
Automatic Web Services Composition Using SHOP2

Dan Wu+ Evren Sirin+ James Hendler+ Dana Nau+ Bijan Parsia∗
Department of Computer Science

University of Maryland
College Park, MD 20742

+{dandan,evren,hendler,nau}@cs.umd.edu
∗bparsia@isr.umd.edu

Abstract

Semantic markup of Web services will enable the au-
tomation of various kinds of tasks, including discov-
ery, composition, and execution of Web services. We
describe how an AI planning system (SHOP2) can be
used with DAML-S Web service descriptions to auto-
matically compose Web services.

Introduction
As Web services – that is, programs and devices accessible
via standard Web protocols – proliferate, it becomes more
difficult to find the specific service that can perform the task
at hand. It becomes even more difficult when there is no
single service capable of performing that task, but there are
combinations of existing services that could. Sufficiently
rich, machine readable descriptions of Web services would
allow the creation of novel, compound Web services with
little or no direct human intervention. Semantic Web lan-
guages, such as the Web Ontology Language (OWL) (Dean
et al. 2002) or DAML+OIL(Horrockset al. 2001), provide
the foundations for such sufficiently rich descriptions.

In May 2001, the DARPA Agent Markup Language
(DAML) Program released the first version of DAML-S
(Ankolekaret al. 2002), a set of ontologies for describing
the properties and capabilities of Web services. The purpose
of DAML-S markup of Web services is to support effective
automation of various kinds of tasks including Web service
discovery, composition, execution, and monitoring.

For our work, we are motivated by issues related to au-
tomated Web service composition. One part of DAML-S,
namely its process ontology, provides a standard language
for describing the composition of Web services. Below, we
describe how the SHOP2(Nauet al. 2001) planning system
can be used with DAML-S Web service descriptions to au-
tomatically compose Web services.

This paper is organized in the following manner. In Sec-
tion 2, we describe a motivating example for our research. In
Section 3, we give the background knowledge about DAML-
S process ontology and SHOP2. In Section 4, we present
our approach for automatic Web services composition. In
Section 5, we describe the implementation. In Section 6,
we summarize some related work. And finally, in Section
7, we conclude our work and present some future research

directions. Throughout this paper, we use the example we
described in Section 2 to illustrate some concepts used in
our approach. But our work is designed to be domain-
independent and is not restricted to only this example.

Motivating Example
The example we describe here is based loosely on an exam-
ple described in a Scientific American article(Berners-Lee,
Hendler, & Lassila 2001). Suppose Bill and Joan’s mother
goes to her physician complaining of pain and tingling in
her legs and the physician proposes the following sequence
of activities:

• A prescription for Relafen, an anti-inflammatory drug;

• An MRI scan and an electromyography, both of these are
diagnostic tests to try to determine possible causes for the
symptoms;

• A follow-up appointment with the physician to discuss the
results of the diagnostic tests.

Bill and Joan need to do the following things for their
mother:

• fill the prescription at a pharmacy;

• make appointments to take their mother to the two treat-
ments;

• make an appointment for the doctor’s follow-up meeting.

For the three appointment times, there are the following
preferences and constraints:

• For the two treatments:

– Bill and Joan would prefer two appointment times
that are close together scheduled at one or two nearby
places, so that only one person needs to drive once.

– Otherwise, they would prefer two appointment times
on different days, so that each person needs to drive
once.

• The appointment time for doctor’s follow up check must
be later that the appointment times for the two treatments.

• An appointment time must fit the schedule of the person
that will drive to the appointment.

Consider a possible scenario in the near future, where Bill
and Joan can use Web services to schedule their mother’s

appointments. It would be difficult for Bill and Joan to finish
their task by consulting the Web services manually, because:

• They may have to try every available pair of close appoint-
ment times at any two nearby treatment centers in order
to find one that fits their schedules.

• Furthermore, if they first choose an appointment time
for one treatment and then find they have to use this
same time for the other treatment, then they will have to
reschedule the first appointment.

Instead, suppose we use the DAML-S process ontology to
encode a description of how to compose Web services for
tasks such as the one faced by Bill and Joan. If we have an
agent technology which can implement this encoding, then
we can perform Bill and Joan’s Web services composition
task automatically.

Background
DAML-S
In the DAML-S process ontology, each service is modelled
as a process. There are three kinds of processes: atomic
processes, composite processes and simple processes. An
atomic process is undecomposable and represents a directly
executable Web service. The execution of an atomic process
is the call of the corresponding web accessible program with
its input parameters instances. A composite process can be
decomposed into other atomic or composite processes and
represents a compound Web service. The decomposition of
a composite processes is specified through its control con-
structs. The current set of control constructs defined in the
process ontology includesSequence, Unordered, Choice,
If-Then-Else, Iterate, Repeat-Until, Repeat-While, Split
andSplit+Join. A simple process is used as an element of an
abstraction to provide a view of either some atomic process,
or a simplified representation of some composite process.

In the process ontology, each process also has related
properties, i.e.,(optional) inputs, (conditional)outputs, pre-
conditionsand (conditional)effects. These properties are
inputs, outputs, conditions and effects for executing cor-
responding Web services. The range restriction on each
input and output parameter tells the type requirement of
the parameter. Here is part of DAML-S definition of an
atomic process called PharmacyLocator used in our treat-
ment schedule example as described in Section 2.

<daml:Class rdf:ID=”PharmacyLocator”>

<rdfs:subClassOf

rdf:resource=”&process;#AtomicProcess”/>

</daml:Class>

<rdf:Property rdf:ID=”LocationPreference”>

<rdfs:subPropertyOf rdf:resource=”&process;#input”/>

<rdfs:domain rdf:resource=”PharmacyLocator”/>

<rdfs:range

rdf:resource=”&concepts;#LocationPreference”/>

</rdf:Property>

The process model of a compound Web service includes
the definition of its representing top level process and all
other processes that involved in this top level process’s de-
composition. We can view each Web service as general-
ization of a task that people want to achieve on the Web.
An atomic process models a task that is directly achiev-
able. DAML-S definition of the atomic process articulates
all the information of a Web service that can be directly exe-
cuted to accomplish this task. A composite process models a
more complicated task. DAML-S definition of a composite
process specifies all the information necessary to select and
compose directly executable Web services to finish the task.
The goal of automatic web service composition is to develop
software to manipulate these DAML-S definitions, find a
collection of atomic processes execution thus to achieve the
task automatically.

Several metaphors have been used in developing seman-
tic markup of Web services including viewing Web services
as primitive and complex actions with preconditions and
effects. By using an action metaphor, we can exploit AI
technique for planning for automatic service composition.
More specifically, we can build an agent that can plan a
collection of Web service requests to achieve user’s goal
of task. Among all planning techniques, HTN (Hierarchi-
cal Task Network) planning seems very promising because
the concept of task decomposition in HTN planning is very
similar to the concept of composite process decomposition
in DAML-S process ontology. In this paper, we explore a
special HTN planning system SHOP2 (Simple Hierarchical
Ordered Planner) to show how SHOP2 can be used with
DAML-S Web service descriptions to automatically com-
pose Web services.

SHOP2
SHOP2 is a domain-independent HTN planning system.
HTN planning is an AI planning methodology that creates
plan by task decomposition. This is a process in which the
planning system decomposes tasks into smaller and smaller
subtasks, until primitive tasks are found that can be per-
formed directly. We can see that the concept of task decom-
position in HTN is very similar to the concept of process
decomposition in DAML-S. This will make HTN planning
system a good candidate for automatic Web services com-
position task.

One difference between SHOP2 and most other HTN
planning systems is that SHOP2 plans for tasks in the same
order that they will later be executed. Planning for tasks in
the order that those task will be performed makes it possi-
ble to know the current state of the world at each step in
the planning process, which makes it possible for SHOP2’s
precondition-evaluation mechanism to incorporate signifi-
cant inferencing and reasoning power, including the abil-
ity to call external programs. This makes SHOP2 ideal as
a basis for integrating planning with external information
sources as in the Web environment.

In order to do planning in a given planning domain,
SHOP2 needs to be given the knowledge about that domain.
SHOP2’s knowledge based contains operators and methods.
Each operator is a description of what needs to be done to

accomplish some primitive task, and each method tells how
to decompose some compound task into partially ordered
subtasks.

Definition 1 (Operator) A SHOP2 operator is an expres-
sion of the form (h(−→v) Pre Del Add) where

• h(−→v) represents a primitive task with a list of input pa-
rameters−→v

• Pre represents the operator’s preconditions

• Del represents the operator’s delete list which includes the
list of things that will become false after operator’s exe-
cution.

• Add represents the operator’s add list which includes the
list of things that will become true after operator’s execu-
tion.

Definition 2 (Method) A SHOP2 method is an expression
of the form (h(−→v) PreT) where

• h(−→v) represents a compound task with a list of input pa-
rameters−→v

• Pre represents the operator’s preconditions

• T represents a partially ordered list of subtasks which
consist the decomposition ofh(−→v).

Additional preconditions and task lists can be appended
to the method for SHOP2 to be used in an ”if-then-else”
manner

(h(−→v) Pre1 T1 Pre2 T2 . . .Pren Tn)

The idea here is that ifPre1 is true then the method will
produceT1; otherwise ifPre2 is true then the method will
produceT2 and so forth. This can be viewed as compact way
for writing multiple alternative methods for a given task.

In addition to the usual logical atoms, preconditions of
SHOP2 methods and operators may also contain calls to ex-
ternal programs and assignments to variables. These are
useful for integrating planning with queries to information
sources on the Web. For example, the following expression

(assignv (call f t1 t2 . . .tn))

will bind the variable symbolv with the result of calling
external proceduref with argumentst1 t2 . . .tn.

Definition 3 (Planning Problem) A planning problem for
SHOP2 is a triple (S, T , D), whereS is initial state,T is a
task list, andD is a domain description. By taking (S, T ,
D) as input, SHOP2 will return a planP = (p1p2...pn), a
sequence of instantiated operators that will achieveT from
S in D.

From DAML-S to SHOP2
The execution of an atomic process is a call to the corre-
sponding web accessible program with its input parameters
instances. The execution of a composite web service in-
volves executions of a collection of atomic processes. The

goal of automatic service composition is to find a collection
of atomic processes executions. This sequence will consist
a successful execution of a composite process based on its
DAML-S definition. In this section, we will show how to en-
code a composite process composition problem as a SHOP2
planning problem, so SHOP2 can be used with DAML-S
Web service descriptions to automatically compose Web ser-
vices.

Encoding DAML-S Process Models as SHOP2
Domains
In this section, we introduce an algorithm for translating a
collection of DAML-S process modelsK into a SHOP2 do-
mainD. In our translation, we make the following assump-
tion:

Assumption 1 Given a collection of DAML-S process
modelsK = {K1,K2, . . . , Kn}, we assume:

• All atomic processes defined inK can either have effects
or outputs, but not both.An atomic process with only
output models an information collecting web service. An
atomic process with only effect models an world altering
web service. If an atomic process models a web service
which is both information collecting and world altering,
we can always argue that this service can be divided into
several web services that are either information collecting
or world altering

• There is no composite process inK with DAML-S’sSplit
and Split+Join control constructs.SHOP2 can’t handle
concurrency right now. Therefore in our translation, we
only consider DAML-S process models that has no pro-
cess withSplit andSplit+Join control construct. We in-
tent to address how to extend SHOP2 to handle concur-
rency in the future work.

• The effects of all processes inK are not conditional.
SHOP2 doesn’t handle conditional effect now. But it is
very straightforward to extend SHOP2 to handle condi-
tional effects.

The following algorithm translates a DAML-S definition
of an atomic process with only effects into a SHOP2 opera-
tor.

TRANSLATE -ATOMIC -PROCESS-EFFECT(Q)

Input: a DAML-S definitionQ of an atomic processA with
only effects.

Output: a SHOP2 operatorO.

Procedure:

1. −→v = the list of input parameters defined forA in Q

2. Pre= conjunct of all preconditions ofA, as defined inQ

3. Add= collection of all positive effects ofA, as defined in
Q

4. Del = collection of all negative effects ofA, as defined in
Q

5. ReturnO = (A(−→v) Pre Del Add)

The above algorithm translates each atomic DAML-S def-
inition into a SHOP2 operator that will simulate the effects
of a world-altering web service by changing its local state
via an operator. The reason why the Web service is not actu-
ally executed during the planning process is so SHOP2 can
backtrack.

The following algorithm translates a DAML-S definition
of an atomic process with only outputs into a SHOP2 oper-
ator.

TRANSLATE -ATOMIC -PROCESS-OUTPUT(Q)

Input: a DAML-S definitionQ of an atomic processA with
only outputs.

Output: a SHOP2 operatorO.

Procedure:

1. −→v = the list of input parameters defined forAas inQ

2. Pre = a conjunct of all the preconditions ofA, as defined
in Q, plus one more precondition of the form (assigny
(call MonitorA−→v)), where Monitor is a procedure which
will handle SHOP2’s call to Web services

3. Add= y

4. Del = ∅
5. ReturnO = (A(−→v) Pre Del Add)

The above algorithm translate each atomic DAML-S def-
inition into a SHOP2 operator that will call the information
collecting Web service in its precondition. In this way, the
information collecting web service is executed during the
planning process.

The following algorithm translates a DAML-S definition
of a simple process into a SHOP2 method.

TRANSLATE -SIMPLE -PROCESS(Q)

Input: a DAML-S definitionQ of a simple processS.

Output: a SHOP2 methodM .

Procedure:

1. −→v = the list of input parameters defined forSas inQ

2. Pre= conjunct of all preconditions of S as defined inQ

3. T = the atomic process that realizesS or the composite
process that collapse intoS as defined inQ.

4. ReturnM = (S(−→v) PreT)

The following algorithm translates a DAML-S definition
of a composite process withSequencecontrol construct into
a SHOP2 method.

TRANSLATE -Sequence-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with Sequencecontrol construct.

Output: a SHOP2 methodM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. Pre= conjunct of all preconditions of C as defined inQ

3. B = Sequencecontrol construct of C as defined inQ

4. (b1, . . . , bm) = the sequence of component processes ofB
as defined inQ

5. T = ordered task list of(b1, . . . bm)
6. ReturnM = (C(−→v) PreT)

The following algorithm translates a DAML-S definition
of a composite process withIf-Then-Else control construct
into a SHOP2 method.

TRANSLATE -I f-Then-Else-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with If-Then-Else control construct.

Output: a SHOP2 methodM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. πif = conditions forIf as defined inQ

3. Pre1 = conjunct of all preconditions of C as defined inQ
andπif

4. Pre2 is conjunct of all preconditions of C as defined inQ

5. b1 = process forThen as defined inQ

6. b2 = process forElseas defined inQ

7. ReturnM = (C(−→v) Pre1 b1 Pre2 b2)

The following algorithm translates a DAML-S definition
of a composite process withRepeat-Whilecontrol construct
into SHOP2 methods.

TRANSLATE -Repeat-While-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with Repeat-Whilecontrol construct.

Output: a collection of SHOP2 methodsM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. πwhile = conditions forWhile as defined inQ

3. Pre= conjunct of all preconditions of C as defined inQ

4. b1 = process forRepeatas defined inQ

5. M1 = (C(−→v) PreC1(−→v))

6. M2 = (C1(−→v) πWhile b1 ∅ ∅)
7. ReturnM = {M1, M2}

The following algorithm translates a DAML-S definition
of a composite process withRepeat-Until control construct
into SHOP2 methods.

TRANSLATE -Repeat-Util-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with Repeat-Until control construct.

Output: a collection of SHOP2 methodsM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. πUntil = conditions forUntil as defined inQ

3. Pre= conjunct of all preconditions of C as defined inQ

4. b1 = process forRepeatas defined inQ

5. M1 = (C(−→v) PreC1(−→v))

6. M2 = (C1(−→v) (not(πUntil)) b1 ∅ ∅)
7. ReturnM = {M1, M2}

The following algorithm translates a DAML-S definition
of a composite process withChoicecontrol construct into a
collection of SHOP2 methods.

TRANSLATE -Choice-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with Choicecontrol construct.

Output: a collection of SHOP2 methodsM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. Pre= conjunct of all preconditions of C as defined inQ

3. B = Choicecontrol construct of C as defined inQ

4. (b1, . . . , bm) = the bag of component processes ofB as
defined inQ

5. for i = 1, . . . , m
Mi = (C(−→v) Pre bi)

6. returnM ={M1, . . . ,Mm}
The following algorithm translates a DAML-S definition

of a composite process withUnordered control construct
into a SHOP2 method.

TRANSLATE -Unordered-PROCESS(Q)

Input: a DAML-S definitionQ of a composite processC
with Unordered control construct.

Output: a SHOP2 methodM .

Procedure:

1. −→v = the list of input parameters defined forCas inQ

2. Pre= conjunct of all preconditions of C as defined inQ

3. B = Unordered control construct of C as defined inQ

4. (b1, . . . , bm) = the bag of component processes ofB as
defined inQ

5. T = unordered task list of(b1, . . . bm)
6. ReturnM = (C(−→v) PreT)

The following algorithm translates a collection of DAML-
S process models into a SHOP2 domain.

TRANSLATE -PROCESS-MODEL (K)

Input: a collection of DAML-S process modelsK.

Output: a SHOP2 domainD.

Procedure:

1. D = ∅
2. For each atomic process definitionQ in K

If this atomic process has only outputs
O = TRANSLATE-ATOMIC-PROCESS-

OUTPUT(Q)
If this atomic process has only effects

O = TRANSLATE-ATOMIC-PROCESS-
EFFECT(Q)

addO to D

3. For each simple process definitionQ in K

M = TRANSLATE-SIMPLE-PROCESS(Q)
add M toD

4. For each composite process definitionQ in K

If the process has aSequencecontrol construct
M = TRANSLATE-Sequence-PROCESS(Q)

If the process has aIf-Then-Else control construct
M = TRANSLATE-If-Then-Else-PROCESS(Q)

If the process has aChoicecontrol construct
M = TRANSLATE-Choice-PROCESS(Q)

If the process has aRepeat-Whilecontrol construct
M = TRANSLATE-Repeat-While-PROCESS(Q)

If the process has aRepeat-Until control construct
M = TRANSLATE-Repeat-Until-PROCESS(Q)

If the process has aUnordered control construct
M = TRANSLATE-Unordered-PROCESS(Q)

add M toD

5. ReturnD

To keep the above pseudo-code simple, we did not ex-
plicitly describe how our algorithm handles the compos-
ite processes with outputs. In DAML-S, one can specify
that an output of a composite process is equal to an out-
put of one of its subprocesses whenever the composite pro-
cess is instantiated. Also, for a composite process with a
sequencecontrol construct, one can specify that the out-
put of one subprocess is an input to another subprocesses.
SHOP2 does not have the concept of an output, but we han-
dle this problem by assigning a unique number to each in-
stance of SHOP2’s methods and operators, and using a pred-
icate (OutputInstanceValue) to indicate that for a method
or operator instanceInstance, its output namedOutput has
valueValue.

Encoding DAML-S Web Services Composition
Problem as SHOP2 Planning Problem
The formal semantics have been defined for DAML-S ser-
vice description in action theory based on situation calculus
(Narayanan & McIlraith 2002) (Reiter 2001). The follow-
ing definition of a DAML-S service composition problem
follows naturally from this semantics definition.

Definition 3 (DAML-S Service Composition) Let
K = {K1, K2, . . . , Km} be a collection of DAML-S
process models satisfying assumption in Section 4.1,T be a
top level composite process defined inK and−→c be a list of
input parameters instance forT , S0 be the initial state,and
P = (p1, p2, . . . , pn) be a sequence of atomic processes
defined in M with input parameters instance−→c1 ,−→c2 , . . . ,−→cn

respectively. ThenP is a composition forT (−→c) with
respect toK in S0 iff in action theory, we can prove:

Σ ` (∃s)(Do(T (−→c), S0, s)

with p1(−→c1), p2(−→c2), . . . , pn(−→cn) as an instance of s. Here

• Σ is the axiomatization ofK andS0 as defined in action
theory.

• T (−→c) is the complex action defined forT as in action
theory with input parameters instance−→c

• p1(−→c1), p2(−→c2), . . . , pn(−→cn) are the primitive actions de-
fined for atomic processesp1, p2, . . . , pn as in action the-
ory with input parameters instances−→c1 ,−→c2 , . . . ,−→cn.

• Do is an additional extralogical symbol defined in situ-
ation calculus and action theory. Intuitively,Do(δ, s, s′)
will macro-expand into a situation calculus formula that
says that it is possible to reach situation s’ from situation
s by executing a sequence of actions specified byδ.

We first state a theorem about a special case.

Theorem 1 Let K = {K1, K2, . . . , Kn} be a collec-
tion of DAML-S process models satisfying assumption 1
with no atomic processes with outputs,T be a top level
composite process defined inK, −→c be a list of input pa-
rameters instance forT , and S0 be the initial state. Let
P = (p1, p2, . . . , pn) be a sequence of atomic processes de-
fined inK with input parameters instance−→c1 ,−→c2 , . . . ,−→cn re-
spectively. LetD = TRANSLATE -PROCESS-MODEL (K).
ThenP is a composition forT (−→c) with respect toK in S0

iff P is a plan for planning problem (S0, T(−→c), D).
Outline of Proof. We can prove that a service composi-
tion problem and its corresponding SHOP2 planning prob-
lem map to the same theorem proving problem in action the-
ory.

We now generalize the above theorem to remove the re-
striction of no atomic processes with the outputs.

As shown in the TRANSLATE -ATOMIC -PROCESS-
OUTPUT procedure earlier, the precondition for the oper-
ator translated from an atomic process with output, SHOP2
will call a Monitor procedure to handle SHOP2’s call to ex-
ternal information collecting Web services. This Monitor
will monitor the current state of SHOP2, so that information
can only be added into the current state if it has not been
changed by the planner. We assume here that information
will not be changed by other agents during SHOP2 planning
time and we will address this problem in the future work.

Soundness and completeness proofs of classical planners
assume that the preconditions can be evaluated relative to
the current state. However, if a precondition involves call to
the external program, this is no longer the case. We have to
guarantee that all programs calls to be

• executable (with all parameters grounded)

• terminable (with finite computation)

to ensure that the precondition is finitely evaluable.
For every composite processP defined in DAML-S, we

know that an input parameter of a subprocessA of P is ei-
ther bound to an input parameter ofP or an output parameter
of other subprocessB within P which must be executed be-
fore A. Therefore, when we call an information collecting

service, all of its parameters must be grounded. If we can
assume that all web service invocations are terminable, then
we can establish the soundness and completeness proof of
SHOP2.

Theorem 2 Let K = {K1,K2, . . . , Kn} be a collection
of DAML-S process models satisfying assumption in Sec-
tion 4.1,T be a top level composite process defined inK
and−→c be a list of input parameters instance forT , S0 be
the initial state.Ka = K - {atomic processes with outputs
in K} and P be a sequence of atomic processes defined
in K with input parameters instance−→c1 ,−→c2 , . . . ,−→cn respec-
tively. Let D = TRANSLATE -PROCESS-MODEL (K). Da

= TRANSLATE -PROCESS-MODEL (Ka). If every execu-
tion of the information collecting Web services defined in
K is guaranteed to terminate, thenP is a plan for planning
problem (∅, T (−→c), D) iff P is a plan for planning problem
(S0, T (−→c), Da).
Outline of Proof. Because call to the information collect-
ing services are always terminable, information is always
available whenever needed. Therefore, SHOP2 will have
the same planning process for two problems.

Implementation
Our implementation includes:

• A DAML-S to SHOP2 translator which translates a col-
lection of DAML-S process definitions into a SHOP2 do-
main.

• An interface which lets users specify the request for a ser-
vice.

• A monitor which handles SHOP2’s calls to external in-
formation collecting Web services during planning. This
monitor system will cache the responses of the informa-
tion collecting Web services to avoid invoking a Web ser-
vice with same parameters more than once during plan-
ning. This will save the network communication times
and improve planning efficiency. We assume that the
cached information will not be changed by other agents
during planning; we will generalize this in our future work

• A SHOP2 to DAML-S plan converter, which will convert
a plan to DAML-S format which can be directly executed
by a DAML-S executor.

To test the effectiveness of our approach, we have run
SHOP2 on several instances of the problem described in
Section 2. These problem instances varied from cases where
it was easy to schedule satisfactory appointments to a case
in which no nearby treatment centers had treatment times
slot were close together, so that Bill and Joan would both
have to drive Mom for treatments on separate days. In all of
these cases, SHOP2 was easily able to find the best possible
solution.

Related Work
Our technology here use the SHOP2 planning system which
won an award for distinguished performance in the 2002 In-
ternational Planning Competition.

We use DAML-S for semantic markup of Web services.
The current version 0.7 of DAML-S is still an incomplete
draft version, and many researchers in DAML program are
working actively on it. Our work will evolve with the work
on DAML-S.

Another approach for automatic Web service composi-
tion is the work of McIlraith and others in Stanford Univer-
sity on adapting Golog for programming the semantic Web
(McIlraith & Son 2002). Golog is a logical programming
language built on top of situation calculus. Golog forms a
natural formalism for automatic service composition tasks
by providing some extra logical constructs for assembling
primitive actions. However, we suspect that the approach
will not be as efficient as an HTN planner.

Conclusion
In this paper, we have proposed a way to do automatic Web
service composition by exploiting AI techniques for plan-
ning. We believe that SHOP2 provides a natural formalism
for this task. We have described an approach for translating
process models of Web services into sets of SHOP2 meth-
ods and operators, so that SHOP2 can be used with DAML-
S Web service descriptions to automatically compose Web
services. Our future work will include the following:

• We need to enhance SHOP2 to handle those control con-
structs related to concurrency in DAML-S.

• In our current approach, we assume that the information
we get during the planning will not be changed. For ex-
ample, if we locate a book in a bookstore, and it is in
stock, then we assume the book is available when we ac-
tually try to buy the book—but in a changing world, this
will not always be true, we intend to extend our approach
to take into account the ways in which information may
change during planning.

Acknowledgments
This work was supported in part by Air Force Research Lab-
oratory grant F30602-00-2-0505.

References
Ankolekar, A.; Burstein, M.; Hobbs, J.; Lassila, O.; Mar-
tin, D.; McDermott, D.; McIlraith, S.; Narayanan, S.;
Paolucci, M.; Payne, T.; and Sycara, K. 2002. DAML-S:
Web service description for the semantic web. InProceed-
ings of the First International Semantic Web Conference.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
semantic web.Scientific American.

Dean, M.; Connolly, D.; van Harmelen, F.; Hendler,
J.; Horrocks, I.; McGuinness, D. L.; Patel-Schneider,
P. F.; and Stein, L. A. 2002. Web ontology language
(OWL) reference version 1.0. W3C Working Draft 12
November 2002, http://www.w3.org/TR/2002/WD-owl-
ref-20021112/.
Horrocks, I.; van Harmelen, F.; Patel-Schneider, P.;
Berners-Lee, T.; Brickley, D.; Connoly, D.; Dean, M.;
Decker, S.; Fensel, D.; Hayes, P.; Heflin, J.; Hendler,

J.; Lassila, O.; McGuinness, D.; and Stein, L. A. 2001.
DAML+OIL. http://www.daml.org/2001/03/daml+oil-
index.html.
McIlraith, S., and Son, T. 2002. Adapting golog for com-
position of semantic web services. InProceedings of the
Eighth International Conference on Knowledge Represen-
tation and Reasoning.
Narayanan, S., and McIlraith, S. 2002. Simulation, ver-
ification and automated composition of web services. In
Proceedings of the Eleventh International World Wide Web
Conference.
Nau, D.; Munoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-order planning with partially or-
dered subtasks. InProceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence.
Reiter, R. 2001.Knowledge In Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
The MIT Press.

