
TimeLine: An HTN planner that can reason about time

Fusun Yaman and Dana S. Nau

Department of Computer Science
University of Maryland

College Park, Maryland 20742
{fusun, nau}@cs.umd.edu

Abstract

In this paper we present a formalism for explicitly represent-
ing time in HTN planning. Actions can have durations and
intermediate effects in this formalism. Methods can specify
qualitative and quantitative temporal constraints on decom-
positions. Based on this formalism we defined a planning al-
gorithm TimeLine that can produce concurrently executable
plans in the presence of numeric state variables. We state
and prove the soundness of the algorithm. We also present
the experimental results of the TimeLine implementation that
shows the feasibility of our approach.

Introduction
Actions with different durations, simultaneous action exe-
cution and reasoning with metric quantities are three char-
acteristic of real-world planning problems. Recently studies
on artificial intelligence planning concentrated on develop-
ing formalisms for representing time and creating temporal
plans. The planning domain definition language (PDDL 2.1)
for AIPS 2002 planning competition can define actions with
durations, and address the concurrency issues in the pres-
ence of numeric state variables.

The difficulty aroused with concurrency is to control the
overlapping action executions. The problem gets more com-
plicated when there are limited number of shared resources.
When resources are identified and resource needs for every
action are explicitly defined, then two actions with conflict-
ing resource requirements can be defined as mutually exclu-
sive. In this approach the search space can be pruned ef-
fectively if it’s accompanied by good resource management
techniques. The more general case is when there are nu-
meric state variables that can be updated concurrently. Nu-
meric state variables can be used to represent resources but
not every numeric variable can be seen as a resource.

Numeric computations and time can be handled easily
by HTN planners. For this reason HTN planners are con-
veniently used for practical applications. In this paper we
present a formalism for explicitly representing time in HTN
planning. Actions can have durations and intermediate ef-
fects in this formalism. Methods can specify qualitative and
quantitative temporal constraints on decompositions. Based
on this formalism we defined a planning algorithm that can
produce concurrently executable plans in the presence of

numeric state variables. We state and prove the soundness
of the algorithm. We also present the experimental results
of the implementation that shows the feasibility of our ap-
proach.

Formalism
Performing numerical computations is an important issue
for real-world problems. Some HTN planners like SHOP
have already incorporated this functionality. Resources gen-
erally represent some features in the domain that are lim-
ited in number, like space available in a truck. Even though
numeric state variables can be used to represent these re-
sources, the opposite need not to be true. For example, let’s
say the distance between two cities A and B is 6 units and
there is a truck T that has a speed of 2 units per unit time.
If T is at A and will travel to B then as T moves, the dis-
tance between A and the current location of T increases (
see dist(A,T) in Figure 1). Similarly travel time left to B
is a numeric variable (see timeTo (T,B) in Figure 1). We
believe these two numeric variables do not represent any re-
sources. Therefore, instead of identifying the resources and
defining operations on these resource, we will go with the
more general way and define concurrent update rules for nu-
meric state variables.

Figure 1: Dist(A,T) is distance between A and current loca-
tion of truck T, TimeTo(T,B) is time left to reach B

The value of a numeric variable can be assigned to a con-
stant, decreased or increased by constant amount. We define
assignment operations on the same variable at the same time,
as mutually exclusive updates. Therefore we don’t allow two

assignment operations on the same variable at the same time,
even though the assigned values are same. Concurrent in-
crease and decrease operations on the same numeric variable
can be permitted as long as the value of the variable stays in
the defined range in all intermediate states produced by any
permutation of these operations. Since addition and subtrac-
tion are commutative operations, the result of the any per-
mutation will be the same. To ensure that the value always
stays in the range, it is enough to check pessimistic cases in
which all increase or all decrease operations are performed
first.

State, Agenda, Operator
Definition 1: State is a collection of positive ground atoms
of the form (p t1 t2 .. tn) where p is the predicate name
and t1 to tn are argument terms. Value of a numeric state
variable is represented by an atom of the form (= variable
value) where variable is the numeric state variable and value
is the value of the variable in this state. A valid state can not
contain both (= variable value1) and (= variable value2).

Main elements of HTN planning are simple tasks and
composite tasks. Operators define a set of changes in the
current state in order to achieve simple tasks. Composite
tasks can be achieved by decomposing them into subtasks
and then achieving these subtasks. Methods define decom-
positions for composite tasks.

Classical HTN operators have a precondition to hold in
the state just before the operator is applied. Operators have
effects which will be true in the next state of the world. We
extend this definition to represent operators that may have a
duration of more than one unit time. We do not require the
precondition of an operator to hold through out the execu-
tion. Effects of an operator can not change the state in which
it’s precondition is evaluated. We eliminated instant effects
because they make it hard to trace the deleted precondition
interactions. This way we always evaluate the preconditions
in a stable state. We let the operators have effects at interme-
diate time points, not only at the end so the operators may
represent gradual changes in the successor states. Effects are
the promises that will be true in a successor state. Effects
may assign a value to a numeric state variable, increase or
decrease the value of a numeric state variable, add or delete
an atom in or from the state.

Definition 2: An operator has the following form
(:operator head precondition effect-list)

where head is a simple task, precondition is a conjunctive
expression and effect-list is a list of timed effects. Timed
effects can be in one of the following forms:

([time1](e1. . . .en))or ([time2,time3](e1. . . .en))
where ei’s are effects and the intended meaning of first form
is ei’s will be true at (start time of operator + time1). The
intended meaning of the second form is ei’s will be true in
the states associated with inclusive time interval [start time
+ time2, start time + time1]. In this notation time1, time2 and
time3 should be positive integers or numeric expressions. If
the result of the numeric expression is not an integer we take
the ceiling of the result. More over time3 should be greater
than or equal to time2.

(:operator (!drive ?truck ?loc-from ?loc-to)

;;PRECONDITIONS

((not (moving ?truck ?dest))

(= (truck-user ?truck) ?user)

(call = ?user 0)

(truck-at ?truck ?loc-from)

(distance ?loc-from ?loc-to ?dist)

(assign ?duration (call ceil (call / ?dist 2))

))

;;EFFECTS

(([1]

((=(truck-user ?truck) 1)

(=(truck-arrives ?truck ?loc-to)

(call - ?duration 1))

(moving ?truck ?loc-to)

(not (truck-at ?truck ?loc-from))))

([2,?duration]

((-= (truck-arrives ?truck ?loc-to) 1)))

([?duration]

((= (truck-user ?truck) 0)

(not (moving ?truck ?loc-to))

(truck-at ?truck ?loc-to))))

)

Figure 2: Drive operator for extended logistic domain

Figure 2 shows drive operator we defined for logistic do-
main in which we added some numeric state variables. The
precondition of the operator states that number of users that
are working on this truck should be zero and truck should
not be in motion. Assign statement in the precondition sim-
ply binds the value of its second term to its first term. In this
case ?duration is assigned to travel time between ?loc-from
and ?loc-to when the truck speed is 2. One unit time later
the state and current location of the truck is updated also the
number of truck users for this truck is set to 1 and a counter
that shows the time left to arrive ?loc-to is initialized. After
that at every clock tick this counter is decreased by one. Fi-
nally the state and the location of the truck is updated . We
also decrease the number of users for this truck. One thing to
notice is we assign the value of (truck-user ?truck) to one at
the beginning instead of increasing it by one. That is because
we want two overlapping drive operations on same truck to
be mutually exclusive.

Definition 3: Two effects e1and e2 are mutually exclusive
if any of the following holds:

• if e1 and e2 are logical negations of each other

• if e1 assigns a value to a numeric state variable v and e2
assigns or increases or decreases the value of v

• if e1 decreases or increases the value of a numeric state
variable v and e2 assigns a value to v.

Since we have delayed effects that may appear sometime
in the future we need a structure that remembers all of the
promises toward future states.

Definition 4: Agenda is a collection of pairs (t, e) where
e is an effect and t is the time when e will be true in the

state. If in an agenda A every t is grater than T then A is an
agenda after T .

An effect e1 that is promised to be true at time T is consis-
tent with an agendaA iffA does not contain an effect e2 that
is promised to be true at time T and e2 is mutually exclusive
with e1.

Figure 3 shows the load operator we defined for our ex-
tended logistic domain. There may be a state that satisfies
the preconditions of both load and drive operators. It is obvi-
ous that for a truck these two operators should not overlap on
the timeline. To handle this case we should extend the defi-
nition of applicability for an operator, to include consistency
with the current agenda. Therefore if a drive operator on a
truck is scheduled at time T , load operator on the same truck
should not be applicable. We should allow concurrent load
operators unless the cumulative numerical effects of these
load operators lead to an out of range value for a numeric
state variable in the future states. It is not always possible to
detect these inconsistencies by looking at the agenda, since
there may be additions to agenda and that can fix what seems
to be a problem. However it is easy to check for the state just
after the current one. Let’s say in the current state truck B
has 5 units of space available. If we schedule 6 concurrent
loading into B now, we can immediately see that (given that
all packages have positive sizes) one unit time later we will
ran out of space. No unload operation can fix this problem
because the value should always stay in the range no matter
in what order these effects are carried on.

(:operator

(!load ?obj ?truck ?loc)

((not (moving ?truck ?dest))

(obj-at ?obj ?loc)

(truck-at ?truck ?loc)

(= (truck-space ?truck) ?space)

(volume ?obj ?vol)

(call >= ?space ?vol))

(([1]((+=(truck-user ?truck) 1)

(-=(truck-space ?truck) ?vol)

(not (obj-at ?obj ?loc))))

([1,2]((truck-at ?truck ?loc)))

([2]((-= (truck-user ?truck) 1)

(in-truck ?obj ?truck)))))

Figure 3: Load operator for extended logistic domain

Definition 5: Let S be the state for time T , A be an
agenda after T , t1 be a simple task andO be an operator. Let
mgu be the most general unifier that unifies with the head of
O and t1. Then Omgu is an applicable operator instance for
t1 at time T in state S with agenda A iff the following holds

• There is a satisfier α for the precondition of Omgu in S.

• None of effects in effect-list of (Omgu)α with same time
is mutually exclusive with each other.

• All of the effects of (Omgu)α are consistent with A

• All the numeric variables stay in the range at time T + 1.

Let S be the state at time T and A be the agenda in which
all of the effects are after T . A simple task t1 is T-executable
if there exists an applicable operator instance for t1 in S with
A.

The purpose of agenda is to keep track of changes that
will be made to future states. Given the current time, state
and the current agenda successor states can be generated by
performing the effects in the temporal order.

Definition 6: Let S be the state at time T and A be
an agenda after T . Let e1..en be the effects in A that are
promised for time T ′ where T ′ is T+1 then Exec(A,S,T’)
creates a new state S′ in and a new agenda A′ with the fol-
lowing properties:

• Let p be (= numeric-variable ex-value) and S contains
p. If there is an effect ei that assigns value new-value
to numeric-variable then S′ does not contain p and S′

contains (= numeric-variable new-value)

• Let p be (= numeric-variable ex-value) and S contains
p. Let E+(numeric-variable) be subset of e1 to en such
that every ei ∈ E+(numeric-variable) increases the
value of numeric-variable. E−(numeric-variable) is de-
fined similarly for the effects that decrease the value of
numeric variable. Total increase is sum of the increase
amounts of effects in E+. Total decrease is sum of the
decrease amounts of the effects in E−. Then S′ does not
contain p and S′ contains (= numeric-variable new-value)
where new-value is equal to ex-value + total increase –
total decrease. If ex-value + total increase or ex-value–
total decrease is not in the range defined for numeric-
variable then S’ is an invalid state.

• Let p be an atom of the form (p-name arg1 arg2 .. argn)
and p-name is not +=, -= or =. If p is in S and there is
an ei such that ei is (not p) then S′ does not contain p, if
there is no such ei S′ contains p. If there is an ei such that
ei is p then S′ contains p.

• A′ is same as A except A′ does not contain effects e1 ..
en.

Time Constraint, Task network, Method
End points of a task t are the start and end times of t which
we represent as (start t) and (end t) respectively. End time
of a simple task is the time of last effect in the operator in-
stance that is chosen to achieve that task. Therefore once
the operator is chosen, end time of the simple task is known.
End time of a composite task is maximum of the end times
of the subtasks in the decomposition of the method chosen
to achieve this composite task. End time of a composite
task becomes known when all of its subtasks end times are
known. We use the end points of tasks to define temporal
constraints. We concentrated on constraining the start time
of tasks explicitly. We can define both metric and qualitative
constraints. For example if t1 and t2 are two tasks the fol-
lowing are the time constraints on start time of t1; (start t1)
≥ ((end t2) + 5) or (start t1) = ((start t2) + 4) or (start t1)
≥ (start t2) While we are handling the general cases, there
are some combinations that we don not allow in our time
constraint definition. For example if t1 and t2 are two tasks

we do not allow the following (start t1) ¡ (end t2) or (start
t1) ≥ ((start t2) - 3) or (start t1) = (end t2 - 5). All of these
constraints require t1 to start before some time that we do
not know in advance and by the time these points become
known these constraints are either satisfied or not and there
is no time point after that that can satisfy these constraints.
We find these constraints hard to trace therefore do not make
use of them. For similar reasons we do not define constraints
on end time of tasks for example (end t1) ≥ (end t2).

Definition 7: Given a task t1 and another task t2 , a time
constraint on start time of t1is one of the following expres-
sions:
• (= (start t1) bound) where bound can be either (start t2)

or (end t2) or “now”, which means current time, or a non-
negative integer c or (+ base delay) in which delay is a
nonnegative integer and base is either (start t2) or (end
t2) or “now”.

• (>= (start t1) bound) where bound is as defined above
• (>= (start t1) (max bound1 bound2 .. boundk) where

boundi is as defined above. This is a short hand nota-
tion for a list of time constraints of (>= (start t1) boundi)
where i is in [1,k]

Time constraints of the first type are called equality con-
straints where as second and third types are called greater
than constraints. The following time constraints are satis-
fied at time T
• (= (start t1) bound) where bound is either “now” and cur-

rent time is T or a nonnegative integer c that is equal to
T .

• (>= (start t1) bound) where bound is either “now” and
current time is T or a nonnegative integer c that is less
than or equal to T .

• (>= (start t1) (max bound1 bound2 ..boundk) where for
every i, boundi is nonnegative integer that is less than or
equal to T .

Given a set of time constraints U on start time of task t1, U
is satisfied at time T if all of the following holds;
• U contains at most one equality constraint C, and C is

satisfied at T.
• All of the greater than constraints in U are satisfied at T.

Definition 8: Task Network is a list of tasks (t1..tn) and
a list of time constraints on the start time of these tasks such
that end points of a task referenced in a time constraint is in
the list of tasks t1..tn.

Definition 9: A method has the following form
(:method head precondition subtasks)

where head is a composite task, precondition is a conjunc-
tive expression and subtasks is a task network.

Figure 4 includes two, methods we defined for our ex-
tended logistic domain. First method decomposes air-
deliver task into two subtasks which are labeled as t1 and
t2. According to the time constraints t1 should start imme-
diately and t2 can start after t1 ends. The second method
decomposes the task unload-airplane-at into two subtasks.
There is no time constraint for t3 but t4 should start when t3
ends.

(:method (air-deliver ?obj ?airport-from ?city)

;;PRECONDITION

((obj-at ?obj ?airport-from)

(in-city ?dest ?city)

(airport ?dest)

(= (airplane-space ?plane) ?space)

(volume ?obj ?vol)

(call >= ?space ?vol))

;; SUBTASKS

((:t1 (load-airplane ?obj ?plane ?airport-from)

:t2 (unload-airplane-at ?obj ?plane ?dest))

((= (start t1) now) (>= (start t2) (end t1))))

)

(:method load-airplane ?obj ?plane ?airport)

;;PRECONDITION

((not(moving ?plane ?dest))

(airplane-at ?plane ?somewhere)

(different ?somewhere ?airport)

(= (airplane-user ?plane) ?user)

(call < ?user 1)

)

;; SUBTASKS

((:t3 (!fly-airplane ?plane ?somewhere ?airport)

:t4 (!load-airplane ?obj ?plane ?airport 0))

((= (start t4) (end t3))))

)

Figure 4: Method for air-deliver task in extended logistic domain

Definition 10: Let S be the state at time T, t be a compos-
ite task and M be a method. Let mgu be the most general
unifier that unifies the head of M and t. Then Mmgu is an
applicable method instance for t in state S at time T if the
precondition of Mmgu is satisfied in S. If α is a list of bind-
ings for the free variables in precondition ofMmgu such that
precondition of Mmgu is satisfied then (subtasksmgu)α is a
reduction of tat time T .

The idea behind reducing a task network is to replace a
task in the network with one of its reductions and update all
the time constraints that refer to the old task to include refer-
ences to new tasks. Figure 5 gives an example task network
Rwhich is reduced toR′ using the method for load-airplane
task defined in Figure 4.

Definition 11: Let R be a task network and t be a task in
R. Let r be a task network with tasks t1..tn then reduce(R,
t, r, timestart, timeend) is a new task network R′ satisfying
the following:

• R′ contains all tasks in r and all tasks in R except t

• R′ contains all time constraints in r and in R except the
constraints that are on start time of t and those refer to end
points of t.

• If C is a time constraint in R and C refers to (start t),
then R′ contains a constraint C ′such that C ′ is same as C
except (start t) is replaced with timestart .

• If C is a time constraint in R and C refers to (end t1) then
R′ contains a constraint C ′ such that C ′ is same as C
except (end t1) is replaced by timeend.

R =((:t1 (load-airplane package plane airport1)

:t2 (unload-airplane package plane airport2))

((= (start t1) now)(>= (start t2) (end t1))))

)

r =((:t3 (!fly-airplane plane airport3 airport1)

:t4 (!load-airplane package plane airport1))

((= (start t4) (end t3))))

R’=((:t2(unload-airplane package plane airport2))

:t3 (!fly-airplane plane airport3 airport1)

:t4 (!load-airplane package plane airport1))

((>= (start t2) (max (end t3) (end t4)))

(= (start t4) (end t3))))

Figure 5: Example for reducing a task network

When we are talking about a simple task we can easily
point the start and end time of it. Basically the time when
matching operator is applied is its starting time and the time
for the last effect of that operator is the end time. However
this can not be directly applied to composite tasks. What
happens if at time T a composite task t is decomposed into n
subtasks using an applicable method and none of its subtasks
start at time T . In such a case it is does not make sense to
say that starting time for t is T . On the other hand if at
least one of its subtasks can start at T then we can safely say
that starting time of t is T . This leads to the definition of
T-executable reduction.

Definition 12: Let S be the state at time T and A be an
agenda after T. Let t be a composite task, r be a reduction
of t at time T and ti be a task in r such that time constraints
on start time of ti are satisfied at time T, then T-executable
reduction R for tis defined as:

• If ti is a simple task and it is T-executable in S with A then
R is equal to r and R has an additional time constraint C
(= (start ti) T) if r does not contain C.

• If ti is a composite task and it is R’ is a T-executable re-
duction of ti that with tasks ti1..tin then R is equal to re-
duce(r ,ti, R’, timestart, timeend) where timestart is equal
to T and timeend is equal to (max (end ti1) (end ti2) .. (end
tin)).

• Let T be the time and S be the state at T and A be an
agenda after T. A composite task t is T-executable at time
T in state S with A if there exists a t-executable reduction
for t.
Plan and Planning Problem
We now define what is a plan, a planning problem and

what is a solution to the planning problem.
Definition 13: Let T be the time, S be the state at T and A

is an agenda after T. The effect of achieving a progress task
at time T is defined as Exec(A,S,T+1)

Definition 14: A plan is a list of (task1 [timestart,
timeend]) where task1 is a ground simple tasks and timestart
and timeend are the start and end times of task1.

Definition 15: A planning problem P is a tuple (N,A,S,T)
where N is a task network, A is an agenda after T, S is a state
and T is the current time.

Definition 16: Let P be a planning problem (N,A,S,T)
then a solution Π of problem P is defined as follows:

• Case 1: If both N and A are empty then Π is an empty
list.

• Case 2: If there exists a task tiin N such that the time
constraints on start time of ti are satisfied at T and there
exists an equality constraint for start time of ti and

– Case 2.1: ti is a simple task. Let O be an applicable
operator instance of ti and timeend be the time of latest
effect in O. Let A’ and N’ be defined as:

A’ = A ∪ effects of O
N’ = reduce(N ,ti, empty task network, T, timeend)

Let Π’ be the solution to the problem (N’,A’, S, T) then
Π = (ti [T, timeend]) + Π’

– Case 2.2: ti is a composite task. Let R be an T-
executable reduction of ti and ti1 .. tin are the tasks
in R. Let timeend be(max (end ti1) (end ti2) .. (end
tin)) Let N’ be reduce(N ,ti, R, T, timeend) then Π is
the solution to the problem (N’,A, S, T).

• Case 3: If A is empty and there is no task t in N such that
the time constraints on start time of ti are satisfied at T’¿T.
Then let ti be a task in N such that ti’s time constraints are
satisfied at T.

– Case 3.1: ti is a simple task. Then Π is defined as in
Case 2.1

– Case 3.2: ti is a composite task. Then Π is defined as
in Case 2.2

• Case 4: Let ti be the progress task or a task in N such that
time constraints on its start time are satisfied. Then

– Case 4.1: ti is progress task. Then let S’ and A’ be
defined as
(S’,A’) = Exec(S,A,T+1)
If S’ is a valid state then Π is a solution to problem
(N,A’,S’,T+1);

– Case 4.2: ti is a simple task. Then Π is defined as in
Case 2.1

– Case 4.3: ti is a composite task. Then Π is defined as
in Case 2.2

Algorithm
We now define the TimeLine algorithm that finds a solution
to the planning problem (N,A,S,T) as defined in pervious
section. We also state and prove the soundness of the algo-
rithm.

The pseudo-code for the algorithm is presented in Fig-
ure 1. TimeLine is non-deterministic straight forward im-
plementation of the solution defined for a planning problem
in the previous section.

TimeLine (N, A, S, T)

1 If N and A are empty

2 return empty plan;

3 else

4 if there is a task t such that time constraints

on start time of t is satisfied at T

5 If t is a simple task

6 Choose applicable operator instance o for t

7 end_time = time of the latest effect in o’s

effects

8 A’=A \bigcup effects of o

9 N’=reduce(N,t,empty tasknetwork,T,end_time)

10 P’ = TimeLine(N’,A’,S,T)

11 return (t [T, end_time])+ P’

12 else if ti is a composite task

13 Choose a T-executable reduction R for t,

R contains subtasks t_1 to t_n

14 end_time=(max(end t_1)(end t_2)..(end t_n))

15 N’ = reduce(N, t, R, T, end-time)

16 return TimeLine(N’,A,S,T)

17 end if

18 else

19 if A is empty and there is not a task t

such that time constraints on start time of t

is satisfied at T’ > T

19 Chose a task t such that time constraint on

starting time of t is satisfied at T.

20 Go to line 5

21 else

22 Choose ti be the progress task or a task in

N such that time constraints on its start

time are satisfied.

23 if ti is the progress task

24 (S’,A’) = Exec(S,A,T+1)

25 if S’ is a valid state

25 return TimeLine(N,A’,S’,T+1)

26 end if

27 else

28 Go to line 5

29 end if

30 end if

31 End TimeLine

Figure 6: Pseudo code of TimeLine algorithm

Theorem 1: If one of the non-deterministic traces of
TimeLine(N,A,S,T) returns a solution P , then P is a solu-
tion to the planning problem (N,A,S,T).

Proof : TimeLine returns a solution at

• Line 2: This line is executed when both N and A are
empty and returned solution is an empty plan. This is
Case 1 of the definition for solution planning problem.

• Line 11: If line 5 is executed after line 4 this case cor-
responds to Case 2.1 of solution definition. If line 5 is
executed after line 20 this case corresponds to Case 3.1 of
solution definition. If line 5 is executed after line 28 this
case corresponds to Case 4.2 of solution definition);

• Line 16: If line 12 is executed after line 4 this case cor-
responds to Case 2.2 of solution definition. If line 12 is
executed after line 20 this case corresponds to Case 3.2 of
solution definition. If line 12 is executed after line 28 this
case corresponds to Case 4.3 of solution definition;

• Line 25: The solution returned in this line corresponds to
Case 4.1 of solution definition.

Implementation and experiments
We have implemented deterministic version of TimeLine al-
gorithm. We have tested our implementation on the Logistic
domain which is naturally concurrent and easily extendible
to include numeric state variables.

The problems we used in our experiments were based on
30 problems used in AIPS98 planning competition. Basi-
cally we tried to create same set up that is defined in (Kvarn-
strom, J. and Doherty, P. 2001). We set the space capacity
for trucks to 5 and for airplanes to 25. We randomly gener-
ated the package sizes between 1 and 3. We also randomly
defined distance between two locations in the range 1 to 25.
We have create 20 random instanced for each of the 30 prob-
lems. We ran TimeLine on 20 problems instances then take
the average and we did this for 30 problems.

We ran the experiments on a Pentium III-600 machine
with 128 memory and Windows 98 operating system run-
ning on it. We compared our results with the published re-
sults of TAL planner and verified the feasibility of our ap-
proach. In fact most of the cases TimeLine performed better
than TAL planner. Considering the configuration differences
between the machines (TAL planner experiments performed
on Pentium II-333) and the problems, this performance dif-
ference may not illustrate a great deal. As we can see from
the preliminary results our approach is feasible and worth
for future study.

No TaL Planner TimeLine No TaL Planner TimeLine
1 270 591 16 10004 1455
2 811 644 17 2895 1248
3 2063 1165 18 21080 5047
4 5889 1412 19 18466 4649
5 541 601 20 37815 6317
6 6729 1877 21 39436 3224
7 1061 643 22 71402 20107
8 5658 1163 23 2434 3354
9 9594 2303 24 39096 1455
10 5738 3731 25 146921 10559
11 911 646 26 83960 22369
12 14871 1084 27 72814 9388
13 16524 2016 28 670284 24974
14 6800 2218 29 34550 21261
15 1512 3850 30 312099 9023

Table 1: Average time in miliseconds to solve problems

Related Work
Allen’s interval algebra defines the relations on two tasks us-
ing their end points. Our approach does not define explicitly

any constraints on end time of a task, so it can not express all
of the relations in Allen’s algebra. On the other hand we be-
lieve our approach is easier to track and expressive enough
for many practical problems.

Dechter and Meiri can reason about metric time con-
straints and propose an algorithm that can solve simple tem-
poral constraint satisfaction problems in polynomial time.

Bacchus suggested a simplistic approach to generate plans
that include actions with same time stamp but in fact the
plans are sequential because the ordering of the actions with
same time stamp is important. The actions in this approach
can have instant effects that are used to control concurrency
and delayed effects to represent the actions that have a dura-
tion greater than one.

TaL planner is extended to reason about time, concur-
rency and resources. It prunes the search space using con-
trol rules written in temporal logic. They define two actions
as mutually exclusive if the effects of them conflict at some
point that these two actions overlap. Tal planner can perform
concurrent numeric computation only on resources.

Smith and Weld extends the definition of mutual exclu-
sion for actions that can have durations. TGP uses a more
generalized planning graph that can handle actions with du-
rations and employs the extended mutual exclusion reason-
ing when searching for a plan. TGP actions have precon-
ditions that hold through out the execution and effects that
are guarantied to be true at the end of action. TGP does not
allow intermediate effects. One can argue that preconditions
holding during the actions may be too restricted.

Conclusion
In this paper we have presented a formalism to explicitly
represent time in HTN planning. Based on this formalism
we defined TimeLine a sound and complete HTN planner
that can reason about time. Our experiments concluded that
our approach is feasible and worth future study.

The formalism we present is expressive enough to repre-
sent most of the practical problems and yet still not com-
plex. We do not require the specification of any resource
usage in any level of the task abstraction. Instead we define
concurrent update rules for numeric state variables that can
represent these recourses.

A future study may concentrate on reducing the back-
tracking points in the implementation. Number of back-
tracking becomes a real problem as the problem size and
concurrency level increases. A better implementation may
be backtracking to representative time points instead of
backtracking all time points.

Acknowledgements
This work was supported in part by the following grants,
contracts, and awards: Air Force Research Laboratory
F306029910013 and F30602-00-2-0505, Army Research
Laboratory DAAL0197K0135, and the University of Mary-
land General Research Board. Opinions expressed in this
paper are those of authors and do not necessarily reflect
opinion of the funders.

References
Allen,J. 1983. Maintaining knowledge about temporal inter-
vals. Communication of the ACM 26(11):832-843

Simith D.,Weld, D. 1999. Temporal Planning with Mutual
exclusion reasoning. (IJCAI-99)

Kohler,J. 1998. Planning under resource con-
straints.(Proc. ECAI-98)

Karlsson, L..Gustavfsson, J., Doherty, P. 1998. Delayed
effects of Actions .(ECAI-98)

Fox, M.,Long, D. 2001. PDDL2.1: An Extension to
PDDL for expressing Temporal Planning Domains.

Kvarnstrom, J., Doherty, P. 2001. TAL planner: A Tem-
poral Logic-based Forward Chaining Planner. Annals of
Mathematics and Artificial Intelligence.

Erol, K., Hendler, J., Nau, D. 1994. Semantics for Hierar-
chical Task-Network Planning. Tech. Report CS TR-3239,
UMIACS TR-94-31, ISR-TR-95-9, University of Maryland,
March, 1994a.

Erol, K., Hendler, J., Nau, D. 1994. UMCP: A Sound and
Complete Procedure for Hierarchical Task-Network Plan-
ning. In Proc. Second International Conf. on AI Planning
Systems (AIPS-94), June, 1994b, pages 249-254.

Munoz-Avila, H., Aha, D., Breslow L., Nau, D. HICAP:
an interactive case-based planning architecture and its ap-
plication to noncombatant evacuation operations. In IAAI-
99,1999, pages 870-875.

Dechter, R,;Meiri, I.; and Pearl, J. 1991.Temporal con-
straint networks. Artificial Intelligence 49:61-95

Koehler, J. 1998. Planning under resource constraints.
(ECAI -98)

Rintanen, J., Jungholt, H. Numeric state variables in
constraint-based planning.

