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1 IntroductionRecent work has proved what many researchers have suspected for a long time: thatthe so-called \classical AI planning problem" { generating an action sequence to achievesome conjunction of goals { is computationally intractable [Chapman, 1987, Bylander, 1991,Erol et al., 1991, Erol et al., 1992a, Erol et al., 1992b]. A number of ways around this prob-lem are currently being explored, ranging from approaches that use highly restricted mech-anisms for planning to the application of domain-dependent heuristics for providing rapidsolutions. This latter approach, often referred to as domain-dependent planning, is oftensuccessful at producing plans quickly for the limited domains of applicability, at the cost ofa large knowledge acquisition and engineering e�ort. However, given the importance of theplanning problem to many commercial and military applications, the cost has often beendeemed justi�able.The ine�ciency of planning becomes even more problematic in the presence of a set ofgoals needing to be jointly solved. Most domain-speci�c planners are too brittle to handlethe numerous interactions that may arise between the actions in the goal conjunction, andthus an assumption of independence is needed to generate a set of plans from a singledomain-speci�c system. While much of modern planning research has focused on the issuesof dealing with such interactions in domain-independent ways (for example [Chapman, 1987,Sacerdoti, 1977, Tate, 1977, Vere, 1983, Wilkins, 1984]1), little work has focused on howthe outcomes of either separate domain-dependent planners, or multiple runs of the sameplanner, could be combined into a single global plan.One piece of work that does relate to this area is Korf's [Korf, 1987a] analysis of thedecomposition of plans into subgoals in search related planning systems. He shows that ifthe subgoals are independent, then solving each one in turn (and essentially concatenatingthe results) will divide both the base and the exponent of the complexity function by thenumber of subgoals. Where the results are \serializable" {that is, where previous goals canbe protected during the execution of other goals { Korf shows that such clear-cut resultscannot be obtained. However, he goes on to point out that by performing the decompositionof serializable goals, the branching factor is often reduced signi�cantly since many operationsmay be ruled out in protecting goals that have already been achieved.The major limitation with decomposition, however, is that for most planning problemsthe goals and subgoals often interact or con
ict with each other in non-serializable ways2.Unfortunately, it appears impossible to achieve both e�ciency and generality in handlinggoal/subgoal interactions. Domain-independent planners attempt to handle interactionsthat can occur in many possible forms, and thus they sacri�ce the gains in e�ciency thatmight possibly be achieved if some of these forms were disallowed. Domain-dependentplanners can often do better at dealing with goal/subgoal interactions by imposing domain-dependent restrictions on the kinds of interactions that are allowed|but the restrictionsthey use are often too restrictive for the planners to be applicable to other domains.In this paper we discuss an approach to multiple-goal planning that falls somewhere inthe middle of this trade-o�. The approach is to generate plans for each goal individually,1A review of this work is presented in [Hendler et al. 1990].2The most famous example of this is the \Sussman anomaly," in which solving one goal undoes theindependently derived solution to the other. 2



ignoring how each plan might a�ect the other goals. The individual plans are then mergedtogether, handling interactions while this merging is performed. We show that where certainrestrictions hold, these plans can be merged in an optimal manner. In particular, we tryto abstract out the kinds of goal and subgoal interactions that occur in a set of problemdomains, and develop planning techniques capable of performing well in all domains in whichno other kinds of interactions occur. We investigate a set of limitations less restrictive thaneither independence or linearity assumptions, although they are not as general as the sortsof interactions handled in the larger class of \non-linear" planners.The restrictions that we impose on the goal interactions allow us to develop relativelye�cient techniques for solving multiple-goal planning problems by developing separate plansfor the individual goals, combining these plans to produce a naive plan for the conjoinedgoal, and performing optimizations to yield a better combined plan. For example, considerthe following situation (based on [Wilensky, 1983]):John lives one mile from a bakery and one mile from a dairy. The two storesare 1.5 miles apart. John has two goals: to buy bread and to buy milk.The approach usually taken is to conjoin this into the single goal(GOAL JOHN (AND (HAVE BREAD) (HAVE MILK)))and to solve the conjunction taking interactions into account. However, supposing thatwe have some sort of simple, possibly domain-speci�c, \trip" planner that can e�cientlygenerate plans for the individual goals. This planner would develop separate plans forthe two individual goals (drive to the dairy, buy milk, and come home; and drive to thebakery, buy bread, and come home). If concatenated together, these plans would solve theconjoined goal, but they'd be ine�cient { we'd make two separate trips. However, the twotrips can be merged into a single trip by replacing the \come home" subaction of the �rsttrip and the \drive to the dairy" subaction of the second trip with \drive from the dairy tothe bakery."As mentioned above, the restrictions required for our approach to be applicable arelimiting, but less so than some of the restrictions proposed in the literature. Our goal hasbeen to develop restrictions with the following properties:1. the restrictions are stateable in a clear and precise way (rather than simply referringto general knowledge about the characteristics of a particular domain of application);2. the resulting classes of planning problems are large enough to be useful and interesting;3. the classes of problems allowed are \well-behaved" enough that planning may be donewith a reasonable degree of e�ciency.In this paper, we identify a set of restrictions that satisfying the above criteria. Wealso discuss the complexity of the resultant planning problems, and demonstrate that themerging of multiple plans can be performed e�ciently under these restrictions. We presentalgorithms that are e�cient for special cases of plan merging, propose a heuristic searchalgorithm that performs well in a more general case, and describe an empirical study thatdemonstrates the e�ciency of this search algorithm.3



2 BackgroundAs pointed out in the introduction, one of the major problems with planning is how to handleinteractions among goals or subgoals. One approach that has been used to circumvent thisproblem is the condition of linearity. This condition is satis�ed in a planning problem ifthe individual goals can be achieved sequentially in any arbitrary order3. Early plannerstypically generated plans for the goals as if the planning problem were linear. As an example,the STRIPS planner [Fikes and Nilsson, 1971] handled compound goals that were conjunctsof component goals in this manner. Unfortunately, this often led to redundant actions inthe plans generated by STRIPS, and could occasionally get the planner into an endlesscycle of re-introducing and trying to satisfy the same goal over and over again. Thus, touse such a planner in domains where subgoals or goals interact strongly, it was necessaryto add ways to detect and resolve the con
icts.Later planners typically were based on the assumption is that it is better not to or-der operators than to order them arbitrarily. This results in the least-commitment strat-egy, in which an order between two operators is not assigned unless absolutely necessary(for example, this could occur if an action for one goal deletes a precondition of anothergoal or subgoal). The plan thus developed is a partially ordered set of actions. Mostof the best-known planning systems (for example, [Chapman, 1987, McDermott, 1977,Sacerdoti, 1977, Tate, 1977, Vere, 1983, Wilkins, 1984]) generate plans using this technique.Although these \least commitment" planners are more e�cient in handling con
icts thantheir linear counterparts, there is still usually too much computation involved; the problemrequires exponential time in most interesting cases [Chapman, 1987]. Such extensive com-putation is not feasible for planning in many real-world domains. This exponentiality is ofparticular di�culty in systems dealing with multiple goals: as more subgoals are added toa single conjoined goal, the solution time is drastically increased.One way to tackle this problem is to use explicit domain knowledge tolessen the computational burden of detecting and resolving the goal interac-tions in planning. Such domain-dependent planning systems have been built formany practical problems. Some examples include military command and con-trol planning applications [Baker and Greenwood, 1987, Glasson and Pomarede, 1987,Brown and Gaucus, 1987], route planning [Garvey and Wesley, 1987], autonomous vehi-cle navigation [Berlin et al. 1987, Linden and Owre, 1987], and automated manufacturing[Chang and Wysk, 1985, Cutkoski and Tenenbaum, 1987, Hayes, 1987, Nau, 1987].Within the domain-dependent planning world, the issue of integrating the outputsof several planners has been considered an important one. Two major DARPA ini-tiatives, the AirLand Battle Management program (cf. [Baker and Greenwood, 1987,Greenwood et al. 1987]) and the Pilots' Associate program (cf. [Smith, 1987, Key, 1987]),for example, were centered around the notion of a set of di�erent domain-speci�c plannersgenerating separate plans for aspects of a mission with a central coordinator (generallyviewed as itself some sort of domain-dependent expert system) that could integrate theoutputs. More recently, a similar approach was proposed by Kambhampati and Tenen-baum [Kambhampati and Tenenbaum, 1990] for dealing with concurrent engineering sys-3The literature sometimes uses the term \linear" to describe the situation where \some" rather than\any" ordering will work. A discussion of planning terminology is provided in [Tate et al. 1990].4



tems. This work di�ered from the earlier work in that it allowed other entities than plannersto be included and used a planning framework for the integration, as opposed to a domain-speci�c expert.A separate approach to dealing with ine�ciency in the handling of multiple goals focuseson placing appropriate restrictions on goal and subgoal interactions. Perhaps the best knownexample of this is Vere's DEVISER [Vere, 1983] system which approached the problem byusing temporal scopings associated with goals and actions. Much of the planning behaviorin the DEVISER system involved setting up temporal constraints and comparing them tothe durations of requisite actions. Wilkins' SIPE system [Wilkins, 1984] provided a generalmechanism for handling multiple goals, but also allowed for the integration of speci�c rulesfor limiting the set of interactions to be considered at various times in the planning, and toallow human operator interaction in eliminating possibilities and making decisions.In this paper we consider an approach that is less domain-speci�c than the rule-basedcombination of plans generated by separate domain-dependent planners, but is not quiteas general as the solutions envisioned within the fully domain-independent, conjoined goalplanning system framework. Suppose we are given a planning system, comprised of oneor more planners, that can generate (partially-ordered) plans for each of the individualgoals. We make no particular assumptions about the types of planners involved in thesystem|they may be domain-dependent or independent as necessary. We examine a set ofgoal/subgoal interaction restrictions that, where they apply, allow the e�cient merging ofthese plans into an optimal global plan. We examine two situations: where a single separateplan is generated for each goal, and where more than one plan might be generated per goal.For this approach to be useful, the set of planning problems satisfying our allowable set ofinteractions must be broad enough to be useful and interesting|and we argue that this isthe case.3 Problem StatementWe consider a goal G to be a collection of predicates describing some desired state of theworld. A plan P for G is a set of actions A(P ), together with a partial ordering on theorder in which these actions must be performed,4 such that if the actions are performed inany order consistent with the ordering constraints, G will be achieved.We consider each action a to have a cost, denoted by cost(a). We de�ne the cost ofa plan P or a set of actions A to be the sum of the costs of the individual actions; i.e.,cost(A) =Pa2A cost(a) and cost(P ) =Pa2A(P ) cost(a).Suppose the goal G is the conjunct of a number of other goals G1; G2; : : : ; Gm. Forthe example given in Section 1, (HAVE BREAD) and (HAVE MILK) are both goals for theconjunctive goal (AND (HAVE BREAD) (HAVE MILK)). Suppose that for each individual goalGi, we are given a set of plans Pi such that each plan in Pi can achieve Gi. For example,we might be able to achieve (HAVE BREAD) either by going to the bakery or by going tothe supermarket. One way to try to achieve G would be to select a plan Pi from each setPi, and try to combine the plans P1; P2; : : : ; Pm into a \global plan" for G. Depending on4In addition to the usual kind of partial ordering constraint having the form \action a must be donebefore action b," we also allow constraints specifying that two actions must be performed at the same time.5



what kinds of interactions occur among the actions in these plans, it might or might not bepossible to combine them successfully.In the literature, the interactions that occur among the individual goals in a goal con-junction typically are of two main types: precedence interactions, in which the speci�c orderbetween the two goals is critical, and merging interactions, in which resources or actionsmay be shared between the goals. Although much of the work in the planning �eld hasdiscussed the former, the latter are also important in the combination of separate plans.Thus, in this paper, we consider both merging and precedence interactions, speci�cally:1. Let A be a set of actions fa1; a2; : : : ; ang. Then there may be a merged action M(A)capable of accomplishing the useful e�ects of all actions in A, while leaving the re-sultant plan correct. The cost of M(A) could be either higher or lower than thesum of the costs of the other actions|but it is only useful to consider merging theactions in A if this will result in a lower total cost. Thus, although we allow thecase where cost(M(A)) � cost(A), we can ignore it for the purposes of planning. Weconsider A to be mergeable if cost(M(A)) < cost(A); and in this case we say that anaction-merging interaction occurs.One way in which an action-merging interaction can occur is if the actions in A containvarious sub-actions that cancel each other out, in which case the action M(A) wouldcorrespond to the set of actions in A with these sub-actions removed. If the cost ofeach action is the sum of the costs of its sub-actions, then the cost ofM(A) is clearlyless than the sum of the costs of the actions in A.Note that even though a set of actions may be mergeable, it may not always bepossible to merge that set of actions in a given plan. For example, suppose a and a0are mergeable, but in the plan P , a must precede b and b must precede a0. Then aand a0 cannot be merged in P , because this would require b to precede itself.2. An action-precedence interaction is an interaction that requires that an action a insome plan Pi must occur before an action b in some other plan Pj . This can occur, forexample, if b removes one of the preconditions necessary for a, and there is no otheraction that can be inserted after b to restore this precondition.Much previous work in planning has dealt with deleted-condition interactions. Al-though some action-precedence interactions are expressible as deleted-condition in-teractions, and conversely, some deleted-condition interactions can be resolved byimposing precedence orderings, deleted-condition interactions can often be resolvedin other ways as well. Thus, in general, they are more di�cult to deal with thanaction-precedence interactions. This is a primary limitation with our approach ascompared to traditional domain-independent systems. However, it appears that thereare signi�cant classes of problems where action-precedence interactions are the onlyform of deleted-condition interactions that occur.5 Examples of such problems appearlater in this section.3. Plans for di�erent goals may sometimes contain some of the same actions. Anidentical-action interaction occurs when an action in one plan must be identical to an5In fact, the classic \Blocks World" can be reformulated in this way; see [Gupta and Nau, 1992].6



action in one of the other plans.4. Sometimes, two di�erent actions must occur at the same time, and we call such aninteraction a simultaneous-action interaction. An example would be two robotic handsworking together in order to pick up an object. This kind of interaction is di�erentfrom an action-merging interaction, because it says that two actions must be mergedto result in a correct plan, whereas in action-merging interactions, the actions do nothave to be merged. It is also di�erent from an identical-action interaction, becausethese simultaneous actions are not identical.How to construct a list of interactions for a given set of plans is a problem-dependenttask. As described above, action-merging interactions can be detected by looking for ac-tions that contain subactions that cancel each other out. Such situations often occur amongactions that require common resources. It is also possible to detect action-precedence inter-actions by matching the preconditions and e�ects of the operators in a plan. However, to�nd the set of identical-action and simultaneous-action interactions, one needs more infor-mation than is contained in the common STRIPS operator representation. The additionalinformation requires time points or intervals in action de�nitions [Allen, 1983], or othersuch temporal representations. For the purpose of this paper, we will assume that the listof interactions can be constructed using a combination of the domain knowledge expressedin the operators, and the plans generated for the goals.Depending on what interactions appear in a given planning problem, it may or may notbe possible to �nd plans for the individual goals that can be combined into a global plan.For example, if P1 is the sequence of actions (a1; a2), P2 is the sequence of actions (b1; b2),and if a2 must precede b1 and b2 must precede a1, then there is no way to combine P1 andP2. We de�ne the merged plan existence problem to be the following problem:Do there exist plans P1 2 P1; P2 2 P2; : : : ; Pm 2 Pm that can be merged into a\global plan" for the conjoined goal G?If there is a global plan, then there may be more than one global plan, and di�erentglobal plans may have di�erent costs. For example, in the shopping example given inSection 1, we discussed two global plans:1. drive to the dairy, buy milk, come home, drive to the bakery, buy bread, and comehome;2. drive to the dairy, buy milk, drive from the dairy to the bakery, buy bread, and comehome.We de�ne the optimal merged plan problem to be the following problem:What is the optimal (i.e., least-cost) plan P that can be found by selectingplans P1 2 P1; P2 2 P2; : : : ; Pm 2 Pm and merging them into global plans forthe conjoined goal G?66Depending on what plans are in the sets Pi, P may or may not be \globally optimal", i.e., optimal over allpossible plans for the conjoined goal G. It is easy to specify conditions on the sets Pi su�cient to guaranteethat P is globally optimal|but with some planning systems (particularly some kinds of domain-dependentplanners) it may not be feasible to test whether these conditions are satis�ed.7



For each i, the least costly plan in Pi is not necessarily part of the optimal plan P , becausea more costly plan in Pi may be mergeable in a better way with the plans for the othergoals. For example, Figure 1 shows the results of merging a plan P1 with two di�erent plansP2 and P 02. P2: C1 �! D1P1: A1 �! B1 P 02: A2 �! B2 �! D2A1 �! B1merge(combine(fP1,P2g)): C1 �! D1merge(combine(fP1,P 02g)): M(fA1,A2g) �! M(fB1,B2g) �! D2Figure 1: Merging P1 and P 02 results in a plan with fewer steps than merging P1 and P2.Problems involving the optimization of multiple-goal plans occur in a number of prob-lem domains currently being explored by the planning community, such as manufacturingplanning, logistics planning, factory scheduling. In these domains, multiple goals must beachieved within the context of a set of constraints (deadlines, machining requirements, etc.)The general class of all such problems clearly will not �t within the con�nes of the restric-tions speci�ed in this paper (for example, we have not yet extended our approach to dealwith scheduling deadlines), but signi�cant and useful classes of problems can be found thatsatisfy these restrictions. Several speci�c examples are given below.Example 1. During the last several years, much work has been done in the area of processplanning for manufacturing. As an example, consider the problem of using machiningoperations to make holes in a metal block. Several di�erent kinds of hole-creationoperations are available (twist-drilling, spade-drilling, gun-drilling, etc.), as well asseveral di�erent kinds of hole-improvement operations (reaming, boring, grinding,etc.). Each time one switches to a di�erent kind of operation or to a hole of a di�er-ent diameter, one must mount a di�erent cutting tool on the machine tool. If the samemachining operation is to be performed on two di�erent holes of the same diameter,then these two operations can be merged by omitting the task of changing the cuttingtool. This and several other similar manufacturing problems are of practical signi�-cance (see [Chang and Wysk, 1985, Hayes, 1987]), and in fact, much of the work inthis paper derives from our ongoing work in developing a computer system for solvingsuch problems [Nau, 1987, Nau et al. 1988].Example 2. An important class of problem currently being considered by the planningcommunity is that of logistics planning, particularly the planning of a set of deliveries.8



In this case, di�erent plans containing deliveries to the same place may be combinedinto a single trip, saving considerable expense. In addition, an inexpensive deliverytechnique needed for one delivery can be subsumed by one with a greater cost in asecond plan, while still allowing for an overall savings. For example, if a cargo offood could be delivered to a location via a parachute drop, but some other piece ofequipment going to the same site requires a landing, then both items can be deliveredon the same plane (the one that lands) and the extra steps required for the parachutedrop can be deleted.Example 3. Scheduling is another area in which the planning technology is currently beingexploited. As an example, in a machine shop, consider the problem of �nding aminimum-time schedule for satisfying some set of orders for products that can beproduced in the shop. For each order, there may be a set of alternative schedules forproducing it, and each such schedule consists of a set of operations to be performedon various machines.An operation in a schedule is usually associated with a machine for carrying it out. Iftwo or more operations require the same type of set-up, then doing them on the samemachine may reduce the total time required|and thus reduce the total time requiredto complete all the schedules. In this case, we consider these operations as mergeable.Example 4. Another important area of problems related to planning is that of multiple-query optimization in database systems. Let Q = fQ1; Q2; : : : ; Qng be a set of queriesto be processed. Associated with each query Qi is a set of alternate access plansfPi1; Pi2; : : : ; Pikig. Each plan is a set of partially ordered tasks that produces theanswer toQ. For example, one task might be to �nd all employees in some departmentwhose ages are less than 30, and whose salaries are over $50,000. Each task has a cost,and the cost of a plan is the sum of the costs of its tasks. Two tasks can be merged ifthey are the same, or if the result of evaluating one task reduces the cost of evaluatingthe other. The multiple-query optimization problem [Sellis, 1988] is to �nd a globalaccess plan by selecting and merging the individual plans so that the cost of the globalplan is minimized. As described in [Shim et al. 1991], the plan merging techniquesdescribed in this paper provide signi�cantly improved performance in solving thisproblem.In this paper we consider two di�erent cases of the optimal merged plan problem. The�rst case, discussed in Section 4, is where a single plan is generated for each goal (i.e., eachPi contains exactly one plan). In this case, there is a set of restrictions that de�nes a classof problems that is reasonably large and interesting, but that can be solved in low-orderpolynomial time.The second case is where more than one plan may be generated for each goal (i.e., eachPi may contain more than one plan). This necessitates choosing among the plans availablefor each goal in order to �nd an optimal global plan. As discussed in Section 5, this case isNP-hard, but we de�ne a heuristic search technique that works quite well in practice.9



4 One Plan for Each GoalMost planning systems, both domain-independent and domain-dependent, plan only untilthey �nd some set of actions that are expected to satisfy the goal when applied in the initialsituation. Since planning is often extremely di�cult or ine�cient, most planning systemsstop once they have found a single plan for each goal, without trying to �nd other plans aswell. In this section we examine the merging of plans that are created by such planners.4.1 Plan Existence with One Plan per GoalWe start out by looking at the merged plan existence problem with one plan per goal. InSection 3, we pointed out that whether or not there exists a global plan is independentof whether there are any action-merging interactions. Thus, for the merged plan existenceproblem we can ignore all action-merging interactions completely. Thus, suppose we aregiven the following:1. A set of plans S = fP1; P2; : : : ; Pmg containing one plan Pi for each goal Gi. Let nbe the total number of actions in S.2. A set of interactions, I , among the actions in the plans (for example, members of thisset could be statements such as \action a in plan Pi must precede action b in planPj"). Let i be the total number of interactions in this set (note that i = O(n2)).7Unless the interactions prevent the plans in S from being merged into a global plan, theglobal plan is just the union of the individual plans in S, with additional ordering constraintsimposed upon the actions in these plans in order to handle the interactions. This combinedplan is called combine(S), and the following algorithm will produce it.Algorithm 1.1. For each plan P in S, create a graph representing P as a Hasse diagram.8 Also, createa sorted linear index, L, of the actions in the plans. This step can be done in timeO(n2).2. For each action-precedence interaction in the interaction list I , modify the graph bycreating a precedence arc between the actions named in the interaction. For eachsimultaneous-action interaction in the interaction list, create a simultaneous-action arcbetween the actions named in the interaction. For each identical-action interaction inthe interaction list, combine the actions named in the interaction into a single action.If this step is done by sorting the interaction list and then checking it against theindex of actions L, it can be done in time O(i log i+ (i+ n)n) = O(n3).7In practice, of course, there may be more than one list of interactions|but in this case we simply takethe union of the sets.8A Hasse diagram is a standard representation of apartially ordered set (e.g., see [Preparata and Yeh, 1973]). We actually need a slight generalization of aHasse diagram here, since we also have the case where two non-identical actions are constrained to occur atthe same time. 10



3. Check to see whether the graph still represents a consistent partial ordering (this canbe done in time O(n2) using a topological sorting algorithm [Knuth, 1968], with astraightforward extension to handle the simultaneous-action interactions). If it doesnot, then exit with failure (no global plan exists for this problem).Algorithm 1 produces the combined plan combine(S) if it exists, in the case where thereis one plan for each goal Gi. The total time required is O(n3), where n is the total numberof actions in the plans. Note that combine(S), if it exists, is unique, but is only partiallyordered rather than totally ordered. Of course, every valid embedding of combine(S) withina total ordering is guaranteed to be a valid plan, and Step 3 of Algorithm 1 can easily bemodi�ed to produce all of these embeddings if so desired.4.2 Plan Optimality with One Plan per Goal4.2.1 Finding Optimal Plans (with Two Restrictions)In Section 4.1, we showed that if there is just one plan per goal, it is easy to �nd a mergedplan if one exists. However, if we want instead to �nd the optimal merged plan, the problembecomes NP-hard. A proof of this, using a reduction of the shortest common subsequence(SCS of n sequences) is shown in Appendix A. One standard way to address an NP-hardproblem is to look for restricted versions of the problem that are easier to solve. This sectionconsiders two restrictions that make it feasible to look for an optimal merged plan, ratherthan just a consistent one. (In the following section we relax the more limiting of theserestrictions and show it is still possible to generate near-optimal plans.)Restriction 1. If S is a set of plans, then the set of all actions in S may be partitionedinto equivalence classes of actions E1; E2; : : : ; Ep, such that for every set of actions A,the actions in A are mergeable if and only if they are in the same equivalence class.We call these equivalence classes mergeability classes.Restriction 2. If combine(S) exists, then it de�nes a partial order over the mergeabilityclasses de�ned in Restriction 1; i.e., if Ei and Ej are two distinct mergeability classesand if combine(S) requires that some action in Ei occur before some action in Ej , thencombine(S) cannot require that some action in Ej occur before some action in Ei.(This does not rule out the possibility of an action in Ei occurring immediately beforeanother action in Ei; in such a case, the two actions can be merged.) Intuitively,Restriction 2 requires that merging one set of actions in a mergeability class does notpreclude the possibility of merging other actions in the plans. So, for example, theplans in Figure 2 do not satisfy Restriction 2, since merging actions B1 and B2 willpreclude merging actions A1 and A3. Although this restriction is more limiting, itstill allows many interesting problems.Although these restrictions look quite formidable, we believe that they will hold formany interesting problems in domains of interest to AI planning researchers. In fact, webelieve that in most domains in which the interactions are limited as described in thispaper, there exist potentially useful subsets for which these restrictions hold. Revisiting theexamples from Section 3 we give some examples:11



P1: A1 �! B1P2: A2 �! B2 �! A3Figure 2: Merging actions B1 and B2 precludes merging A1 and A3.1. Restrictions 1 and 2 both already hold in the automated manufacturing domain de-scribed in Example 1 of Section 3. In this case, there is a common sense orderingof the machining operations (e.g., don't twist-drill a hole after it has been bored, orthe class of milling operations always precedes the class of drilling operations) that isquite natural to use for this problem. For a more detailed discussion of this problem,see [Karinthi et al., 1992].2. Although many logistics planning problems do not have both restrictions holding,there are interesting problems that do. For example, the \delivery scheduler" ofSection 3 clearly has mergable actions for means of \loading," \transporting," and\delivering" that would fall into mergeability classes { for example, loading a planecannot be merged with delivering a payload. In the special case where all of thepossible merges of \loads" must occur prior to any merges of \transports," which inturn must occur prior to any merges of \delivers," Restrictions 1 and 2 apply. (Themore general case (in which we do not require \loads" before \transports" before\delivers") is handled in Section 4.2.2).3. A job-shop scheduling problem involves selecting a sequence of operations (i.e. aprocess routing) whose execution results in the completion of an order, or severalorders. An order is a description of a product to be made, including its due-date,quality, and material. A scheduling algorithm assigns start and end times as well asresources (machines, human operators, etc.) to each operation.When several orders are submitted, a global schedule for all orders is required to sat-isfy various constraints on time and resouces. Each schedule for an individual ordermight include operations for retrieving all the raw stocks, followed by the machining(see example 1), followed by the distribution of parts through the warehouse and todistribution points. When several schedules are combined, there are many opportu-nities for merging similar operations together to reduce the total time, and improvethe quality, of the global schedule. For example, if machine set-up costs are high,then doing the same type of operation on the same machine can help save the set-upcosts, and reduce the maximal lateness of the global schedule. While a better schedulemight allow some of these operations to be performed in parallel, making this assump-tion might allow us to recognize a lot of important merging opportunities, with lowcomputational costs.4. Finally, restrictions 1 and 2 also hold in the multiple-query optimization problemdiscussed in Example 3 of Section 3. To see this, let P and P 0 be plans for processingqueries Q and Q0, respectively. Let s and t be any two steps of P , and s0 and t0 be12



any two steps of P 0. Then s, t, s0, and t0 are database operations (such as retrieval orjoin operations). Suppose it is necessary for s to precede t. Then it must be the casethat the output of s is needed to produce the input of t. Now, suppose s0 is mergeablewith s, and t0 is mergeable with t. Given the nature of the problem, it follows thatthe output of t0 is not needed to produce the input of s0, so it is not necessary for t0to precede s0. Thus, the mergeability classes form a partial order, in which the classthat contains s and s0 precedes the class that contains t and t0. For a more detaileddiscussion of the multiple-query optimization problem and how plan-merging appliesto it, see [Shim et al. 1991].Suppose the above restrictions are satis�ed, and suppose we are given a set of plans Sand a list of interactions, as was done in Section 4.1. If a global plan exists, then Algorithm1 will produce the global plan combine(S). However, by merging some of the actions incombine(S), it may be possible to �nd other less costly plans. The following algorithm will�nd an optimal (i.e., least costly) plan.Algorithm 2.1. Use Algorithm 1 to produce a digraph representing the combined plan combine(S). Thiscan be done in time O(n3). If Algorithm 1 succeeds, then continue; otherwise, exitwith failure.2. For each mergeability class Ei of actions in combine(S), merge all of the actions inEi. This produces a digraph in which each class of action occurs only once (e.g., seeFigure 3). From Restriction 2, it follows that this is a consistent plan; we call this planmerge(combine(S)). From Restriction 1 and the de�nition of mergeability, it can beproved by induction that this is the least costly plan that can be found by combiningand merging actions in S. Merging the classes will, at worst, require redirecting all ofthe arcs in the digraph|and this can be done in time O(n2).In the case where there is one plan for each goal Gi, Algorithm 2 produces an optimalway to combine and merge these plans if it is possible to combine them at all. The totaltime required is O(n3), where n is the total number of actions in the plans.4.2.2 Finding Near-Optimal Plans (without Restriction 2)Algorithm 2 returns an optimal merged plan for any set of plans that can be combined, aslong as the mergeability classes satisfy the partial order restriction (Restriction 2) While wehave presented examples of problems that satisfy Restriction 2, there are others do not fallin this class. In the \bread and milk" example in Section 1, the actions drive from bakery tohome and drive from home to the dairy belong to one mergeability class, while the actionsdrive from dairy to home and drive from home to the bakery belong to the another class.However, merging two actions in one class precludes merging the actions in the other class.Thus, Restriction 2 is not satis�ed in this example. Similarly, logistics planning problems,such as those described in Example 2 of Section 3, could include numerous deliveries to anumber of di�erent destinations|in which case some \load" steps could occur before some\deliver" steps, but after others. In this case, restriction 2 would clearly be violated.13



C2A2 P2:H H H H� � � �A1B1 C1P1:
H H H H� � � �merge(combine(fP1,P2g)):M(fC1,C2g)M(fA1,A2g)B1Figure 3: Plans P1 and P2 are merged using Algorithm 2, producing P3.In this section, we consider how to merge plans when Restriction 2 is not satis�ed. Aswe demonstrated earlier, if Restriction 2 is not satis�ed then it is NP-hard to �nd an opti-mal merged plan. An alternative option is to �nd an algorithm that produces near-optimalplans. In [Foulser et al. 1992], an algorithm is presented to �nd merged plans in the casewhere the only allowable interactions are action-merging interactions. Results presentedin [Foulser et al. 1992] show that their algorithm is guaranteed to �nd near-optimal plans.Algorithm 3, shown below, generalizes their algorithm to handle the case where there canbe not only action-merging interactions, but also simultaneous action interactions, identi-cal action interactions, and action-precedence interactions. Algorithm 3 makes use of thefollowing functions:1. Given a set of plans S, one can �nd a set of actions with no other actions beforethem. This set of actions is only preceded by the initial state. We denote this set byStart(S).2. Let � be a set of actions in S. Then remove(�; S) is the plan with all actions in �removed, and with all the precedence relations relevant to actions in � removed.3. According to Restriction 1, actions in P can be partitioned into k mergeability classes.For an action � in mergeability class i, we de�ne Type(�) = i.Intuitively, Algorithm 3 operates in a manner similar to Algorithm 2. It �rst invokesAlgorithm 1 to handle all the simultaneous action interactions, identical action interactionsand action-precedence interactions. If the plans can be combined, then it merges the actionsin the resultant plans from start to end. In each iteration of the merging process, actionsin Start(S) that belong to the same mergeability class are merged into a �nal plan. Thealgorithm appears below. 14



Algorithm 3.1. Use Algorithm 1 to produce a digraph representing the combined plan combine(S). Thiscan be done in time O(n3). If Algorithm 1 succeeds, then continue; otherwise, exitwith failure.2. let � := Start(S), R := ; and T := fType(�) j � 2 �g:3. Until T is empty, do3a. Partition � into k classes, such that each class �i contains actions thatare mergeable. Let �l be the subclass with merged action �, such thatcost(�l)� cost(merge(�l)) is maximal.3b. � := remove(�l;�), R := RSf�lg, T := T � Type(�).3c. � := f� j � 2 Start(�) and Type(�) 2 Tg:5. If S is not empty, goto 2.6. In the set of original plans S, merge the actions in each set as given by R.If there are n actions in the plans, with k mergeability classes and m plans, then step1 of this algorithm takes time O(n3), and steps 2 through 5 take time O(kn=m). Step 6redirects all of the arcs in the digraph representing S, which can be done in time O(n2) inthe worst case. Therefore, the total time complexity is O((kn=m) + n3).Consider the \bread and milk" example of Section 1. The two plans for the goals (HAVEBREAD) and (HAVE MILK) are listed below:P1: (go Home Bakery) then (buy Bread) then (go Bakery Home);P2: (go Home Dairy) then (buy Milk) then (go Dairy Home).The action (go Home Bakery) of P1 can be merged with (go Dairy Home) of P2, witha merged action (go Dairy Bakery), since this action is cheaper than the two originalactions, and since the merged plan is still correct. Likewise, (go Bakery Home) of P1 canbe merged with (go Home Dairy) of P2, yielding a merged action (go Bakery Dairy).Thus, the number of mergeability classes is k = 2.Applying Algorithm 3 to this problem, we obtain the following trace:1. Initially, Start(S) = f(go Home Bakery); (go Home Dairy)g, and T = f1; 2g. Sincethe two actions belong to di�erent mergeability classes, the algorithm arbitrarilychooses an action and put it in set R. Thus, R = ff(go Home Bakery)gg. Afterthis step, T = f2g.2. With the �rst action of P1 removed, the algorithm then recomputes Start(S):Start(S) = f(go Bakery Home); (go Home Dairy)gSince both actions belong to the same mergeability class, they are merged, yieldingR = ff(go Home Bakery)g; f(go Bakery Home); (go Home Dairy)ggand T = ;. 15



3. The last iteration of Algorithm 3 picks up the second action in P2, with an incrementR := RSff(go Dairy Home)gg.4. Step 6 of the algorithm merges all action sets in R, resulting in a merged plan:(go Home Bakery) then (buy Bread) then(go Bakery Dairy) then (buy Milk) then (go Dairy Home).In this case, this plan is the optimal merged plan.4.3 Analysis: One plan per goalKorf [Korf, 1987a] has pointed out that given certain assumptions, one can reduce exponen-tially the time required to solve a conjoined-goal planning problem if the individual goalsare independent. Below, we generalize Korf's result. Instead of requiring that the individ-ual goals be completely independent, we relax this requirement by allowing the interactionsde�ned in Section 3|provided, of course, that they do not prevent plans for the individualgoals from being combined into a plan for the conjoined goal. We show that in this case,one can still reduce the time required for planning exponentially.4.3.1 Independent GoalsIn our conjunctive goal G = fG1; G2; : : : ; Gmg, suppose that for each i, the set of actions Airelevant for achieving the goal Gi is completely separate from the set of actions Aj relevantfor achieving any other goal Gj . Then if we decompose the initial state I into substatesI1; I2; : : : ; Im, and plan for each individual goal Gi separately using only the actions in Ai,we can concatenate the plans for all the Gi's to produce a plan for the conjoined goal G. In[Korf, 1987a], Korf discusses this approach in the context of a particular example, namelythe 8-puzzle. Below, we restate Korf's assumptions and results in a more general abstractmanner, allowing us (in Section 4.3.2) to use them to derive a similar result for the case of(restricted) dependent goals.One way to try to �nd a plan for Gi is by doing a state-space search, starting at Ii andperforming actions in Ai as they become applicable. Let bi be the average branching factorfor the state space (i.e., the average number of actions applicable at each node in the space),and di be the length of the shortest plan for Gi. For the analysis in this section, we makethe following assumptions: (1) in order to �nd a plan for Gi, our planner takes worst-casetime O(bdii ), (2) the planner �nds a plan of length O(di), and (3) there is a b > 1 such thatb1 = b2 = : : := bm = b. Then Korf's reasoning gives us the following results:1. Suppose that in order to �nd a plan for G, we plan for the individual goals separatelyand concatenate the resulting plans. The time needed by our planner to �nd a plan forGi is O(bdii ), and the number of actions in the resulting plan forGi is di. Concatenatingthe plans for all the Gi's can be done in time O(d1 + d2 + : : :+ dm). Thus, the timerequired to plan for G in this way isO(bd11 + bd22 + : : :+ bdmm + d1 + d2 + : : :+ dm) = O(bdmax);where dmax = maxi di. 16



2. If we do not decompose the goal G into the individual goals, then each state s inthe state space for G represents a combination of problem states s1; s2; : : : ; sm for theindividual goals G1; G2; : : : ; Gm. Thus, the operators applicable to s include all theoperators applicable to s1; s2; : : : ; sm. Therefore, the branching factor for this spaceis b1 + b2 + : : : + bm = mb. Furthermore, since the conjoined goal can be achievedonly by achieving all of the individual goals, the length of the shortest plan for G isO(d1 + d2 + : : :+ dm). Thus, if we assume (as Korf did) that assumptions (1) and(2) also apply to the conjoined problem, then the time required to �nd a plan for Gwithout goal decomposition will be O((mb)d1+d2+:::+dm).From the above analysis, it follows that in the worst case, planning for G by decomposingit into the individual goals will achieve an exponential amount of reduction in the timerequired to solve the problem, provided that the individual goals are independent (the sameresult that Korf derived for the 8-puzzle in [Korf, 1987a]).4.3.2 Dependent GoalsIn Section 4.3.1, we assumed that all goals were independent. In this section we general-ize this result. In particular, instead of requiring that the operators for each goal Gi becompletely independent of the operators for any other goal Gj , suppose instead that weallow the kinds of interactions described in Section 3, provided that these interactions donot prevent us from combining the plans for the individual goals into a plan for G. Let usleave Korf's other assumptions unchanged. Then we get the following results:1. Suppose that in order to �nd a plan for G, we plan for the individual goals separatelyand combine the resulting plans. As before, the time needed to plan for a singleindividual goal Gi is O(bdii ), and the length of the resulting plan is O(di). We canno longer simply concatenate the resulting plans, but we can combine them usingAlgorithm 2. This can be done in time O((d1 + d2 + : : : + dm)3). Thus, the timerequired to plan for G in this way isO(bd11 + bd22 + : : :+ bdmm + (d1 + d2 + : : :+ dm)3) = O(bdmax);which is the same as before.2. If we do not decompose the goal G into the individual goals, then each state s inthe state space for G represents a combination of problem states s1; s2; : : : ; sm for theindividual goals G1; G2; : : : ; Gm. Because of the interactions, not necessarily all of theoperators applicable to s1; s2; : : : ; sm will be applicable to s, but in the worst case,the branching factor will still be O(mb). Furthermore, since we have assumed thatthe interactions do not prevent us from combining the plans for the individual goalsinto a plan for G, the length of the shortest plan for G is O(d1+d2+ : : :+dm). Thus,as before, the time required to �nd a plan for G without goal decomposition will beO((mb)d1+d2+:::+dm).From the above analysis, it follows that in the worst case, planning for G by decomposingit into the individual goals will achieve an exponential amount of reduction in the timerequired to solve the problem even if the individual goals are not independent, providedthat the dependencies do not prevent the plans for the individual goals from being combined.17



4.4 Summary: One Plan per GoalSo far, we have examined the case in which a single plan9 is generated for each goal, andthese plans are then merged into a single plan for the conjoined goal. In this case, there isan e�cient algorithm to �nd out whether a consistent merged plan exists|but the problemof generating the optimal such plan is NP-hard.By adding further limitations, particularly the restrictions that the mergeable actionsfall into a set of classes and that these classes can be partially ordered, we are able todevelop an e�cient algorithm for producing an optimal merged plan. The resulting plan isguaranteed to be the lowest-cost plan that can be produced by combining the separate plansand merging those actions that can be merged. We argued that several domains currentlybeing explored by planning reseachers admit interesting cases for which these restrictionshold. Furthermore, in situations where the mergeability classes are not partially ordered,we have also presented an algorithm that produces near-optimal merged plans.Finally, we have shown a mathematical analysis of the situation in which separatelygenerated plans are merged into a conjoined plan. We derive a result identical to Korf's formultiple goal plans in which the separate plans are completely independent|an exponentialimprovement is possible. However, we also show that this same exponential improvementis possible even without the assumption of independence, provided that the kinds of inter-actions that occur are only those described in Section 3.5 More than One Plan for Each GoalWhen generating plans, it is often possible within one run of the planner to �nd severalpossible methods for achieving a goal. As possibilities are explored and a plan is generated,adding extra backtracking (i.e. treating goal success as failure) may allow other possibleaction sequences to be found.For example, one idea currently being explored is to let a planner continue working toimprove a plan as long as time permits [Drummond and Bresina, 1990]. The planner cansuccessively generate di�erent (usually improving) plans until some time threshold is ex-ceeded. A similar idea, although less time-dependent, appears in the SIPS process planningsystem, which generates sequences of machining operations for producing machinable parts(cf. Example 2 of Section 3). SIPS �nds multiple plans for each part to be manufactured[Nau, 1987]). Although this system �nds the lowest-cost plans �rst (thus additional plansmay require more extensive machining) and although �nding more than one plan for eachgoal is more complex computationally than �nding just one plan for each goal, SIPS gen-erates alternative plans precisely because they can lead to better overall plans using themerging techniques described in this paper.To understand why generating multiple plans may lead to better results even if theleast costly plan is generated �rst, consider once again the planning situation described inSection 1:John lives one mile from a bakery and one mile from a dairy. The two storesare 1.5 miles apart. John has two goals: to buy bread and to buy milk.9Which, we remind the reader, may be a partial order. No assumption of total ordering was made.18



This time, however, let us add the fact (based on [Wilensky, 1983]) thatJohn lives 1.25 miles from a large grocery store that sells both bread and milk.The best plans for the individual goals involve two separate trips: one to the store and oneto the dairy. However, this would require making two 2-mile trips for a total of 4 miles. Theapproach described in the previous section would allow them to be merged so that Johncould go directly from one store to the other (for a total trip of 1 + 1:5 + 1 = 3:5 miles).A better plan, however, is to use the second-best plan for each goal (going to the grocerystore). Even though taken separately these would generate a worse plan (two 2:5-mile tripsfor a total of 5 miles), they permit more signi�cant merging when combined together (asingle trip of 1:25+1:25 = 2:5 miles). Thus, if the planners for the individual trips deliveredmore than one solution for each goal, this better plan could be found.5.1 Plan Existence with Multiple Plans per GoalIf more than one plan is available for each Gi, then there may be several di�erent possibleidentities for the set S discussed in Section 4.1, and it may be necessary to try severaldi�erent possibilities for S in order to �nd one for which combine(S) exists. This problemis the merged plan existence problem|and in the case where there is more than one planfor each goal, it is NP-hard even when Restrictions 1 and 2 of Section 4.2.1 are satis�ed. Aproof of this using a reduction of CNF-satis�ability is provided in Appendix B.Polynomial-time solutions do exist for several special cases of the merged plan existenceand optimal merged plan problems. For plan existence, one obvious special case is theone discussed in Section 4, in which the number of plans for each goal was taken to be 1.For plan optimization, a special case occurs if the number of di�erent mergeability classesis less than 3. In this case, if no con
icting constraints are allowed to exist, the optimalmerged plan problem can be solved in polynomial time, even if Restriction 2 is lifted. (Forexample, this would occur in Example 2 of Section 3 if there were only two di�erent kindsof machining procedures to be considered).5.2 Plan Optimality with Multiple Plans per Goal5.2.1 Finding Optimal Plans (with the Two Restrictions)Since the merged plan existence problem with more than one plan per goal is NP-hardeven when Restrictions 1 and 2 hold, the same is true of the optimal merged plan problem.However, there is a heuristic approach that performs well in practice when Restrictions 1and 2 hold. As we describe below, this approach involves formulating the problem as astate-space search and solving it using a best-�rst branch-and-bound algorithm.Suppose that we are given the following:1. for each goal Gi, a set of plans Pi containing one or more plans for Gi;2. a list of the interactions among the actions in all of the plans.Our state space is a tree in which each state at the i'th level is a plan for the goalsG1; G2; : : : ; Gi. This tree is de�ned as follows (an example is shown in Figure 4):19



1. the initial state is the empty set;2. for each state S at level i of the tree, the children of S consist of all plans of the formmerge(combine(S; P )) such that P 2 Pi+1 is a plan for Gi+1.Every state at level m is a goal state, for these states are plans for the conjoined goalG = fG1; G2; : : : ; Gmg.
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Figure 4: An example state space. Here Pij is the jth alternate plan for goal Gi.To search the state space, we use the best-�rst branch-and-bound algorithm shownbelow. This algorithm maintains an active (or open) set A that contains all states eligiblefor expansion. To choose which member of A to expand next, the algorithm makes use of afunction L(S) that returns a lower bound on the costs of all descendants of S that are goalstates. It always chooses for expansion the state S 2 A for which L(S) is smallest.10Algorithm 4.A := f;g (A is the branch-and-bound active set)loop remove from A the state S for which L(S) is smallestif S is a goal state then return Selse A := A [ fthe children of SgrepeatIf L(S) is a lower bound on the costs of all descendants of S that are goal states, thenL is admissible, in the sense that Algorithm 4 will be guaranteed to return the optimalsolution. Below we develop a lower bound function that is informed enough to reduce thesearch space dramatically in many cases.10The relationship between best-�rst branch and bound and the A* algorithm is well known[Nau et al. 1984]. The quantities L(S), cost(S), and L(S) � cost(S) used above are analogous to the quan-tities f(S), g(S), and h(S) used in A*. 20



Let S be any state at level i in the state space, and T be any child of S. Then T is theresult of merging S with some plan P 2 Pi+1. Thus, if N(P; S) is the set of all actions inP that cannot be merged with actions in S, thencost(T ) � minP2Pi+1 cost(N(P; S)) + cost(S):Similarly, if U is any child of T , thencost(U) � max( minP2Pi+1 cost(N(P; S)); minP2Pi+2 cost(N(P; S)))+ cost(S):By applying this argument repeatedly, we getcost(V ) � cost(S) + maxj>i minP2Pj cost(N(P; S))for every goal state V below S. Thus L1(S) = cost(S) is an admissible lower bound function(this would correspond to using h � 0 in the A* search algorithm). However, a better lowerbound can be found from the same formula:L2(S) = cost(S) + maxj>i minP2Pj cost(N(P; S))L2 is an admissible lower bound function that is better than L1. However, by making moreintelligent use of the information contained in the sets N(P; S), we can compute an evenbetter lower bound function: the function L3(S) described below.Let S be a state at level i in the state space, and let j; k > i. We say thatPj and Pk are S-connected if either of the following conditions holds: (1) there are plans P 2 Pj and Q 2 Pksuch that N(P; S) and N(Q; S) contain some actions that are mergeable, or (2) there is aset Ph that is S-connected to both Pj and Pk. S-connectedness is an equivalence relation,so we let C1(S); C2(S); : : : ; be the equivalence classes (thus each class Ck(S) contains one ormore of the Pj 's). We refer to these equivalence classes as S-connectedness classes. Havingdone this, we can now de�neL3(S) = cost(S) +Xj maxPk2Cj(S) minP2Pk cost(N(P; S)) (1)It can easily be shown that L3 is a lower bound on the cost of any descendant of S that isa goal state.In order to compute L3(S), we need e�cient ways to compute the sets N(P; S) and thesets Ci(S). These sets can be computed in low-order polynomial time as described below:1. If S is the initial state (i.e., S = ;), then for every plan P in any of the setsP1;P2; : : : ;Pm, N(P; S) = A(P ): If S is at level i in the state space and P is inone of Pi+1;Pi+2; : : : ;Pm, thenN(P; S) = N(P; S 0)� fall actions in P that can be merged with actions in S 0g;where S0 is the parent of S. Thus, by retaining the value computed for N(P; S0), wecan compute the value of N(P; S) in time O(jSj + jP j), where jSj and jP j are thenumbers of actions in S and P , respectively.21



2. Whether or not Pj and Pk are S-connected depends on the actions in the sets N(P; S)such that P is in Pj or Pk. Since each set N(P; S) is a subset of N(P; S 0), this meansthat Pj and Pk cannot be S-connected unless they are S 0-connected. Thus the S-connectedness classes can be computed by splitting the S0-connectedness classes intosubclasses.To demonstrate the application of Algorithm 4, consider the following example from amachining domain. Suppose that the goal is to drill two holes h1 and h2 on a piece of metalstock. To make hole h1, the plan isP1 : (spade-drill h1) then (bore h1).To make hole h2, however, there are two alternative plans:P21: (twist-drill h2) then (bore h2).P22: (spade-drill h2) then (bore h2).Each time one switches to a di�erent kind of machining operation, a di�erent cutting toolmust be mounted. Suppose that the relative costs are as follow: 1 for each tool change,1 for each twist drilling operation, 1 for each boring operation, and 1.5 for each spadedrilling operation. Then the costs of the individual plans are cost(P1) = cost(P21) = 4 andcost(P22) = 4:5.At level 0, the initial state S0 = ;, and the plan sets P1 = fP1g and P2 = fP21; P22gare S-connected since they share tool-changing operations for boring and spade-drilling.At level 1, the state-space has only one state, namely S1 = fP1g. N(P21; S1) =ftwist-drill(h2)g and N(P22; S1) = ;. Thus,L3(S1) = cost(S1) + minfcost(N(P21; S1); N(P22; S1))g = 4:At level 2, the two successor states of S1 are:S21 = fmerge(combine(P1; P21))g; S22 = fmerge(combine(P1; P22))gTheir heuristic estimates are L3(S21) = 7, L3(S22) = 6:5. Thus, the optimal goal state isS22 = (spade-drill h1, h2) then (bore h1 and h2).5.2.2 Finding Near-Optimal Plans (without Restriction 2)The admissibility of the heuristic functions L1; L2 and L3 depends on the optimality of thecost computation of any given state S. When Restriction 2 is not satis�ed, Algorithm 2can no longer be applied for obtaining the optimal solution. But in this case, we can applyAlgorithm 3 to compute the cost of a state, and then use this cost value for computingthe lower bound functions Li used in Algorithm 4. We will refer to this new algorithm asAlgorithm 5.Since Algorithm 5 uses Algorithm 3, and since the plans produced by Algorithm 3 arenear-optimal rather than optimal, the solutions returned by Algorithm 5 will not alwaysbe optimal. However, we can give a bound on how far they are from the optimal solutions.22



Suppose the goal G is the conjunct of a number of other goals G1; G2; : : : ; Gm, and supposethat for each Gi we have a set of plans Pi. Let P be the Cartesian productP = P1 � P2 � : : :�Pm:Then each T 2 P contains one plan for each goal. For each T 2 P , if it is possible tocombine the plans in T , then Algorithm 3 will combine and merge them to produce amerged plan PT . Since Algorithm 5 systematically enumerates the states in the searchspace, it will terminate with a PT if there exists a set T of plans that can be combined. Inaddition, although PT may not be the least costly plan that can be produced by combiningand merging the plans in T , the heuristic functions Li are still lower bounds on the costsof PT 's. As a result, Algorithm 5 will select the least costly plan in fPT jT 2 Pg. In otherwords, Algorithm 5 is optimal with respect to Algorithm 3.We now demonstrate Algorithm 5 on the \bread and milk" example given in the begin-ning of Section 5. The plans for the goal (HAVE BREAD) areP11: (go Home Bakery) then (buy Bread) , then (go Bakery Home);P12: (go Home Grocery) then (buy Bread) , then (go Grocery Home).The plans for the goal (HAVE MILK) areP21: (go Home Dairy) then (buy Milk) then (go Dairy Home).P22: (go Home Grocery) then (buy Milk) then (go Grocery Home).We now trace the operation of Algorithm 5.At level 1, there are two states,S1 = fP11g; S2 = fP12g:Taking the distance between any two locations as the cost of going from one to the other,we have cost(S1) = 2; cost(S2) = 2:5:The heuristic function values areL3(S1) = 2 + minfcost(f(buy Milk)g); cost(P22)g = 2; andL3(S2) = 2:5 + minfcost(P21); cost(f(buy Milk)g)g = 2:5:Thus, Algorithm 4 will expand S1 next.There are two successors of S1.T1 = fP11; P21g; T2 = fP12; P22g:As a result of applying Algorithm 3, the merged plan T1 corresponds to going to the dairyto buy milk, going from the dairy to the bakery to buy bread, and �nally going home fromthe bakery. The cost of this plan is cost(T1) = 1 + 1:5 + 1 = 3:5. T2 corresponds to goingto the bakery and the grocery store on separate trips, giving rise to a cost of 4.5. Sinceboth are more costly than S2, S2 will be expanded next. One successor of S2 combines andmerges P12 with P22, yielding the plan 23



(go Home Grocery) , then (buy Milk and Bread) then (go Grocery Home).In this case, this plan is the optimal merged plan, with a cost of 2:5. However, as wementioned previously, in other cases the merged plan found by the algorithm may notalways be the optimal one.5.3 Analysis: Multiple Plans per GoalIn the worst case, Algorithm 4 takes exponential time. Since the optimal merged planproblem is NP-hard, this is not surprising. A better analysis would be to describe how wellthe search algorithm does in the average case. However, the structure of the optimal mergedplan problem is complicated enough that it is not clear how to characterize what an \averagecase" should be. Furthermore, the \average case" may be di�erent in di�erent applicationareas. Therefore, the best analysis we can o�er is an empirical study of Algorithm 4'sperformance on problems that appear to be typical of the class of problems in which planmerging looks to be most interesting: those where the restrictions described above hold,but aren't overly constraining.As an example of such a domain, we have conducted experiments with the algorithmusing the EFHA process planning system [Thompson, 1989], a domain-dependent plannerbased on the earlier SIPS process planner [Nau, 1987]. The decision to use EFHA was madefor a largely pragmatic reason: as the developers of the code, we had complete access andcould implement the algorithms in precise detail. In addition, we could vary the parametersinvolved in the generation of alternate plans, to make sure they would not be overly uniform.We attempted to design a problem for EFHA to solve that would be typical of the classof problems we would expect the merging techniques to solve, but that wouldn't be overlysimple.The problem we chose was to �nd a least-cost plan for making several holes in a pieceof metal stock (similar to the problem described in Example 2 of Section 3). We generatedspeci�cations for 100 machined holes, randomly varying various hole characteristics suchas depth, diameter, surface �nish, locational tolerance, etc. We used these holes as inputto the EFHA system, allowing it to produce at most 3 plans for each hole. EFHA foundplans for 81 of the holes (for the other 19 the machining requirements were so stringent thatEFHA could not produce any plans using the machining techniques in its knowledge base).The distributions of the hole characteristics were chosen so that the plans generated forthe holes would have the following characteristics:1. a wide selection of plans, rather than lots of duplicate plans for di�erent holes;2. not very many holes having an \obviously best" plan (i.e., a plan that is a sub-planof all the other plans for that hole);3. lots of opportunities to merge actions in di�erent plans;4. a large number of \mergeability tradeo�s"' in choosing which plan to use for a goal.For example, the plan P for the goal Gi may merge well with the actions in some setof plans P for the other goals, and the plan Q may merge well with the actions insome set of plans Q for the other goals|but if neither P nor Q are subsets of each24



Table 1: Experimental results for Algorithm 4 using L3.Number of holes n Nodes in the search space Nodes expanded1 2 12 10 23 34 34 98 45 284 66 852 97 2372 128 6620 169 19480 2210 54679 2811 153467 3812 437460 5113 1268443 6114 3555297 8615 9655279 11016 29600354 17017 80748443 22318 250592571 250other, then it is unclear (without lots of searching) which of P and Q will result inthe best set of merges.The results of the experiments are shown in Table 1. Each entry in the table representsan average result over 450 trials. Each trial was generated by randomly choosing n of the81 holes (duplicate choices were allowed), invoking Algorithm 4 on the plans for these holesusing the lower bounding function L3, and recording how many nodes it expanded in thesearch space. The total cost of each plan was taken to be the sum of the costs of themachining operations in the plan and the costs for changing tools.Figure 5 plots the average number of nodes in the search space and the average numberof nodes expanded by the algorithm (Columns 2 and 3 of Table 1, respectively) , as functionsof the number of holes n (Column 1 of Table 1). As shown in this �gure, these numbersclosely match the functions y = 1:3(2:9n) and y = 1:2(1:4n).We regard the performance of the algorithm as quite good|especially since the testproblem was chosen to be signi�cantly more di�cult than the kind of problem that wouldarise in real-world process planning. In real designs, designers would normally specify holesin a much more regular manner than our random choice of holes, making the merging taskmuch easier. For example, when merging real-world process plans, we doubt that therewould be many of the mergeability tradeo�s mentioned earlier; and without such tradeo�s,the complexity of the algorithm is polynomial rather than exponential.25



Figure 5: Data and curve-�ts for the performance of Algorithm 4.5.4 Summary: Multiple Plans per GoalSection 5 has dealt with the case in which there may be more than one plan for each goal. Inthis case, the problem of generating the lowest-cost conjoined plan is NP-hard, even whenRestrictions 1 and 2 hold. However, we have developed a heuristic search algorithm tosolve the problem when these restrictions hold, and an extension of the heuristic algorithmwhen Restriction 2 does not hold. Our heuristic function for this algorithm (the functionL3) is admissable, and thus the algorithm is guaranteed to �nd optimal merged plans, withrespect to the plan merging algorithm used for merging one set of plans.Since the problem is NP-hard, the worst-case time complexity of the search algorithmis exponential in the worst case. However, our empirical results show that the algorithmperforms quite well for a relatively complex problem in the domain of process planning.26



6 Future WorkOne major limitation of the work described in this paper is that it only concentrates on howto combine plans that have already been developed for individual goals. In the applicationdomains in which we have been working, particularly process planning, we have developeddomain-dependent techniques for developing plans for the individual goals|but an obviousquestion is whether there is a natural extension of our approach for creating plans ratherthan just optimizing existing plans. One way to create plans is to partition a multiple goalinto several subgoals to solve, apply an algorithm for solving each subgoal currently, andthen apply Algorithm 2 for combining and merging the individual plans into a global plan.The procedure multi-goal-plan(G) below is one way to do this:procedure multi-goal-plan(G).G is a set of goals G = G1; G2; :::Gn.for every Gi in GPi := plan-for-goal(Gi)endfor;return merge(combine(P1; P2; :::; Pn));end multi-goal-plan.procedure plan-for-goal(Gi)nondeterministically choose an action A capable of achieving Gifor every precondition Hj of APj = plan-for-goal(Hj)Pj is a partially ordered set of actions that achieves Hjendfor;P := combine(P1; P2; :::; Pn)Q := P followed by Areturn Qend plan-for-goal.The procedure plan-for-goal generates one plan for each goal and then merges them|but since it does this nondeterministically, it will �nd an optimal plan if one exists. If1. there are only action-precedence, simultaneous-action, identical-action and action-merging interactions among the actions of di�erent plans Pi,2. the action-merging interactions satisfy Restrictions 1 and 2 of this paper, and3. there exists at least one plan per goal,then the nondeterministic procedure plan-for-goal(Gi) will halt in polynomial time if aplan exists. In this case the problem is at most NP-hard (as opposed to the traditionalplanning problem, which can be considerably worse [Erol et al., 1991, Erol et al., 1992a,Erol et al., 1992b]. 27



Although it is clear that this algorithm will work, we classify this phase of our research asfuture work, since it is not clear as to either how general the result and how the algorithmwould perform in practice. The key issues, which we plan to address in the future, areto characterize domains where these restrictions hold for plan creation, and to analyzethe worst case and average case behavior of plan generation procedure in these domains.In addition, it may be possible to develop similar techniques for use in planning or planoptimization in cases where the interactions satisfy other kinds of limitations instead of thespeci�c ones described in this paper.Another question that remains to be answered is whether the particular interactionsdiscussed in this paper are too restrictive. For example, there may be reasonable waysto solve the optimal merged plan problem in the case where there are a limited numberof violations of Restriction 2. In addition, relaxing these restrictions will not produceexponential behavior in every case. A further classi�cation of these exceptions may leadto a less restrictive set of limitations. A related problem is how to generalize the kind ofinteractions allowed. For example, if one allows arbitrary deleted-condition interactions,then a similar search algorithm could be used, except that the resulting search tree wouldhave a greater branching factor. Thus, it would appear that in domains where the numberof such con
icts is limited, our approach is still viable.Finally, we believe that a parallel can be drawn between the optimal merged plan prob-lems and constraint satisfaction problems (CSP's) [Freuder, 1982, Mackworth, 1981]. InCSP, there is a set of variables, each with a set of possible values to be assigned to it, and aset of consistency relations between the variables. A solution to a problem using constraintpropagation is to �nd one or all consistent variable assignments. In optimal merged planproblems, each goal can be considered as a variable, and the set of alternate plans for a goalas values for that variable. The consistency relations between the variables are de�ned interms of the action-precedence, identical-action and simultaneous-action interactions.However, there are also major di�erences between CSP and optimal merged plan prob-lems. A solution for an optimal merged plan problem has to be minimal in cost, while mostwell-known algorithms for CSP are based on backtracking algorithms that do not guar-antee optimality|and action-merging interactions, which make it possible to reduce costsof combined plans in optimal merged plan problems, are not considered at all in existingCSP research. Thus, our approach can be considered as an extension of CSP research toinclude the task of achieving optimality. We are currently exploring whether this relation-ship between CSP and plan merging can be exploited either for generating faster solutionsto merging problems (using variants of the CSP techniques) or for guaranteeing optimalsolutions to CSP problems that admit merging interactions.7 ConclusionIn this paper we have been exploring a technique for merging together sets of plans generatedeither by a single planner (used separately for each goal) or by a set of special purposeplanners. Such a technique has been explored in the literature either in the context of searchproblems relating to planning [Korf, 1987a] or using complex mechanisms for integratingthe outputs of a set of planners (as discussed in Section 2).The approach taken in the paper has been to explore the merging of these plans in28



the context of a set of limitations on the interactions between plans. The interactions pro-posed, although by no means fully general, are less restrictive than those of \independence,"\serializability," or \linearity" previously proposed in the literature.We have explored two di�erent variants of this problem. Where a single plan is generatedfor each goal the primary results include:1. The optimal merged plan problem is NP-hard.2. An e�cient algorithm is presented to generate a combined plan from the individualgoals. Without further restrictions, the generated plan cannot be guaranteed to bethe optimal combination.3. By imposing two further restrictions, that we propose as reasonable for many realisticproblem domains, an e�cient algorithm for generating the optimal combined plan ispresented. Furthermore, when the more limiting of the restrictions is not satis�ed, wehave also presented an algorithm that will �nd near-optimal plans.4. An analysis is providing showing that where the interactions are limited as described,an exponential amount of savings over solving a conjoined goal is possible.Where more than one plan may be generated for each goal, the best conjoined plan is oftennot simply the conjunct of the lowest cost individual plans { higher cost plans may allowmore merging. Where multiple plans are generated, the primary results include:1. Even with the restrictions used in the single goal case, the problem is still NP-hard.2. A branch-and-bound heuristic search algorithm is demonstrated for �nding conjoinedplans. An admissable heuristic, and several variants, are proposed to show that thissearch can �nd optimal plans.3. Empirical results are shown demonstrating that in an interesting class of automatedmanufacturing problems, the heuristic algorithm performs quite well, still growingexponentially but by a very small factor.We regard this work as a �rst step, which demonstrates the potential improvementsto planning that can be found by exploiting restrictions on allowable interactions. In theprevious section, we have outlined several possible extensions of this work|but even with-out these, this approach is currently being used successfully in at least one applicationdomain [Nau, 1987, Nau et al. 1988]. As we continue our research into more general formsof limited-interaction planning, we are convinced that this approach has potential for sig-ni�cantly improving the performance of planning systems across a number of additionaldomains.References[Allen, 1983] J.F. Allen, \Maintaining Knowledge about Temporal Intervals," Communica-tions of the ACM, 26, No. 11, pages 832-843, 1983.29
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NP-completeness occurs in the special case where the only kind of goal interaction thatoccurs is the identical-action interaction.It is easy to see that the problem is in NP, so the proof will be complete if the problemis shown to be NP-hard. We do this by reducing the CNF-satis�ability problem to it.Given a set U of variables and a collection C of clauses over U , the CNF-satis�abilityproblem asks whether there is an assignment of truth values to the variables in U thatsatis�es every clause in C. To reduce this problem to the merged plan existence problem,we associate a goal Gi with each clause Ci of C. G is the conjunct of the individual goalsGi. For each literal lij 2 Ci, we create a plan (aij ; bij) for the goal Gi. If lij = lkl, thenwe specify that aij and akl must be identical, and bij and bkl must also be identical. Iflij = :lkl, then we specify that aij and bkl must be identical, and bij and akl must also beidentical.It is easy to see that that this reduction can be computed in polynomial time. It remainsto be shown that (1) if C is satis�able, then there is a consistent global plan for G; and (2)if there is a consistent global plan for G, then C is satis�able. These two statements areproved below.1. Suppose there is an assignment of truth values to the variables in U that satis�esC. Then we construct a set S of plans, one for each goal Gi. For each i, the clauseCi in C contains some literal l�i in Ci whose value is TRUE; we let S contain thecorresponding plan (aij ; bij). Suppose that the plans in S cannot be combined intoa consistent global plan. Then there are two plans pi = (aij ; bij) and pk = (akl; bkl)such that aij and bkl are constrained to be identical, and bij and akl are constrainedto be identical. But this means that l�i = :l�k, violating our requirement that both l�iand l�k have the value TRUE. Thus, the plans in S can be combined into a consistentglobal plan.2. Conversely, suppose there is a set of plans S that can be combined into a consistentglobal plan. Then we assign truth values to the variables in U as follows: for eachvariable v 2 U , if its corresponding plan is in S, then assign it the value TRUE;otherwise, assign it the value FALSE. Since S can be combined into a consistentglobal plan, this means that no variable can receive both the values TRUE and FALSE.Furthermore, since S must contain at least one plan for each goal Gi, at least oneliteral in each clause will receive the value TRUE. Thus, this assignment of truthvalues satis�es C.
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