ?v ?l), closedoor-regular(?v). Unloading a regular vehicle
involves the same gps, just replacindgpad-regular(?p, ?v, ,?l) with unload-regular(?p ?v ?l).

?p is a variable of type package, v? is a variable of type vehicle, and ?I is a variable of type
location. ?l is used to make sure the vehicle and the package are at the satio@loc

Loading a flatbed requires sequence of actipiek-up-packageground(?p ?c ?l)and put-down-
packagevehicle(?p ?c ?v ?l) Unloading a flatbed requires sequence of actjpio&-up-package
vehicle(?p ?c ?v ?l)and put-down-packageground(?p ?c ?). ?c denotes crane needed for
loading and unloading the flatbed.

Before loading a truck or train of type hopper, the chute of the vehicle must be connected and after
loading all packages, the chute must be disconnected. These steps are denoteshbya@auiect
chute(?v) fill -nopper(?p ?v ?l) anddisconnectchute(?v) Unload is similar, except th@mpty-
hopper(?p ?v ?l)should be replaced withil -hopper(?p ?v ?l)

Before loading a vehicle of type tanker, the hose of the vehicle must be codriiesteand then the

valve of the vehicle needs to be open. After loading all packages, the valve must be closed first and
then the host must be disconnected. These steps are denoted by estinasthose(?v) open
valve(?v) fill -tank(?v ?p ?I), closevalve(?v) disconnecthose(?v ?p) Unload is similar, except
thatfill -tank(?v ?p ?l) should be replaced wittmpty-tank(?v ?p ?l).

Before loading a vehicle of type auto, the ramp of the vehicle must be lowered and after loading all
packages, the rammust be raised. These steps are denoted by ackiover-ramp(?v), load-



cars(?p ?v ?l)andraise ramp(?v). Unloading is similar, except th&wad-cars(?p ?v ?l)should
be replacedvith unload-cars(?p ?v ?l)

Before loading a vehicle of type air, a cayor ramp must be attached to the vehicle first and then
the door of the vehicle must be open. After loading vehicles, the door must be closed first and then
the ramp needs to be detached. These steps are denoted by atthohsconveyor ramp(?v, ?r,

?1), opendoor-airplane(?v), load-airplane(?p, ?v, ?l) detach-conveyorramp(?v, ?r, ?I) and
closedoor-airplane(?v). Unloading is similar, except thabad-airplane(?p, ?v, ?l) should be
replacedwith unload-airplane(?p, ?v, ?I)

In the effect list of oprators for unloading a vehicle, there are some special predicates used for
bookkeeping purpose as explained below:
a. (not (move ?p))
As a rule in UM Translog domain (see section 4.4.3 for more explanation), each movement
of a package ?p from a location 4 a location ?I12 by using a vehicle ?v involves three
steps: loading ?p into ?v at ?11, moving ?v from ?I1 to ?12 and unloading ?p from ?v at ?I2.
This means that ?p must be unloaded at ?I2 before it can be moved further more. So after
each movement d?v from ?I1 to ?12, predicat@nove ?p)will be added to the current state,
and after ?p is unloaded at ?I2, this predicate will be removed from current state which
means ?p can be moved again.
b. (unload ?v)and(not (clear))
After our task is finished, waeed to make sure that all things are cleaned up after us. For
example, we should close the door of all regular vehicles we have used, raise the ramps of
all auto vehicles we have used, et(clear) is a predicate used to indicate that all things
have ben cleaned up after ugunload ?v) means that we have used vehicle ?v and need to
do some clean up stuff for ?v. So in the effect of unloading operatantpad ?v)is added
to the current state an@lear) is deleted from the current statéclear) can be added to the
current state bycleanrdomain operator(see section 4.4.4) when there is nothing which
needs to be cleaned ufclear) is the goal of each problem of the domain.

4.4.3 Operators for Moving

In UM Translog domain, there are some rules adwaw to move a package from its origin to its
destination. This involves choosing a suitable path (a sequence of routes from the origin to the
destination), and moving the package along that path via a series ofduaacy tasks.

A (carry-direct ?packge ?locationl ?location2) task involves picking a route directly connecting
?locationl1 and ?location2, and choosing a vehicle that is compatible both with the package and the
route. Only those vehicles that are at ?locationl or one step away from 2tdcétvbich means

that this vehicle can be moved from its location to locationl directly without passing by any other
locations) can be used. The task is accomplished by moving that vehicle to ?locationl, loading the
package into the vehicle, moving the vwek to ?location2, and finally unloading the package.
When a vehicle moves, so do the packages it contains.

The diagram in Figure 1 shows the legal paths to transport a packageorigin of the package
can be either clocationl (a customer locatiomt ra transportation center) or tcenterl (a
transportation center), and similarly the destinatmina packagecan be either clocation2 (a



customer location, not transportation center) or tcenter2 (a transportation center). There are some
additional rulesabout this path:

1. clocationl can only use a transportation center (tcenterl) in the same city, so does
clocation2
tcenterl and tcenter2 can not be hubs if hubl is used.
The route that connects tcenterl and hubl is a rail/air route.
The route that connectsihl and tcenter2 is a rail/air route.
If a package is transported from clocationl or transported to clocation2 using a route
between tcenterl and tcenter2, then this route must be a rail/air route.

hubl

TN

tcenter;-------------- tcenter:

T

clocationt---------- clocation2
Figure 1 Transport Path

abrwn

All possible legal pathes foransporting a package are defined more precisely as follows.
A package p must be transported from origin ?ori to destination ?des through one of
following pathes:
a. If ?ori and ?des are in the same city ¢, use local road route in city c.
b. If ?ori and ?des a&rin two different cities c1, c2, use a road route r that connects c1
and c2.
c. If ?ori and ?des are both train stations, use a rail route r that connects ?ori and ?des.
d. If ?ori and ?des are both airports, use an air route r that connects ?ori and ?des.
e. If ?ori and ?des are both tcenters (train station or airport), but are both not hub and
hub hubl is of same type as ?ori and ?des (train station or airport), then
transport p from ?ori to hub1 use method c or d
transport p from hubl todes use method c ord
f. If ?ori is not tcenter, ?des is tcenter, and
?oriisin city c1 and
tcenterl is a transportation center in c1 and tcenterl is of same type as ?des, then
transport p from ?ori to tcenterl use method a
transport p fom tcenterl to ?des use method c, d or e
g. If ?oriis tcenter, ?des is not tcenter, and
?des is city c2, and
tcenter2 is a transportation center in c2 and tcenterl is of same type as ?ori, then
transport p from ?ori to tcenter2 use method oy @
transport p from tcenter2 to ?des use method a
h. If ?oriis not tcenter, ?des is not tcenter, and
?oriis in city c1 and and ?des is in city c2 (c1 and c2 can be the same city), and
tcenterl is a transportation center in c1, tcenter2 is aategion center in c2 and
tcenterl, tcenter2 are of same type, then
transport p from ?ori to tcenterl use method a



transport p from tcenterl to tcenter2 use method c,d or e
transport p from tcenter2 to ?des use method a

In UM-Trarslog2 domain, we still follow the rules as described above. In order to make sure that

a package is transported along a legal path, we have to keep track of the movement of a package in
an actionbased planner. Following predicates are used for thikkeeping purpose. Variable ?p

is of type package.

Predicates | Meaning

(over ?p) ?p cannot be moved anymore according to Figure 1
(t-start ?p) ?p is at tcenterl according to Figurel

(t-end ?p) ?p is at tcenter2 according to Figurel

(h-start ?p) | ?p hasvisited one hub and is at hubl or tcenter2 (when tcenter2 is
hub and hubl is not used in the path) as shown in Figurel.

In order to keep track of the movement of a package, we also divided the movement of a vehicle
into different cases and have follavg vehicle moving operators (variable ?v denotes vehicle,
variable ?ori denotes the origin, variable ?des denotes the destination):
1. When moving ?v using locabadroute within a city ?ocity, we have following
operators:
a. movevehiclelocal-road-routel (?v, ?ori, ?des, ?ocity)for the case that either
?ori and ?des are both transportation centers or are botHraasportation
centers
Before using this operator, none of the packages inside the vehicle have been
moved ever and after using this operatarna of the packages inside the vehicle
can be moved anymore (i.e. predicate (over ?p) is added in the current state for
all packages inside the vehicle).
b. movevehiclelocal-road-route2 (?v, ?ori, ?des, ?ocityfor the case that ?ori is
not a transportatimcenter and ?des is one
Before using this operator, none of the packages inside the vdmeiebeen
moved ever, and after using this operator, all packages inside the vehicle are at
point tcenterl in Figureli.e. predicate {start ?p) is added in theurrent state
for all packages inside the vehicle)
c. move-vehiclelocal-road-route3 (?v, ?ori, ?des, ?ocityfor the case that ?ori is
a transportation center and ?des is not one
According to Figurel, before using this operator, either none of the packages
inside the vehicldnavebeen moved ever, or all of them must be at tcenter2 (with
predicate (kstart ?p) or fend ?p)) and after using this operator, none of
packages inside the vehicle can be moved anymore.
2. When moving ?v using roadute ?r which conects two different cities ?ocity and
?dcity, we have operator
move-vehicleroad-route-crossCity(?v, ?ori, ?des, ?ocity, ?dcity, ?r)
Before using this operator, none of the packages inside the vétaigckebeen moved
ever and after using this operatogne of the packages inside the vehicle can be
moved anymore.
3. When moving ?v using a rail or air route ?r, we have following operators



a. movevehiclenonroad-routel(?v, ?ori, ?des, ?rfor the case that either ?ori
and ?des are both hubs or are both ndishu
Before using this operator, either none of the packages inside the vehicle have
been moved evenr all of them must be at tcenterl in Figur@dd after using
this operator, all packages inside the vehicle are at tcenter2 in Figurel.

b. movevehiclenonroad-route2(?v, ?ori, ?des, ?rfor the case that ?ori is not a
hub and ?des is a hub
According to Figurel, before using this operator, either none of the packages
inside the vehiclénavebeen moved ever or all of them must be at tcenterl (with
predicate @start ?p) ) and after using this operator, all packages inside the
vehicle are at either hubl or tcenter2 (with predicatstért ?p)).

c. movevehiclenonroad-route3(?v, ?ori, ?des, ?ocityfor the case that ?oriis a
hub and ?des is not a hub
According to kgurel, before using this operator, either none of the packages
inside the vehicldavebeen moved ever or all of them must be at tcenterl or
hubl (with predicate {start ?p) or (kstart ?p)) and after using this operator, all
packages inside the vehickee at tcenter2 (with predicate€nd ?p)).

In both preconditions and effects of all moving operators, we have a predicate-engqvév)

where ?v is a variable symbol denoting a vehicle. The reason for using this predicate is that in

UM Translog, theras a rule saying that if a package needs to be moved from a location and

there is no vehicle at this location, then only those vehicles that are one step away from the

current location can be used to move this package. What this rule means is thambpgn e

vehicle is moved to a location, it cannot be moved anymore before it picks up something from

this location. This is guaranteed through:

a. If we use moving operators to move an empty vehicle ?v, (rewe ?v) predicate will be
added to the current state

b. In moving operators, (not (movemp ?v)) is used as a precondition for empty vehicle.

c. (moveemp ?v) will be deleted from the current state after ?v is moved as cemqty
vehicle.

4.4.4 Clean Domain

We also have an operatolean-domain() This operator is used to check if we have cleaned up

after us, that is, if we have closed doors of all regular vehicles we have used, disconnected chutes
of all tankers we have used, etc. This operator is applicable if everything is cleaned up and
predicate (clegmwill be added to the current state. (clear) is also the goal of every problem in the
domain.



Reference

[1] S. Andrews, B. Kettler, K. Erol and J. Hendler. “UM Translog: A Planning Domain for the
Development and Benchmarking of Planning Systems.” TRelport CSTR-3487, Dept. of
Computer Science, University of Maryland, College Park, MD, 1995.

[2] F. Bacchus and F. Kabanza. "Using Temporal Logics to Express Search Control Knowledge
for Planning,."Artificial Intelligence,116(1-2):123191, January, @00.

[3] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains.” Tech. Report, University of Durham, UK, 2001.

[4] A. Lotem, D. Nau and J. Hendler. Using Planning Graphs for Solving HTN Problems. In
AAAI99, 1999, pages 53340.

[5] D. Nau, H. MuiozAvila, Y. Cao, A. Lotem, and S. Mitchell. "TotaDrder Planning with
Partially Ordered Subtasks." IdCAI-2001. Seattle, August, 2001.



