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Abstract
Yaman et. al.[Yamanet al., 2004] introduce “go
theories” to reason about moving objects. In this
paper, we show that this logic often does not allow
us to infer that an object isnot present at a given
place or region, even though common sense would
dictate that this is a reasonable inference to make.
We define a class of models of go-theories called
coherentmodels. We use this concept to define a
motion closed world assumption(MCWA) and de-
velop a notion ofMCWA-entailment. We show
that checking if a go-theory has a coherent model
is NP-complete. Anin atom checks if a given ob-
ject is present in a given region sometime in a given
time interval. We provide sound and complete al-
gorithms to check if a groundin literal (positive
or negativein atom) can be inferred from a go-
theory using theMCWA. In our experiments our
algorithms answer such queries in less than 1 sec-
ond when there are up to 1,000go-atoms per object.

1 Introduction
Reasoning about moving objects is becoming increasingly
important. Air traffic controllers in both the US and Europe
are facing a dramatically increasing workload as the number
of flights increases. Cell phone companies are increasingly
interested in knowing where cell phones on their network are
located — this is useful for hand-off policies between cell
phone towers. Vehicle security systems such as LOJACK and
ONSTAR are increasingly being used to determine where ve-
hicles are and where they are not.

[Yamanet al., 2004] proposed the concept of a “go theory”
which can be used to make statements of the form “Objecto
is expected to leave locationP1 at some time point in the in-
terval[t−1 , t+1 ] and reach locationP2 at some time point in the
interval[t−2 , t+2 ] traveling at a velocity betweenv1 andv2. Go
theories can be used, for example, to make statements such as
“Plane p22 is expected to take off from Paris at some time be-
tween 10 and 12 and land at Boston at some time between 18
and 23 traveling at a speed between 10 to 20.” Go theories are
sets of such statements. Figure 1 shows the spatial layout of
one such go-theory (the go theory is written in text at the top).
[Yamanet al., 2004] provides a model theory for go theories,

Figure 1:Planes example

together with algorithms to check entailment of certain kinds
of atoms: “in” atoms that check if a given moving object is
within a given region at a given time, and “near” atoms which
are used to check if two objects are within a given distance of
each other at some time.

Though the semantics given by[Yamanet al., 2004] is ad-
equate for positive atoms, it is inadequate for negative atoms.
For example, suppose we consider the go-theory containing
just the two statements above about plane p22. In this case,
we would like to infer that plane p22 is not in Detroit at time
30, even though it may be theoretically possible for the plane
to make it to Detroit. The goal of this paper is to ensure that
intelligent negative inferences of this kind can be made from
go-theories.

The contributions and organization of this paper are as fol-
lows: in Section 2, we recapitulate the syntax of go-theories
from [Yamanet al., 2004]. In section 3, we introduce the
concept of a coherent model of a go-theory, and describe the
concept of coherent entailment. We also introduce theMotion
Closed World Assumption(MCWA for short) and show how
theMCWA can be used to reason about negative information.
Also in Section 3, we show that the problem of checking if
a go-theory has a coherent model is NP-complete. In Sec-
tion 4, we provide algorithms to evaluate “in” literals w.r.t.
theMCWA semantics. We are developing algorithms to pro-



cess other kinds of queries such as thenear literals described
in [Yamanet al., 2004] — however, space reasons prevent us
from presenting them. Section 5 describes a prototype imple-
mentation to answer positive and negative “in” queries — the
implementation shows that our system is highly scalable. We
compare our work with related work in Section 6.

2 Go-Theories: Syntax and Semantics
We first provide a quick overview of the main definitions of
[Yamanet al., 2004]. We assume the existence of several sets
of constant symbols:R is the set of all real numbers,O is the
set of names of objects,P = R × R is the set of all points
in two-dimensional cartesian space. We assume the existence
of three disjoint sets of variable symbols,VR, VO, andVP,
ranging overR, O andP, respectively. Areal term t is any
member ofR ∪VR. Object terms and point terms are defined
similarly. Ground terms are defined in the usual way. We now
define atoms as follows.

• If o1, o2 are object terms, andd, t1, t2 are positive real
terms, thennear(o1, o2, d, t1, t2) is anatom. When these
terms are ground, this atom says thato1, o2 are within
distanced of each other during the time interval[t1, t2].

• If o is an object term,P1, P2 are point terms, andt1, t2
are positive real terms, thenin(o, P1, P2, t1, t2) is an
atom. When these terms are ground, this atom says that
objecto is in the rectangle whose lower left (resp. upper
right) corner isP1 (resp. P2) at some point in the time
interval[t1, t2].

• If o is an object term,P1, P2 are point terms, and
t−1 ,t+1 ,t−2 ,t+2 ,v−, v+ are positive real terms, then
go(o, P1, P2, t

−
1 , t+1 , t−2 , t+2 , v−, v+) is an atom called a

go atom. When all these terms are ground, this atom
says that objecto leaves pointP1 at some time in[t−1 , t+1 ]
and arrives at pointP2 during [t−2 , t+2 ], traveling in a
straight line with a minimum speedv− and maximum
speedv+.

Ground atoms are defined in the usual way. Ago theoryis a
finite set of ground go-atoms.
Notation. If g = go(o, P1, P2, t

−
1 , t+1 , t−2 , t+2 , v−, v+) then

obj(g) = o, v−(g) = v−, v+(g) = v+,
loc1(g) = P1, t−1 (g) = t−1 , t+1 (g) = t+1 ,
loc2(g) = P2, t−2 (g) = t−2 , t+2 (g) = t+2 .

If A is an atom, thenA and¬A are calledliterals. Due to
space constraints, we only consider literals in this paper —
[Yamanet al., 2004] provide a richer syntax including con-
junction and disjunction.

An interpretationis a continuous functionI : O×R+ →
P. Intuitively, I(o, t) is o’s location at timet. We first define
satisfaction of a “go” atom w.r.t. a given time interval.

Definition 1 Let g = go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+)

be an atom andI be an interpretation.I satisfiesg over
a time intervalT = [t1, t2] iff:

• t1 ∈ [t−1 , t+1 ] andI(o, t1) = P1

• t2 ∈ [t−2 , t+2 ] andI(o, t2) = P2

• ∀t ∈ [t1, t2], I(o, t) is on the line segment[P1, P2]
• ∀t, t′ ∈ [t1, t2], t < t′ implies dist(I(o, t), P1) <

dist(I(o, t′), P1) wheredist is the function that com-
putes the Euclidean distance between two points.

• For all but finitely many times in[t1, t2], v =
d(|I(o, t)|)/dt is defined andv−(g) ≤ v ≤ v+(g).

The above definition intuitively says thatI |= g over a time
interval T = [t1, t2] iff o starts moving att1, stops moving
at t2 and during this interval, the object moves away fromP1

towardsP2 without either stopping or turning back or wan-
dering away from the straight line connectingP1 andP2. We
are now ready to define the concept of satisfaction of arbitrary
literals.
Definition 2 I satisfiesa ground literal (denotedI |= A) in
these cases:

1. I |= go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+) iff there exists

an interval[t1, t2] such thatI satisfiesA over[t1, t2].
2. I |= near(o1, o2, d, t1, t2) iff dist(I(o1, t), I(o2, t)) ≤

d for all t1 ≤ t ≤ t2
3. I |= in(o, P1, P2, t1, t2) iff there are numberst ∈

[t1, t2], x ∈ [P1
x, P2

x] and y ∈ [P1
y, P2

y] such that
I(o, t) = (x, y).

4. I |= ¬A iff I does not satisfyA.

I satisfies (or is a model of)a set of ground atomsMT iff I
satisfies everyA ∈ MT. MT is consistentiff there is an in-
terpretationI such thatI |= MT. L is a logical consequence
of MT, denotedMT |= L, iff every model ofMT is also a
model ofL.

Example 1 ThePlanes go-theory of Figure 1 is consistent
as the interpretationsI1, I2 below both satisfy it.
• I1 : p22 leaves Paris at time 11, flies to Boston at a

constant speed of 14.85 and arrives in Boston at 19.p22
waits in Boston until 32, then it departs for Paris with a
constant speed of 13.2 arriving in Paris at 41. The other
plane,p34 leaves London at time 25 and flies to Delhi at
a constant speed of 18.52, arriving in Delhi at 38.

• I2 : p22 leaves Paris at time 10, flies to Boston at con-
stant speed of 14.85 and reaches Boston at 18. It waits
in Boston until 19, when it takes off for Detroit where it
arrives at time 21. It immediately departs and reaches
Boston at time 29. At time 30,p22 leaves Boston and
flies to Paris at a constant speed of 11.88, arriving in
Paris at time 40. The other plane,p34 leaves London at
time 25 and flies to Delhi at a constant speed of 18.52,
arriving in Delhi at 38.

It is important to note that even thoughI2 satisfies thePlanes
go theory, it is an interpretation that allows planep22 to
wander around in ways that were not explicitly stated in the
Planes go theory. In particular, it lets the plane wander to
Detroit which was never mentioned in the go-theory. We
would like to exclude such “wandering” interpretations as
they prevent us from making the intuitive (nonmonotonic) in-
ference that Planep22 was never in Detroit.

Throughout the rest of the paper we are going to use the
notationG[o] to denote the set of all atoms about an objecto
in a go theoryG.



Definition 3 LetG be a go theory, o be an object andG[o] =
{g1, g2, . . . , gn}. Then for everygi, gj ∈ G[o] we define a
partial order� such thatgi � gj iff t+2 (gi) ≤ t−1 (gj). A
total order v on G[o] is compatible withG[o] iff v is a
topological sort of�.

Definition 4 SupposeG is a go theory, o is an object andv
is a total order compatible withG[o]. ThenL(G[o],v) is set
of linear constraints such that

• for everyg = go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+) ∈

G[o], L(G[o],v) contains:

– t−1 ≤ Sg ≤ t+1 andt−2 ≤ Eg ≤ t+2 ,
– v−× (Eg−Sg) ≤ dist(P1, P2) ≤ v+× (Eg−Sg),

• for everyg, g′ ∈ G[o] such thatg v g′, L(G[o],v)
contains:Eg ≤ Sg′ .

Intuitively Sg, Eg are variables that represent the times o
starts and stops moving.

Definition 5 A go theoryG is non-collinear iff for each ob-
jecto there are nog, g′ ∈ G[o] such that

• The intersection of line segments[loc1(g), loc2(g)] and
[loc1(g′), loc2(g′)] is a line segment[P,Q],

• The direction of the movement ing andg′ is same, i.e.,
∃k ∈ R+ such that~v = k × ~u where~v = loc2(g) −
loc1(g) and~u = loc2(g′)− loc1(g′)

• t−1 (g) ≤ t+2 (g′) and t−1 (g′) ≤ t+2 (g), i.e. temporally
overlapping.

The following theorem establishes necessary and sufficient
conditions for non-collinear go theories to be consistent.

Theorem 1 A non-collinear go theoryG is consistent iff for
every objecto there is a total ordervo compatible withG[o]
such thatL(G[o],vo) has a solution.

3 Coherence
In this section, we define the concept of a coherent interpre-
tation. We start by defining precedence of time intervals.

Definition 6 (Precedence)Let S = {T1, . . . Tn} be a set of
time intervals, whereTi = [ti1, ti2] for eachi. Ti immedi-
ately precedesTj in S if ti2 ≤ tj1 and for everyTk ∈ S,
eithertk2 ≤ ti2 or tk1 ≥ tj1.

Intuitively, I is a coherentinterpretation of a go theoryG
if for each objecto, there is a time intervalT such that for
every time pointt ∈ T , I(o, t) either satisfies a go-atom in
G or keeps the object at the destination of the last satisfied
go-atom inG .

Definition 7 (Coherent Model and Theory) Let I be a
model of the go theoryG. Let G[o] = {g1, g2, . . . , gn} be
the set of all go-atoms inG about objecto. I is coherent
w.r.t. o andG iff

(i) There are time intervalsT1 = [t11, t12], T2 =
[t21, t22], . . ., Tn = [tn1, tn2] such that for eachi, I
satisfiesgi overTi and

(ii) For every pair of time intervalsTi, Tj such thatTi im-
mediately precedesTj in {T1, T2, . . . , Tn} the following
holds:

∀t ∈ [ti2, tj1] I(o, t) = loc2(gi), i.e. destination ofgi.

I is acoherent model ofG iff I is coherent w.r.t.o andG for
all objectso.
G is acoherent go-theoryiff G has a coherent model.

Example 2 LetG be the go theory in Figure 1. LetI1 andI2

be the two interpretations in Example 1.I1 is coherent with
respect toG andp22 because it satisfiesg1 over [11, 19], g2

over [32, 40] and in between[19, 32] planep22 is in Boston.
I2 is not coherent with respect toG and p22 because al-
though it satisfiesg1 over [10, 18], g2 over [30, 41] during
[18, 30], p22 does not stay in Boston which is the destination
of g1.

The following lemma and definition are useful in checking
whether a non-collinear go-theory has a coherent model or
not.

Definition 8 SupposeG is a non-collinear go theory, o is an
object andv is a total order compatible withG[o]. Letg1 v
g2 · · · v gn be the atoms ofG[o]. v is spatially continuous
w.r.t. G[o] iff for everyi, 1 ≤ i < n, loc2(gi) = loc1(gi+1),
i.e.,gi’s destination isgi+1’s origin;

Lemma 1 SupposeG is a non-collinear go theory.G is co-
herent if for every objecto there is a total ordervo compati-
ble withG[o] such thatL(G[o],vo) has a solution andvo is
spatially continuous w.r.t.G[o].

The following theorem shows that checking coherence of a
go-theory is NP-complete.

Theorem 2 (i) Checking coherence of a non-collinear go
theory is NP-complete.(ii) Checking coherence of a go the-
ory is NP-complete.

The proof is omitted due to lack of space. We now define the
concept of coherent entailment.

Definition 9 (MCWA entailment) Let L be a ground literal
and G be a go theory. G entails L via MCWA, denoted
G|=mcwaL, iff every coherent model ofG also satisfiesL.

TheMCWA is inspired by Minker’s generalized closed world
assumption[Minker, 1982] where a class of models is used to
check if a given literal is true. We do the same here. The fol-
lowing example shows that theMCWA can handle examples
such as the Planes example.

Example 3 Let G be the go theory in Figure 1. LetI1

and I2 be the interpretations in Example 1. Supposea =
in(p22, (75, 200), (85, 210), 23, 30). G|=mcwaa since in all
coherent models ofG, during [23, 30] planep22 is in Boston
which is inside the rectangle of the atoma.

Supposeb = in(p22, (55, 185), (80, 200), 23, 30). Then
G|=mcwa¬b since in all coherent models ofG, during[23, 30]
planep22 stays in Boston which is not in the rectangle of the
atomb.

Also note thatG 6|= a and G 6|= ¬b because according
to the semantics in[Yamanet al., 2004] planep22 can be
anywhere during[23, 30].
Theorem 3 Let L be a groundin() literal and G be a go
theory. Checking ifG|=mcwaL is co-NP complete.

Since incoherent theories entail everything the following
section describes algorithms for coherent go theories.



Figure 2: Spatial layout of two go atoms (related to objecto)
going fromP1 to P3 andP3 to P5 and a rectangleR. In a
coherent model,o stays inR between the pointsP2 andP4.

4 MCWA-Entailment Algorithms
This section provides algorithms to check forMCWA-
entailment of both positive and negativeground literals. Due
to space limitations we assume all theories are non-collinear
go theories. Extending our algorithm to remove this as-
sumption is straightforward using the methods defined in
[Yamanet al., 2004] that combine collinear go atoms into
“movements”– our implementation applies to all go theories.

We first introduce some notations. Ifg is a go atom,
thenLS(g) is the line segment between the source and des-
tination of g. Let G be a go-theory,o be an object and
v be a total ordering compatible withG[o]. Let P be a
point onLS(g) whereg ∈ G. ThenT−(G[o],v, g, P ) and
T+(G[o],v, g, P ) are the earliest and latest possible times
for o to be atP , subject toG,o,v andg. 1

4.1 Coherentin()
In this section, we show how to check whether aground atom
of the forma = in(o, q1, q2, t1, t2) is MCWA-entailed by a
go-theoryG. Let Rec(a) denote the set of pointsP such that
qx
1 ≤ P x ≤ qx

2 andqy
1 ≤ P y ≤ qy

2 .
We first consider a non-collinear go theoryG={g1, g2}

about an objecto, and an atoma = in(o, q1, q2, t1, t2). As-
sume Figure 2 depictsRec(a) and the two line segments
[P1, P3], [P3, P5] representing movements defined byg1 and
g2. In any coherent model ofG, g1 will be satisfied before
g2. Hence the object entersRec(a) at P2 and leavesRec(a)
at P4. If o always arrives atP2 beforet2 and always leaves
P4 after t1 subject to the constraints inG, then we can say
thatG|=mcwaa.

For an arbitrary go theory, any object might enter and leave
Rec(a) multiple times. We need to identify these entrance
and exit points as well as the atoms that contain them.

Definition 10 Let L be a sequence of line segments`1 =
[P11P12], `2 = [P21P22],. . ., `n = [Pn1Pn2] such that for

1T−(G[o],v, g, P ) is the solution to linear programming prob-
lem: minimize XP,g subject to L(G[o],v) ∪ L(P, g), where
L(P, g) contains the following linear constraints:

• dist(loc1(g),P )

v+(g)
≤ XP,g − Sg ≤ dist(loc1(g),P )

v−(g)

• dist(loc2(g),P )

v+(g)
≤ Eg −XP,g ≤ dist(loc2(g),P )

v−(g)

whereXP,g is the variable that represents the time the object will
arrive P while satisfyingg. Sg andEg are the variables associated
with g in L(G[o],v). T+(G[o],v, g, P ) can be computed in the
same way, using maximization instead of minimization.

1 ≤ i < n, Pi2 = P(i+1)1. LetR be a rectangular region. An
entry-exit ofL for R is (i, j) iff

• `i ∩R 6= ∅ andi > 1 =⇒ Pi1 6∈ R

• `j ∩R 6= ∅ andj < n =⇒ Pj2 6∈ R

• ∀k ∈ [i, j) Pk2 ∈ R

The following lemma gives necessary conditions for
G|=mcwaa when the atoms in G are satisfied in a specific
order and the object enters and exitsRec(a) multiple times.

Lemma 2 Let G be a coherent go theory,o be an ob-
ject andv be a total order compatible withG[o] such that
L(G[o],v) has a solution andv is spatially continuous w.r.t
G[o]. Let g1 v g2 · · · v gn be the atoms of G[o]. Let
a = in(o, q1, q2, t1, t2) be an atom. IfG|=mcwaa then there
is an entry-exit(i, j) of LS(g1) . . . LS(gn) for Rec(a) such
that

T+(G[o],v, gi, Pi) ≤ t2 andt1 ≤ T−(G[o],v, gj , Qj).
where[Pk, Qk] = LS(gk) ∩Rec(a),

The following algorithm uses this lemma to check for
MCWA-entailment w.r.t. a specific total ordering.

Algorithm CheckCoherentIn(G,v, a)
Supposea = in(o, q1, q2, t1, t2);
Let g1 v g2 · · · v gn be atoms of G[o]
if v is not spatially continuous w.r.t G[o]then return true
if L(G[o],v) has no solutionthen return true
for eachentry-exit(i, j) of LS(g1) . . . LS(gn) for Rec(a)

Let [Pi, Qi] = LS(gi) ∩Rec(a)
Let [Pj , Qj ] = LS(gj) ∩Rec(a)
if T+(G[o],v, gi, Pi) ≤ t2 andt1 ≤ T−(G[o],v, gj , Qj)
then return true

end for
return false

Theorem 4 SupposeG is a coherentgo-theory anda =
in(o, q1, q2, t1, t2) is a ground atom. Then:a is entailed byG
via MCWA iff for every total orderv compatible withG[o],
the algorithmCheckCoherentIn(G,v, a) returns “true”.

4.2 Coherent¬in()
We now address the problem of checking whether a literal of
the form¬in(o,Q1, Q2, t1, t2) is MCWA-entailed by ago-
theoryG.

Consider a coherent go theoryG={g1, g2} about an object
o, and an in-atoma = in(o, q1, q2, t1, t2). As before Figure 2
depictsRec(a) and two line segments[P1, P3], [P3, P5] rep-
resenting the movements defined byg1 andg2. Note that in
any coherent model ofG, g1 is satisfied beforeg2. Hence the
object entersRec(a) at pointP2 and leavesRec(a) at point
P4. G|=mcwa¬a iff

• t1 is greater than or equal to the start time ofg1 in any
coherent model ofG.

• t2 is smaller than or equal to the end time ofg2 in any
coherent model ofG.

• Let T1 be the earliest arrival time toP2 andT2 be the
latest arrival time toP4 in any coherent model ofG then
T1 > t2 or T2 < t1.



The following lemma gives necessary conditions for
G|=mcwa¬a to hold w.r.t. a specific total orderingv even
if the object enters and exitsRec(a) multiple times.

Lemma 3 Let G be a coherent go theory, o be an object and
v be a total order compatible withG[o] such thatL(G[o],v)
has a solution andv is spatially continuous w.r.t. G[o].
Let g1 v g2 · · · v gn be the atoms of G[o]. Leta =
in(o, q1, q2, t1, t2) be a ground atom. IfG|=mcwa¬a then the
following hold

• T+(G[o],v, g1, loc1(g1)) ≤ t1
• T−(G[o],v, gn, loc2(gn)) ≥ t2
• ∀ entry-exit (i, j) of LS(g1) . . . LS(gn) for Rec(a),

T−(G[o],v, gi, Pi) > t2 or T+(G[o],v, gj , Qj) < t1
where[Pk, Qk] = LS(gk) ∩Rec(a).

The following algorithm checks ifG|=mcwa¬in() w.r.t. a spe-
cific total ordering.

Algorithm CheckCoherentNotIn(G,v,¬a)
Supposea = in(o, p1, p2, t1, t2);
Let g1 v g2 · · · v gn the atoms ofG[o].
if v is not spatially continuous w.r.tG[o] then return true
if L(G[o],v) has no solutionthen return true
if t1 < T+(G[o],v, g1, loc1(g1)) return false
if t2 > T−(G[o],v, gn, loc2(gn)) return false
for eachentry-exit(i, j) of LS(g1) . . . LS(gn) for Rec(a)
Let [Pi, Qi] = LS(gi) ∩Rec(a)
Let [Pj , Qj ] = LS(gj) ∩Rec(a)
if T−(G[o],v, gi, Pi) ≤ t2 andt1 ≤ T+(G[o],v, gj , Qj)
then return false

end for
return true

Theorem 5 SupposeG is a coherentgo-theory andL =
¬in(o, q1, q2, t1, t2) is a ground literal. ThenL is entailed
by G via MCWA iff for every total orderv compatible with
G[o], the algorithmCheckCoherentNotIn(G,v, a) returns
“true”.

5 Implementation
DeterminingMCWA-entailment is co-NP complete because
the number of orderings spatially continuous w.r.t.G[o] can
be exponential. However, in the real world, we expect a go-
theory to allow only a small number of orderings compatible
with G[o]. In other words, the respective order of movements
an object is going to perform is mostly known. For exam-
ple we might not know exactly when the planep22 will land
but we usually know where it is going to fly next. Thus, in
practice there is a bound on the number of compatible total
orderings per object.

For our experiments we generated random go theories with
at most 256 spatially continuous orderings. This is not a hard-
coded limit of our implementation. Generating random go-
theories such that more than one spatially continuous order-
ing exists is a little bit tricky. Here is one method to generate
a go theoryG = {g1, g2, g3, g4, g5} with two spatially con-
tinuous orderings.

• Randomly pick pointsP1, P2, P3 andP4

• Setloc1(g1) = P1 andloc2(g1) = P2,
• Setloc1(g2) = P2, loc2(g2) = P3

andloc1(g3) = P3, loc2(g3) = P2,
• Setloc1(g4) = P2, loc2(g4) = P4

andloc1(g5) = P4, loc2(g5) = P2,
• Set temporal and speed intervals of everygi so thatg1 is

always first and the rest can be done in any order.

We have generalized the reasoning above to create random go
theories with an arbitrary bound on the number of spatially
continuous orderings.

We have implemented the two algorithmsCheckCoher-
entIn and CheckCoherentNotIn in Matlab and conducted
experiments on a mobile Athlon XP 1800 processor running
under Windows XP and having 256MB of memory. Figure
3 shows the computation time of four types of queries for
coherent go theories with at most 256 spatially continuous
orderings and have the following properties: all points are se-
lected randomly from the rectangle[(0, 0), (1000, 1200)] and
the speeds allowed for any object less than 100. The four
query templates we used are:

Q1: in(o, (500, 500), (550, 600), 0.5 ∗ h, 0.75 ∗ h)
Q2: in(o, (100, 150), (350, 400), h− 100, h− 10)
Q3: ¬Q1
Q4: ¬Q2

whereh is the latest end time for any atom related too in
the given theory. The data points in Figure 3 are an average
of 300 runs.

Our implementation performs very well, executing most
queries in less than 0.3 seconds even when there are as many
as 1,000go-atoms per object. In the queryQ1 whereCheck-
CoherentIn returns true in almost every compatible order-
ings the algorithm runs in linear time with respect to number
of atoms per object and takes up to 0.9 seconds when there
are 1,000go-atoms per object. ConsequentlyQ3, the com-
plement ofQ1, takes almost no time becauseCheckCoher-
entNotIn returns false for any compatible ordering.

6 Related work
The Closed World Assumption (CWA) proposed by[Reiter,
1977] holds that anything that cannot be entailed by a theory
is false. Minker[Minker, 1982] extended the CWA to a Gen-
eralized CWA (GCWA) that accounts for disjunction. GCWA
states that a formula is false if it is false in all minimal mod-
els of the theory. The go-theories proposed by[Yamanet al.,
2004] are disjunctive because the start and end times and ob-
ject velocities are all known to be within a given range. The
notion of a coherent model of a go-theory selects certain mod-
els (much like Minker selected minimal models in GCWA)
and uses these to make closed world inferences.

[Intille, 1994; Intille et al., ] have used the CWA to track
moving objects in football games using computer vision algo-
rithms. They use CWA to adaptively select and weight image
features used for correspondence. No motion reasoning of the
type we perform in this paper is done.

Numerousspatio-temporal logicsexist [Gabelaiaet al.,
2003; Merzet al., 2003; Wolter and Zakharyaschev, 2000;



Figure 3: Time to answer queriesQ1, Q2, Q3 andQ4 when
total number of spatially continuous orderings is at most 256.

Cohn et al., 2003] have proposed spatio-temporal logics.
These logics extend temporal logics to handle space. By and
large, these frameworks use discrete rather than the contin-
uous representations we use. Moreover, these works focus
on qualitative aspects of spatio-temporal reasoning, rather
than deal quantitatively with the dynamics of motion. Our
methods are rooted in a mix of geometry and logic, rather
than in logic alone. Cohn[Anthony G. Cohn, 2001] pro-
vides an excellent survey of spatio-temporal logics but the
survey sheds little light on reasoning above motion. A
notable exception is the work of Muller[Muller, 1998a;
1998b] who describes a formalqualitativetheory for reason-
ing about motion. The expressive power of the theory allows
for the definition of complex motion classes. The work how-
ever is purely symbolic not quantitive.

7 Conclusions
Yaman et. al.[Yamanet al., 2004] introduce a logic based
on “go theories” for reasoning about moving objects. In this
paper, we show that this logic often does not allow us to infer
that an object isnot present at a given place or region, even
though common sense would dictate that this is a reasonable
inference to make. We define a class of models of go-theories
calledcoherentmodels. We use this concept to define amo-
tion closed world assumption(MCWA) and develop a notion
of MCWA-entailment. We show that checking if a go-theory
has a coherent model is NP-complete. Anin atom checks if a
given object is present in a given region during a given time
interval. We provide sound and complete algorithms to check
if an in literal (positive or negativein atom) can be inferred
from a go-theory using theMCWA. In our experiments our
algorithms executed queries in less than 1 second even when
there are as many as 1,000go-atoms per object.
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