
UM-Translog-2: A Planning Domain Designed for AIPS-2002

Dan Wu
Department of Computer Science

University of Maryland
College Park, MD 20742

E-mail: dandan@cs.umd.edu

Dana Nau
Department of Computer Science,
and Institute for Systems Research

University of Maryland
College Park, MD 20742
E-mail: nau@cs.umd.edu

First version: Jan. 8 2002
Revision: Sept. 18, 2002

This work was supported in part by the following grants, contracts, and awards: Air Force Research
Laboratory F30602-00-2-0505, Army Research Laboratory DAAL0197K0135, Naval Research
Laboaratory N00173021G005, and the University of Maryland General Research Board. Opinions
expressed in this paper are those of authors and do not necessarily reflect opinion of the funders.

Abstract
This document describes UM-Translog-2, which is an extended version of the UM Translog
planning domain. The extensions include some numerical-computation features to make the
domain a more realistic model of transportation-logistics problems. We are proposing UM-
Translog-2 as a candidate domain for AIPS-2002 planning competition.

1 Background and Motivation
As planning systems grow in sophistication and capabilities, planning domains with matching
complexity need to be devised to assist in the analysis and evaluation of planning systems and
techniques. UM Translog [1] is a planning domain designed specially for this purpose. UM-
Translog provides a rich set of entities, attributes, operators and conditions, which can be used to
specify rather complex planning problems with a variety of plan interactions.

This document describes UM-Translog-2, which is an extended version of the UM Translog
planning domain. The extensions include some numerical-computation features to make the domain
a more realistic model of transportation-logistics problems.

We have written descriptions of UM-Translog-2 both as an HTN planning problem, using the
SHOP2 [5] domain-definition syntax, and as a PDDL2.1 planning problem. PDDL2.1 [3] is the
language developed for the AIPS-2002 planning competition: it is a significant extension of PDDL
that is intended to support representation of real time problem domains involving numeric-valued
resources.

Section 2 describes domain testing, and Section 3 describes some current issues about the domain.
Section 4 describes the domain, in PDDL format.

2. Domain Testing

Writing the HTN definition of UM-Translog-2 was relatively straightforward, since UM Translog
was also an HTN planning domain. However, writing a PDDL2.1 version of the same definition
was more difficult.

In general, rewriting an HTN planning problem as a PDDL planning problem is not always
possible. Some HTN planning problems that have no equivalent in PDDL, because HTN planning
is strictly more expressive than classical planning. UM-Translog-2 is not one of those problems:
such problems have an unbounded amount of recursion in their HTN methods, whereas the HTN
methods for UM-Translog-2 have no recursion at all. However, even when an HTN planning
problem is translatable into a PDDL planning problem, the translation task can still be quite
complicated (see [4] for a description of some of the difficulties that can occur). As a result, it took
us several months to complete the translation and test it for correctness.

Here was how we tested the translation for correctness:
a. We wrote a random problem generator for UM-Translog-2.
b. We implemented the domain for an action-based planner, namely TLPlan [2]. It would

have been better to use a fully automated planner that could take the PDDL2.1 description
as its only input—but such a planner was not available that could also solve the problems
efficiently. We also added some control formulas into the TLPlan version of the domain,
being careful only to specify control formulas that would not affect the correctness of the
translation.

c. We implemented UM-Translog-2 domain for our HTN planner, SHOP2.
d. We ran ten problem-sets (10 problems in each set) generated by random problem generator

on both TLPlan and SHOP2. For all problems, we checked whether both planners reached
the same conclusion, i.e. that there existed a solution or that there did not exist a solution.

For those problems in which both planners found plans, we translated the problem and the plans
into PDDL format, and used the PDDL plan validator (which was provided to us by the chairs of
the AIPS-2002 planning competition) to check if these plans were valid.

3. Current Issues

Here are some issues that still need to be addressed, especially with regards to testing the validity of
the domain:

a. Because the domain is very complicated, it is hard for the random problem generator to
generate problems that are solvable with a good probability.

b. It would be better if we there were an action-based planner that could take PDDL2.1
directly as input and was efficient enough to handle the domain.

c. Although we added some control formulas to TLPlan, we did not succeed in making it
efficient enough to handle big problems in the domain—so we were unable to test those
problems using TLPlan. We could only use small problems, and try to manipulate the
parameters in the random problem generator so that we could get cases that are as
comprehensive as possible.

4 Domain Description

4.1 Overview
As in UM Translog, in UM-Translog-2, the planner is given one or more goals, where a goal is
typically the delivery of a particular package from an origin to a destination.

In UM-Translog-2, we added some numerical computation features to make it more realistic and
suitable for AIPS2002 competition.

In order to do this, we modeled additional aspects of transport logistics not present in the UM
Translog. These include the following restrictions:

• A vehicle can be moved only with enough gas, given the newly-introduced numerical
distances between locations and gpm, gasoline consumed by a vehicle per mile.

• There is no refueling for vehicles
• A vehicle cannot load packages beyond its weight and volume capacity
• A vehicle has weight, height, length and width
• A package has weight and volume.
• An equipment like crane cannot pick up a package beyond its weight and volume capacity
• A route cannot accommodate a vehicle beyond its height and weight capacity
• A location cannot accommodate packages beyond its volume capacity
• A location cannot accommodate vehicle beyond its length, height and width capacity

The domain is described in more detail in the following sections. Section 4.2 introduces entities.
Predicates and functions are described in section 4.3 and operators are described in section 4.4.

4.2 Entities
Entities include regions, cities within each region, locations within each city and individual objects
(routes, vehicles, equipment, and packages). Each entity is described by a constant symbol (e.g.,
“Truck-1”, “Package-2”) and one or more functions and predicates that are asserted by a user (in
the initial state given to the planner) or by the effects of instantiated plan operators. Predicates and
functions are summarized in section 4.3. Each entity has a type. Primary entity types include
region, city, location, route, vehicle, equipment and package, described in the following
subsections.

4.2.1 Region
Each region contains one or more cities (specified via predicate in-region).

4.2.2 City
Each city can have one or more locations (specified via predicate in-city).

4.2.3 Location
Each location is located in a specific city (specified via predicate in-city).

Location subtypes include transportation centers (specified via predicate tcenter) and non-
transportation centers. Transportation center subtypes (specified via predicate typel) include
airport and train -station. Non-transportation centers denote customer locations, such as
businesses, homes, etc.

A transport center can be used for air/rail direct and indirect transportation (see section 4.4).
Transportation centers can be available (specified via predicate availablel) or unavailable. For
example, a particular airport may be temporarily unavailable due to bad weather.

A transportation center can optionally be specified as a transportation hub (via hub predicate). Hub
transportation centers can be used for indirect transportation (see section 4.4). A transportation
center serves its own city. Thus, air or rail travel from a specific city must use a transportation
center in that city. Hub transport centers serve specific regions (specified via predicate serves),
rather than cities. A hub serves a region if it has rail/air route connection to a transport center in
that region.

Locations can serve as the origin or destination of a package. Locations have their volume capacity
(specified via function volume-cap-l). The total volume of all packages (see section 4.2.7) in a
location (specified via function volume-load-l) at any given time cannot exceed its volume
capacity.

Also, a location cannot accommodate a vehicle (see Section 4.2.5) whose length exceeds location’s
length capacity (specified via function length-cap-l) or whose width exceeds location’s width
capacity (specified via function width-cap-l) or whose height exceeds location’s height capacity
(specified via function height-cap-l). The distance between any two locations is specified via
function distance.

4.2.4 Routes
Route includes types road-route, rail -route, and air -route.

Road routes connect two cities (specified via predicate connect-city). All locations within a city
are assumed to be connected by roads, and thus road routes between individual city locations are
not specified. Rail and air routes connect airports and train stations, respectively (specified via
predicate connect- loc).

Routes have an origin, a destination, and a route type (specified via predicate connect-city or
connect- loc). Note that routes are directional: traffic flows from the origin to the destination. Route
has an availability status (specified via predicateavailabler). For example, a particular road route
may be temporarily unavailable due to construction. Routes types are compatible with particular
types of vehicles (see Section 4.2.5), as follows:

Route Type Vehicle Type
road-route
rail -route
air -route

truck
train
airplane

Route-vehicle type compatibilities are specified via predicate rv-compatible.

A route cannot be used by a vehicle whose height exceeds route’s height capacity (specified via
function height-cap-r) or whose total weight (including vehicle weight and load) exceeds route’s
weight capacity (specified via function weight-cap-r). The height and weight capacity of local
roads within a city are specified via functions local-height and local-weight.

4.2.5 Vehicle Types
Primary vehicle types include truck , airplane and train (specified via predicate typevp). Each
vehicle also has a physical subtype (specified via predicate typev). The physical subtype for
airplane is air , and the physical subtype for trucks and trains are as following:

Physical
Subtype

Examples

regularv
flatbed
tanker
hopper
auto

tractor-trailer truck, delivery van, boxcar, etc.
flatbed truck, flatcar, etc.
tanker truck, tanker car, etc.
dump truck, hopper car, etc.
car carrier truck/train

A vehicle's primary type determines its compatibility with a particular route (see Section 4.2.4),
while its physical subtype determines its compatibility with a package (see Section 4.2.7).

A vehicle is at a location and has availability status (specified via predicates at-vehicleand
availablev, respectively). A vehicle may have other properties, depending on its subtype, as shown
in the following table:

Physical Subtype Predicates
air door-open, ramp- connected

auto
hopper
regularv
tanker

ramp-down
chute-connected
door-open
hose-connected, valve-open

A vehicle has weight (specified via function weight-v), length (specified via function length-v),
width (specified via function width-v) and height (specified via function height-v).

A vehicle consumes gas when moving. The gas-consumption rate of a vehicle is specified via
function gpm (gallon per mile). A vehicle can be moved between two locations only if we have:

Gas left in the vehicle (specified via function gas-left) >= vehicle’s gpm * distance between two
locations.

The total volume of all packages in a vehicle (specified via function volume-load-v) cannot exceed
its volume capacity (specified via function volume-cap-v) and the total weight of all packages in a
vehicle (specified via function weight-load-v) cannot exceed its weight capacity (specified via
function weight-cap-v).

4.2.6 Equipment Types
Equipment types are plane-ramp and crane. Equipments of these types are used to load airplanes
and flatbed trucks/trains, respectively.

An equipment is at a location (specified via predicate at-equipment). And there is no action that
changes the location of an equipment.

The status of a plane ramp is described using predicate ramp-connected.

The status of a crane is described using predicate empty. Also a crane cannot pick up a package
beyond its weight capacity (specified via function weight-cap-c) or volume capacity (specified via
function volume-cap-c).

4.2.7 Package Types
Each packages has a physical subtype from the following list (specified via predicate typep)

Physical
Subtype

Examples

regularp
bulky
liquid
granular
cars
mail

parcels, furniture, etc.
steel, lumber, etc.
water, petroleum, chemicals, etc.
sand, ore, etc.
automobiles
mail

The physical subtype of a package must be compatible with the vehicle's physical subtype (see
Section 4.2.5). The following table lists compatible package and vehicle physical subtypes
(specified via predicate pv-compatible):

Package Subtype Vehicle Subtype
regularp
bulky
liquid
granular
cars
regularp
mail

regularv
flatbed
tanker
hopper
auto
air
air, regularv

Each package has a location (specified via predicate at-package), weight (specified via function
weight-p) and volume (specified via function volume-p). Fees need to be collected before a
package can be transported (specified via predicate fees-collected)

When package is at its destination, it will be delivered (specified via predicate delivered).

4.3 Predicates and Functions
This section presents a summary of domain predicates and functions present in the PDDL version.

The following are the domain predicates:
Predicates Descriptions

(at-equipment ?e - equipment ?l - location)
(at-packagec ?p - package ?c - crane)
(at-packagel ?p - package ?l - location)
(at-packagev ?p - package ?v - vehicle)
(at-vehicle ?v - vehicle ?l - location)
(availablel ?l - location)
(availabler ?r - route)
(availablev ?v - vehicle)
(chute- connected ?v - vehicle)

(clear)

(connect-city ?r - route ?rtype - rtype ?c1 ?c2 - city)

(connect-loc ?r - route ?rtype - rtype ?l1 ?l2 -
location)
(delivered ?p - package ?d - location)
(door-open ?v - vehicle)
(empty ?c - crane)
(fees-collected ?p - package)
(hose-connected ?v - vehicle)

(h-start ?p - package)

(hub ?l - location)
(in-city ?l - location ?c - city)
(in-region ?c - city ?r - region)
(move ?p - package) / (move-emp ?v - vehicle) / (over
?p - package)

(pv-compatible ?ptype - ptype ?vtype - vtype)

(ramp-connected ?v - vehicle ?r - plane-ramp)

(ramp-down ?v - vehicle)

(rv-compatible ?rtype - rtype ?vptype - vptype)

(serves ?h - location ?r - region)

equipment ?e is at location ?l
package ?p is at crane ?c
package ?p is at location ?l
package ?p is at vehicle ?v
vehicle ?v is at location ?l
location ?l (a transport center) is available
route ?r is available
vehicle ?v is available
chute of vehicle ?v (hopper) is connected
to (un)load cargo
bookkeeping predicate in the domain (see
section 4.4)
route ?r of type ?rtype connects city ?c1 to
city ?c2
route ?r of type ?rtype connects location
?l1 to location ?l2
package ?p is delivered at location ?d
door of vehicle ?v is open
crane ?c is empty
fees have been collected for package ?p
hose connected for ?v (tanker) to (un)load
cargo
bookkeeping predicate in the domain (see
section 4.4)
location ?l is a hub
location ?l is located in city ?c
city ?c is inside region ?r
bookkeeping predicate in the domain (see
section 4.4)

package physical subtype ?ptype is
compatible with vehicle physical subtype
?vtype
plane ramp ?r is connected to vehicle ?v
(airplane)
ramp of vehicle ?v (auto) is down to
(un)load cargo
route type ?rtype is compatible with
primary vehicle type ?vptype
location ?l (hub) serves region ?r

(tcenter ?l - location)
(t-end ?p - package) / (t-start ?p - package)

(typel ?l - location ?type - ltype)

(typep ?p - package ?type - ptype)
(typev ?v - vehicle ?type - vtype)
(typevp ?v - vehicle ?type - vptype)

(unload ?v - vehicle)

(valve-open ?v - vehicle)

location ?l is tcenter
bookkeeping predicate in the domain (see
section 4.4)
location ?l (tcenter) is of type ?type (train
station or airport)
package ?p has physical subtype ?type
vehicle ?v has physical subtype ?type
vehicle ?v has primary type ?type (truck,
train, airplane)
bookkeeping predicate in the domain (see
section 4.4)
valve open for vehicle ?v (tanker) to
(un)load cargo

The following are the domain functions:
Functions Descriptions
(distance ?l1 ?l2 - location)
(gas-left ?v - vehicle)
(gpm ?v - vehicle)
(height-v ?v - vehicle)
(height-cap-l ?l - location)
(height-cap-r ?r - route)
(length-v ?v - vehicle)
(length-cap-l ?l - location)
(local-height ?c - city)

(local-weight ?c - city)

(volume-cap-c ?c - crane)
(volume-cap-l ?l - location)
(volume-cap-v ?v - vehicle)
(volume-load-l ?l - location)
(volume-load-v ?v - vehicle)
(volume-p ?p - pakcage)
(weight-cap-c ?c - crane)
(weight-cap-r ?r - route)
(weight-cap-v ?v - vehicle)
(weight-p ?p - package)
(weight-load-v ?v - vehicle)
(weight-v ?v - vehicle)
(width-v ?v - vehicle)
(width-cap-l ?l - location)

distance between two locations ?l1 and ?l2
gallons of gas left in vehicle ?v
gallons of gas ?v consumes per mile
height of vehicle ?v in feet
height capacity of location ?l in feet
height capacity of route ?r in feet
length of vehicle ?v in feet
length capacity of location ?l in feet
height capacity of local road route in city ?c in
feet
weight capacity of local road route in city ?c in
pounds
volume capacity of crane ?c in liters
volume capacity of location ?l in liters
volume capacity of vehicle ?v in liters
total volume of packages at location ?l in liters
total volume of packages in vehicle ?v in liters
volume of package ?p in liters
weight capacity of crane ?c in pounds
weight capacity of route ?r in pounds
weight capacity of vehicle ?v in pounds
weight of package ?p in pounds
total weight of packages in vehicle ?v in pounds
weight of vehicle ?v in pounds
width of vehicle ?v in feet
width capacity of location ?l in feet

4.4 Operators
This section describes the symbols that denote operators in UM-Translog-2. Although UM-
Translog-2 is based on UM Translog, the operators in these two domains are quite different. UM
translog is developed for HTN planning systems while UM-Translog-2 is written in action-based
format for competition purpose. Some bookkeeping predicates are needed during the translation
process as described below.

4.4.1 Administrative Operator s
Prior to carrying a package to its destination, fees should be collected. Each package must be
delivered to its destination. These activities are denoted by the operator symbols collect-fees(?p)
and deliver(?p, ?l), where ?p is a variable symbol denoting a package and ?l is a variable symbol
denoting a location. Fees for a package need to be collected only once, and a package can be
delivered only once.

4.4.2 Operators for Loading/Unloading
There are a number of operators for loading and unloading packages into/from vehicles, depending
on the type of the vehicle and the package. In some cases, special equipment such as crane needs to
be used for that purpose.

Before loading a regular vehicle, the door of the vehicle must be open and after loading all
packages, the door of the vehicle must be closed. These steps are denoted by actions open-door-
regular(?v), load-regular(?p ?v ?l), close-door-regular(?v). Unloading a regular vehicle
involves the same steps, just replacing load-regular(?p, ?v, ,?l) with unload-regular(?p ?v ?l).
?p is a variable of type package, v? is a variable of type vehicle, and ?l is a variable of type
location. ?l is used to make sure the vehicle and the package are at the same location.

Loading a flatbed requires sequence of actions pick-up-package-ground(?p ?c ?l) and put-down-
package-vehicle(?p ?c ?v ?l). Unloading a flatbed requires sequence of actions pick-up-package-
vehicle(?p ?c ?v ?l) and put-down-package-ground(?p ?c ?l). ?c denotes crane needed for
loading and unloading the flatbed.

Before loading a truck or train of type hopper, the chute of the vehicle must be connected and after
loading all packages, the chute must be disconnected. These steps are denoted by actions connect-
chute(?v), fill -hopper(?p ?v ?l), and disconnect-chute(?v). Unload is similar, except that empty-
hopper(?p ?v ?l) should be replaced with fill -hopper(?p ?v ?l).

Before loading a vehicle of type tanker, the hose of the vehicle must be connected first and then the
valve of the vehicle needs to be open. After loading all packages, the valve must be closed first and
then the host must be disconnected. These steps are denoted by actions connect-hose(?v), open-
valve(?v), fill -tank(?v ?p ?l), close- valve(?v), disconnect-hose(?v ?p). Unload is similar, except
that fill -tank(?v ?p ?l) should be replaced with empty-tank(?v ?p ?l).

Before loading a vehicle of type auto, the ramp of the vehicle must be lowered and after loading all
packages, the ramp must be raised. These steps are denoted by actions lower-ramp(?v), load-

cars(?p ?v ?l) and raise- ramp(?v). Unloading is similar, except that load-cars(?p ?v ?l) should
be replacedwith unload-cars(?p ?v ?l).

Before loading a vehicle of type air, a conveyor ramp must be attached to the vehicle first and then
the door of the vehicle must be open. After loading vehicles, the door must be closed first and then
the ramp needs to be detached. These steps are denoted by actions attach-conveyor- ramp(?v, ?r,
?l), open-door-airplane(?v), load-airplane(?p, ?v, ?l), detach-conveyor-ramp(?v, ?r, ?l) and
close- door-airplane(?v). Unloading is similar, except that load-airplane(?p, ?v, ?l) should be
replacedwith unload-airplane(?p, ?v, ?l).

In the effect list of operators for unloading a vehicle, there are some special predicates used for
bookkeeping purpose as explained below:

a. (not (move ?p))
As a rule in UM Translog domain (see section 4.4.3 for more explanation), each movement
of a package ?p from a location ?l1 to a location ?l2 by using a vehicle ?v involves three
steps: loading ?p into ?v at ?l1, moving ?v from ?l1 to ?l2 and unloading ?p from ?v at ?l2.
This means that ?p must be unloaded at ?l2 before it can be moved further more. So after
each movement of ?v from ?l1 to ?l2, predicate (move ?p) will be added to the current state,
and after ?p is unloaded at ?l2, this predicate will be removed from current state which
means ?p can be moved again.

b. (unload ?v) and (not (clear))
After our task is finished, we need to make sure that all things are cleaned up after us. For
example, we should close the door of all regular vehicles we have used, raise the ramps of
all auto vehicles we have used, etc. (clear) is a predicate used to indicate that all things
have been cleaned up after us. (unload ?v) means that we have used vehicle ?v and need to
do some clean up stuff for ?v. So in the effect of unloading operators, (unload ?v) is added
to the current state and (clear) is deleted from the current state. (clear) can be added to the
current state by clean-domain operator(see section 4.4.4) when there is nothing which
needs to be cleaned up. (clear) is the goal of each problem of the domain.

4.4.3 Operators for Moving
In UM Translog domain, there are some rules about how to move a package from its origin to its
destination. This involves choosing a suitable path (a sequence of routes from the origin to the
destination), and moving the package along that path via a series of carry-direct tasks.

A (carry-direct ?package ?location1 ?location2) task involves picking a route directly connecting
?location1 and ?location2, and choosing a vehicle that is compatible both with the package and the
route. Only those vehicles that are at ?location1 or one step away from ?location1 (which means
that this vehicle can be moved from its location to location1 directly without passing by any other
locations) can be used. The task is accomplished by moving that vehicle to ?location1, loading the
package into the vehicle, moving the vehicle to ?location2, and finally unloading the package.
When a vehicle moves, so do the packages it contains.

The diagram in Figure 1 shows the legal paths to transport a package. The origin of the package
can be either clocation1 (a customer location, not a transportation center) or tcenter1 (a
transportation center), and similarly the destination of a package can be either clocation2 (a

customer location, not transportation center) or tcenter2 (a transportation center). There are some
additional rules about this path:

1. clocation1 can only use a transportation center (tcenter1) in the same city, so does
clocation2

2. tcenter1 and tcenter2 can not be hubs if hub1 is used.
3. The route that connects tcenter1 and hub1 is a rail/air route.
4. The route that connects hub1 and tcenter2 is a rail/air route.
5. If a package is transported from clocation1 or transported to clocation2 using a route

between tcenter1 and tcenter2, then this route must be a rail/air route.

Figure 1 Transport Path

All possible legal pathes for transporting a package are defined more precisely as follows.
A package p must be transported from origin ?ori to destination ?des through one of
following pathes:

a. If ?ori and ?des are in the same city c, use local road route in city c.
b. If ?ori and ?des are in two different cities c1, c2, use a road route r that connects c1

and c2.
c. If ?ori and ?des are both train stations, use a rail route r that connects ?ori and ?des.
d. If ?ori and ?des are both airports, use an air route r that connects ?ori and ?des.
e. If ?ori and ?des are both tcenters (train station or airport), but are both not hub and
 hub hub1 is of same type as ?ori and ?des (train station or airport), then

 transport p from ?ori to hub1 use method c or d
 transport p from hub1 to ?des use method c or d

f. If ?ori is not tcenter, ?des is tcenter, and
 ?ori is in city c1 and
 tcenter1 is a transportation center in c1 and tcenter1 is of same type as ?des, then
 transport p from ?ori to tcenter1 use method a
 transport p from tcenter1 to ?des use method c, d or e

g. If ?ori is tcenter, ?des is not tcenter, and
 ?des is city c2, and
 tcenter2 is a transportation center in c2 and tcenter1 is of same type as ?ori, then
 transport p from ?ori to tcenter2 use method c, d or e

 transport p from tcenter2 to ?des use method a
h. If ?ori is not tcenter, ?des is not tcenter, and

 ?ori is in city c1 and and ?des is in city c2 (c1 and c2 can be the same city), and
tcenter1 is a transportation center in c1, tcenter2 is a transportation center in c2 and
tcenter1, tcenter2 are of same type, then

 transport p from ?ori to tcenter1 use method a

clocation1

tcenter1

hub1

tcenter2

clocation2

 transport p from tcenter1 to tcenter2 use method c, d or e
 transport p from tcenter2 to ?des use method a

In UM-Translog-2 domain, we still follow the rules as described above. In order to make sure that
a package is transported along a legal path, we have to keep track of the movement of a package in
an action-based planner. Following predicates are used for this bookkeeping purpose. Variable ?p
is of type package.

Predicates Meaning
(over ?p) ?p cannot be moved anymore according to Figure 1
(t-start ?p) ?p is at tcenter1 according to Figure1
(t-end ?p) ?p is at tcenter2 according to Figure1

(h-start ?p) ?p has visited one hub and is at hub1 or tcenter2 (when tcenter2 is
hub and hub1 is not used in the path) as shown in Figure1.

In order to keep track of the movement of a package, we also divided the movement of a vehicle
into different cases and have following vehicle moving operators (variable ?v denotes vehicle,
variable ?ori denotes the origin, variable ?des denotes the destination):

1. When moving ?v using local-road-route within a city ?ocity, we have following
operators:

a. move-vehicle-local-road-route1 (?v, ?ori, ?des, ?ocity) for the case that either
?ori and ?des are both transportation centers or are both non-transportation
centers
Before using this operator, none of the packages inside the vehicle have been
moved ever and after using this operator, none of the packages inside the vehicle
can be moved anymore (i.e. predicate (over ?p) is added in the current state for
all packages inside the vehicle).

b. move-vehicle-local-road-route2 (?v, ?ori, ?des, ?ocity) for the case that ?ori is
not a transportation center and ?des is one
Before using this operator, none of the packages inside the vehicle have been
moved ever, and after using this operator, all packages inside the vehicle are at
point tcenter1 in Figure1 (i.e. predicate (t-start ?p) is added in the current state
for all packages inside the vehicle).

c. move-vehicle-local-road-route3 (?v, ?ori, ?des, ?ocity) for the case that ?ori is
a transportation center and ?des is not one
According to Figure1, before using this operator, either none of the packages
inside the vehicle have been moved ever, or all of them must be at tcenter2 (with
predicate (h-start ?p) or (t-end ?p)) and after using this operator, none of
packages inside the vehicle can be moved anymore.

2. When moving ?v using road-route ?r which connects two different cities ?ocity and
?dcity, we have operator

move-vehicle-road-route-crossCity(?v, ?ori, ?des, ?ocity, ?dcity, ?r)
Before using this operator, none of the packages inside the vehicle have been moved
ever and after using this operator, none of the packages inside the vehicle can be
moved anymore.

3. When moving ?v using a rail or air route ?r, we have following operators

a. move-vehicle-nonroad-route1(?v, ?ori, ?des, ?r) for the case that either ?ori
and ?des are both hubs or are both not hubs
Before using this operator, either none of the packages inside the vehicle have
been moved ever or all of them must be at tcenter1 in Figure 1 and after using
this operator, all packages inside the vehicle are at tcenter2 in Figure1.

b. move-vehicle-nonroad-route2(?v, ?ori, ?des, ?r) for the case that ?ori is not a
hub and ?des is a hub
According to Figure1, before using this operator, either none of the packages
inside the vehicle have been moved ever or all of them must be at tcenter1 (with
predicate (t-start ?p)) and after using this operator, all packages inside the
vehicle are at either hub1 or tcenter2 (with predicate (h-start ?p)).

c. move-vehicle-nonroad-route3(?v, ?ori, ?des, ?ocity) for the case that ?ori is a
hub and ?des is not a hub
According to Figure1, before using this operator, either none of the packages
inside the vehicle have been moved ever or all of them must be at tcenter1 or
hub1 (with predicate (t-start ?p) or (h-start ?p)) and after using this operator, all
packages inside the vehicle are at tcenter2 (with predicate (t-end ?p)).

In both preconditions and effects of all moving operators, we have a predicate (move-emp ?v)
where ?v is a variable symbol denoting a vehicle. The reason for using this predicate is that in
UM Translog, there is a rule saying that if a package needs to be moved from a location and
there is no vehicle at this location, then only those vehicles that are one step away from the
current location can be used to move this package. What this rule means is that if an empty
vehicle is moved to a location, it cannot be moved anymore before it picks up something from
this location. This is guaranteed through:
a. If we use moving operators to move an empty vehicle ?v, (move-emp ?v) predicate will be

added to the current state.
b. In moving operators, (not (move-emp ?v)) is used as a precondition for empty vehicle.
c. (move-emp ?v) will be deleted from the current state after ?v is moved as a non-empty

vehicle.

4.4.4 Clean Domain
We also have an operator clean-domain(). This operator is used to check if we have cleaned up
after us, that is, if we have closed doors of all regular vehicles we have used, disconnected chutes
of all tankers we have used, etc. This operator is applicable if everything is cleaned up and
predicate (clear) will be added to the current state. (clear) is also the goal of every problem in the
domain.

Reference
[1] S. Andrews, B. Kettler, K. Erol and J. Hendler. “UM Translog: A Planning Domain for the
Development and Benchmarking of Planning Systems.” Tech. Report CS-TR-3487, Dept. of
Computer Science, University of Maryland, College Park, MD, 1995.

[2] F. Bacchus and F. Kabanza. "Using Temporal Logics to Express Search Control Knowledge
for Planning,." Artificial Intelligence, 116(1-2):123-191, January, 2000.

[3] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains.” Tech. Report, University of Durham, UK, 2001.

[4] A. Lotem, D. Nau and J. Hendler. Using Planning Graphs for Solving HTN Problems. In
AAAI-99, 1999, pages 534-540.

[5] D. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. "Total-Order Planning with
Partially Ordered Subtasks." In IJCAI-2001. Seattle, August, 2001.

