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Abstract

Generating action sequences to achieve a set of goals is a computationally difficult
task. When multiple goals are present, the problem is even worse. Although many solu-
tions to this problem have been discussed in the literature, practical solutions focus on
the use of restricted mechanisms for planning or the application of domain dependent
heuristics for providing rapid solutions (i.e. domain-dependent planning). One previ-
ously proposed technique for handling multiple goals efficiently is to design a planner
or even a set of planners (usually domain-dependent) that can be used to generate sep-
arate plans for each goal. The outputs are typically either restricted to be independent
and then concatenated into a single global plan, or else they are merged together using
complex heuristic techniques. In this paper we explore a set of limitations, less restric-
tive than the assumption of independence, that still allow for the efficient merging of
separate plans using straightforward algorithmic techniques.

In particular, we demonstrate that for cases where separate plans can be individually
generated, we can define a set of limitations on the allowable interactions between goals
that allow efficient plan merging to occur. We propose a set of restrictions that are
satisfied across a significant class of planning domains. We present algorithms that are
efficient for special cases of multiple plan merging, propose a heuristic search algorithm
that performs well in a more general case (where alternative partially-ordered plans
have been generated for each goal), and describe an empirical study that demonstrates
the efficiency of this search algorithm.
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1 Introduction

Recent work has proved what many researchers have suspected for a long time: that
the so-called “classical Al planning problem” — generating an action sequence to achieve
some conjunction of goals — is computationally intractable [Chapman, 1987, Bylander, 1991,
Erol et al., 1991, Erol et al., 1992a, Erol et al., 1992b]. A number of ways around this prob-
lem are currently being explored, ranging from approaches that use highly restricted mech-
anisms for planning to the application of domain-dependent heuristics for providing rapid
solutions. This latter approach, often referred to as domain-dependent planning, is often
successful at producing plans quickly for the limited domains of applicability, at the cost of
a large knowledge acquisition and engineering effort. However, given the importance of the
planning problem to many commercial and military applications, the cost has often been
deemed justifiable.

The inefficiency of planning becomes even more problematic in the presence of a set of
goals needing to be jointly solved. Most domain-specific planners are too brittle to handle
the numerous interactions that may arise between the actions in the goal conjunction, and
thus an assumption of independence is needed to generate a set of plans from a single
domain-specific system. While much of modern planning research has focused on the issues
of dealing with such interactions in domain-independent ways (for example [Chapman, 1987,
Sacerdoti, 1977, Tate, 1977, Vere, 1983, Wilkins, 1984]!), little work has focused on how
the outcomes of either separate domain-dependent planners, or multiple runs of the same
planner, could be combined into a single global plan.

One piece of work that does relate to this area is Korf’s [Korf, 1987a] analysis of the
decomposition of plans into subgoals in search related planning systems. He shows that if
the subgoals are independent, then solving each one in turn (and essentially concatenating
the results) will divide both the base and the exponent of the complexity function by the
number of subgoals. Where the results are “serializable” —that is, where previous goals can
be protected during the execution of other goals — Korf shows that such clear-cut results
cannot be obtained. However, he goes on to point out that by performing the decomposition
of serializable goals, the branching factor is often reduced significantly since many operations
may be ruled out in protecting goals that have already been achieved.

The major limitation with decomposition, however, is that for most planning problems
the goals and subgoals often interact or conflict with each other in non-serializable ways?.
Unfortunately, it appears impossible to achieve both efficiency and generality in handling
goal /subgoal interactions. Domain-independent planners attempt to handle interactions
that can occur in many possible forms, and thus they sacrifice the gains in efficiency that
might possibly be achieved if some of these forms were disallowed. Domain-dependent
planners can often do better at dealing with goal/subgoal interactions by imposing domain-
dependent restrictions on the kinds of interactions that are allowed—but the restrictions
they use are often too restrictive for the planners to be applicable to other domains.

In this paper we discuss an approach to multiple-goal planning that falls somewhere in
the middle of this trade-off. The approach is to generate plans for each goal individually,

1A review of this work is presented in [Hendler et al. 1990].
?The most famous example of this is the “Sussman anomaly,” in which solving one goal undoes the
independently derived solution to the other.



ignoring how each plan might affect the other goals. The individual plans are then merged
together, handling interactions while this merging is performed. We show that where certain
restrictions hold, these plans can be merged in an optimal manner. In particular, we try
to abstract out the kinds of goal and subgoal interactions that occur in a set of problem
domains, and develop planning techniques capable of performing well in all domains in which
no other kinds of interactions occur. We investigate a set of limitations less restrictive than
either independence or linearity assumptions, although they are not as general as the sorts
of interactions handled in the larger class of “non-linear” planners.

The restrictions that we impose on the goal interactions allow us to develop relatively
efficient techniques for solving multiple-goal planning problems by developing separate plans
for the individual goals, combining these plans to produce a naive plan for the conjoined
goal, and performing optimizations to yield a better combined plan. For example, consider
the following situation (based on [Wilensky, 1983]):

John lives one mile from a bakery and one mile from a dairy. The two stores
are 1.5 miles apart. John has two goals: to buy bread and to buy milk.

The approach usually taken is to conjoin this into the single goal
(GOAL JOHN (AND (HAVE BREAD) (HAVE MILK)))

and to solve the conjunction taking interactions into account. However, supposing that
we have some sort of simple, possibly domain-specific, “trip” planner that can efficiently
generate plans for the individual goals. This planner would develop separate plans for
the two individual goals (drive to the dairy, buy milk, and come home; and drive to the
bakery, buy bread, and come home). If concatenated together, these plans would solve the
conjoined goal, but they’d be ineflicient — we’d make two separate trips. However, the two
trips can be merged into a single trip by replacing the “come home” subaction of the first
trip and the “drive to the dairy” subaction of the second trip with “drive from the dairy to
the bakery.”

As mentioned above, the restrictions required for our approach to be applicable are
limiting, but less so than some of the restrictions proposed in the literature. Qur goal has
been to develop restrictions with the following properties:

1. the restrictions are stateable in a clear and precise way (rather than simply referring
to general knowledge about the characteristics of a particular domain of application);

2. the resulting classes of planning problems are large enough to be useful and interesting;

3. the classes of problems allowed are “well-behaved” enough that planning may be done
with a reasonable degree of efficiency.

In this paper, we identify a set of restrictions that satisfying the above criteria. We
also discuss the complexity of the resultant planning problems, and demonstrate that the
merging of multiple plans can be performed efficiently under these restrictions. We present
algorithms that are efficient for special cases of plan merging, propose a heuristic search
algorithm that performs well in a more general case, and describe an empirical study that
demonstrates the efficiency of this search algorithm.



2 Background

As pointed out in the introduction, one of the major problems with planning is how to handle
interactions among goals or subgoals. One approach that has been used to circumvent this
problem is the condition of linearity. This condition is satisfied in a planning problem if
the individual goals can be achieved sequentially in any arbitrary order®. Farly planners
typically generated plans for the goals as if the planning problem were linear. As an example,
the STRIPS planner [Fikes and Nilsson, 1971] handled compound goals that were conjuncts
of component goals in this manner. Unfortunately, this often led to redundant actions in
the plans generated by STRIPS, and could occasionally get the planner into an endless
cycle of re-introducing and trying to satisfy the same goal over and over again. Thus, to
use such a planner in domains where subgoals or goals interact strongly, it was necessary
to add ways to detect and resolve the conflicts.

Later planners typically were based on the assumption is that it is better not to or-
der operators than to order them arbitrarily. This results in the least-commitment strat-
eqy, in which an order between two operators is not assigned unless absolutely necessary
(for example, this could occur if an action for one goal deletes a precondition of another
goal or subgoal). The plan thus developed is a partially ordered set of actions. Most
of the best-known planning systems (for example, [Chapman, 1987, McDermott, 1977,
Sacerdoti, 1977, Tate, 1977, Vere, 1983, Wilkins, 1984]) generate plans using this technique.

Although these “least commitment” planners are more efficient in handling conflicts than
their linear counterparts, there is still usually too much computation involved; the problem
requires exponential time in most interesting cases [Chapman, 1987]. Such extensive com-
putation is not feasible for planning in many real-world domains. This exponentiality is of
particular difficulty in systems dealing with multiple goals: as more subgoals are added to
a single conjoined goal, the solution time is drastically increased.

One way to tackle this problem 1is to use explicit domain knowledge to
lessen the computational burden of detecting and resolving the goal interac-
tions in planning.  Such domain-dependent planning systems have been built for
many practical problems. Some examples include military command and con-
trol planning applications [Baker and Greenwood, 1987, Glasson and Pomarede, 1987,
Brown and Gaucus, 1987], route planning [Garvey and Wesley, 1987], autonomous vehi-
cle navigation [Berlin et al. 1987, Linden and Owre, 1987], and automated manufacturing
[Chang and Wysk, 1985, Cutkoski and Tenenbaum, 1987, Hayes, 1987, Nau, 1987].

Within the domain-dependent planning world, the issue of integrating the outputs
of several planners has been considered an important one. Two major DARPA ini-
tiatives, the AirLand Battle Management program (cf. [Baker and Greenwood, 1987,
Greenwood et al. 1987]) and the Pilots’ Associate program (cf. [Smith, 1987, Key, 1987]),
for example, were centered around the notion of a set of different domain-specific planners
generating separate plans for aspects of a mission with a central coordinator (generally
viewed as itself some sort of domain-dependent expert system) that could integrate the
outputs. More recently, a similar approach was proposed by Kambhampati and Tenen-
baum [Kambhampati and Tenenbaum, 1990] for dealing with concurrent engineering sys-

®The literature sometimes uses the term “linear” to describe the situation where “some” rather than
“any” ordering will work. A discussion of planning terminology is provided in [Tate et al. 1990].



tems. This work differed from the earlier work in that it allowed other entities than planners
to be included and used a planning framework for the integration, as opposed to a domain-
specific expert.

A separate approach to dealing with inefficiency in the handling of multiple goals focuses
on placing appropriate restrictions on goal and subgoal interactions. Perhaps the best known
example of this is Vere’s DEVISER [Vere, 1983] system which approached the problem by
using temporal scopings associated with goals and actions. Much of the planning behavior
in the DEVISER system involved setting up temporal constraints and comparing them to
the durations of requisite actions. Wilkins” SIPE system [Wilkins, 1984] provided a general
mechanism for handling multiple goals, but also allowed for the integration of specific rules
for limiting the set of interactions to be considered at various times in the planning, and to
allow human operator interaction in eliminating possibilities and making decisions.

In this paper we consider an approach that is less domain-specific than the rule-based
combination of plans generated by separate domain-dependent planners, but is not quite
as general as the solutions envisioned within the fully domain-independent, conjoined goal
planning system framework. Suppose we are given a planning system, comprised of one
or more planners, that can generate (partially-ordered) plans for each of the individual
goals. We make no particular assumptions about the types of planners involved in the
system—they may be domain-dependent or independent as necessary. We examine a set of
goal /subgoal interaction restrictions that, where they apply, allow the efficient merging of
these plans into an optimal global plan. We examine two situations: where a single separate
plan is generated for each goal, and where more than one plan might be generated per goal.
For this approach to be useful, the set of planning problems satisfying our allowable set of
interactions must be broad enough to be useful and interesting—and we argue that this is
the case.

3 Problem Statement

We consider a goal GG to be a collection of predicates describing some desired state of the
world. A plan P for GG is a set of actions A(P), together with a partial ordering on the
order in which these actions must be performed,* such that if the actions are performed in
any order consistent with the ordering constraints, G will be achieved.

We consider each action a to have a cost, denoted by cost(a). We define the cost of
a plan P or a set of actions A to be the sum of the costs of the individual actions; i.e.,
cost(A) = 3", c 4 cost(a) and cost(P) = 37, 4(p) cost(a).

Suppose the goal GG is the conjunct of a number of other goals G1,G,, ..., G, For
the example given in Section 1, (HAVE BREAD) and (HAVE MILK) are both goals for the
conjunctive goal (AND (HAVE BREAD) (HAVE MILK)). Suppose that for each individual goal
G;, we are given a set of plans P; such that each plan in P; can achieve G;. For example,
we might be able to achieve (HAVE BREAD) either by going to the bakery or by going to
the supermarket. One way to try to achieve GG would be to select a plan P; from each set
P;, and try to combine the plans Py, P, ..., Py, into a “global plan” for G. Depending on

*In addition to the usual kind of partial ordering constraint having the form “action a must be done
before action b,” we also allow constraints specifying that two actions must be performed at the same time.



what kinds of interactions occur among the actions in these plans, it might or might not be
possible to combine them successfully.

In the literature, the interactions that occur among the individual goals in a goal con-
junction typically are of two main types: precedence interactions, in which the specific order
between the two goals is critical, and merging interactions, in which resources or actions
may be shared between the goals. Although much of the work in the planning field has
discussed the former, the latter are also important in the combination of separate plans.
Thus, in this paper, we consider both merging and precedence interactions, specifically:

1. Let A be a set of actions {a1,az,...,a,}. Then there may be a merged action M(A)
capable of accomplishing the useful effects of all actions in A, while leaving the re-
sultant plan correct. The cost of M(A) could be either higher or lower than the
sum of the costs of the other actions—but it is only useful to consider merging the
actions in A if this will result in a lower total cost. Thus, although we allow the
case where cost(M(A)) > cost(A), we can ignore it for the purposes of planning. We
consider A to be mergeable if cost(M(A)) < cost(A); and in this case we say that an
action-merging interaction occurs.

One way in which an action-merging interaction can occur is if the actions in A contain
various sub-actions that cancel each other out, in which case the action M(A4) would
correspond to the set of actions in A with these sub-actions removed. If the cost of
each action is the sum of the costs of its sub-actions, then the cost of M(A) is clearly
less than the sum of the costs of the actions in A.

Note that even though a set of actions may be mergeable, it may not always be
possible to merge that set of actions in a given plan. For example, suppose ¢ and a’
are mergeable, but in the plan P, @ must precede b and b must precede a’. Then «
and «’ cannot be merged in P, because this would require b to precede itself.

2. An action-precedence interaction is an interaction that requires that an action a in
some plan P; must occur before an action b in some other plan P;. This can occur, for
example, if b removes one of the preconditions necessary for a, and there is no other
action that can be inserted after b to restore this precondition.

Much previous work in planning has dealt with deleted-condition interactions. Al-
though some action-precedence interactions are expressible as deleted-condition in-
teractions, and conversely, some deleted-condition interactions can be resolved by
imposing precedence orderings, deleted-condition interactions can often be resolved
in other ways as well. Thus, in general, they are more difficult to deal with than
action-precedence interactions. This is a primary limitation with our approach as
compared to traditional domain-independent systems. However, it appears that there
are significant classes of problems where action-precedence interactions are the only
form of deleted-condition interactions that occur.® Examples of such problems appear
later in this section.

3. Plans for different goals may sometimes contain some of the same actions. An
identical-action interaction occurs when an action in one plan must be identical to an

°In fact, the classic “Blocks World” can be reformulated in this way; see [Gupta and Nau, 1992].



action in one of the other plans.

4. Sometimes, two different actions must occur at the same time, and we call such an
interaction a simultaneous-action interaction. An example would be two robotic hands
working together in order to pick up an object. This kind of interaction is different
from an action-merging interaction, because it says that two actions must be merged
to result in a correct plan, whereas in action-merging interactions, the actions do not
have to be merged. It is also different from an identical-action interaction, because
these simultaneous actions are not identical.

How to construct a list of interactions for a given set of plans is a problem-dependent
task. As described above, action-merging interactions can be detected by looking for ac-
tions that contain subactions that cancel each other out. Such situations often occur among
actions that require common resources. It is also possible to detect action-precedence inter-
actions by matching the preconditions and effects of the operators in a plan. However, to
find the set of identical-action and simultaneous-action interactions, one needs more infor-
mation than is contained in the common STRIPS operator representation. The additional
information requires time points or intervals in action definitions [Allen, 1983], or other
such temporal representations. For the purpose of this paper, we will assume that the list
of interactions can be constructed using a combination of the domain knowledge expressed
in the operators, and the plans generated for the goals.

Depending on what interactions appear in a given planning problem, it may or may not
be possible to find plans for the individual goals that can be combined into a global plan.
For example, if P; is the sequence of actions (ay,asz), P is the sequence of actions (by,bs2),
and if as must precede by and b, must precede aq, then there is no way to combine P; and
P;. We define the merged plan existence problem to be the following problem:

Do there exist plans Py € Py, Py € Py, ..., P, € P, that can be merged into a
“global plan” for the conjoined goal G'7

If there is a global plan, then there may be more than one global plan, and different
global plans may have different costs. For example, in the shopping example given in
Section 1, we discussed two global plans:

1. drive to the dairy, buy milk, come home, drive to the bakery, buy bread, and come
home;

2. drive to the dairy, buy milk, drive from the dairy to the bakery, buy bread, and come
home.

We define the optimal merged plan problem to be the following problem:

What is the optimal (i.e., least-cost) plan P that can be found by selecting
plans Py € P, Py € Py, ..., P, € P, and merging them into global plans for
the conjoined goal G'76

5Depending on what plans are in the sets P;, P may or may not be “globally optimal”, i.e., optimal over all
possible plans for the conjoined goal G. It is easy to specify conditions on the sets P; sufficient to guarantee
that P is globally optimal—but with some planning systems (particularly some kinds of domain-dependent
planners) it may not be feasible to test whether these conditions are satisfied.



For each 7, the least costly plan in P; is not necessarily part of the optimal plan P, because
a more costly plan in P; may be mergeable in a better way with the plans for the other
goals. For example, Figure 1 shows the results of merging a plan P; with two different plans
Py and Pj.

Py [C1}—[D1]

P): [A2]—[B2]—[D2]

P [AL]—[B1]

[AL}—[B1]
[C1}—{D1]

merge(combine({ Py, P2 })):

merge(combine({P1,P4})): | M({A1,A2})|—|M({B1,B2})|—[D2]

Figure 1: Merging Py and P} results in a plan with fewer steps than merging P; and Ps.

Problems involving the optimization of multiple-goal plans occur in a number of prob-
lem domains currently being explored by the planning community, such as manufacturing
planning, logistics planning, factory scheduling. In these domains, multiple goals must be
achieved within the context of a set of constraints (deadlines, machining requirements, etc.)
The general class of all such problems clearly will not fit within the confines of the restric-
tions specified in this paper (for example, we have not yet extended our approach to deal
with scheduling deadlines), but significant and useful classes of problems can be found that
satisfy these restrictions. Several specific examples are given below.

Example 1. During the last several years, much work has been done in the area of process
planning for manufacturing. As an example, consider the problem of using machining
operations to make holes in a metal block. Several different kinds of hole-creation
operations are available (twist-drilling, spade-drilling, gun-drilling, etc.), as well as
several different kinds of hole-improvement operations (reaming, boring, grinding,
etc.). Each time one switches to a different kind of operation or to a hole of a differ-
ent diameter, one must mount a different cutting tool on the machine tool. If the same
machining operation is to be performed on two different holes of the same diameter,
then these two operations can be merged by omitting the task of changing the cutting
tool. This and several other similar manufacturing problems are of practical signifi-
cance (see [Chang and Wysk, 1985, Hayes, 1987]), and in fact, much of the work in
this paper derives from our ongoing work in developing a computer system for solving
such problems [Nau, 1987, Nau et al. 1988].

Example 2. An important class of problem currently being considered by the planning
community is that of logistics planning, particularly the planning of a set of deliveries.



In this case, different plans containing deliveries to the same place may be combined
into a single trip, saving considerable expense. In addition, an inexpensive delivery
technique needed for one delivery can be subsumed by one with a greater cost in a
second plan, while still allowing for an overall savings. For example, if a cargo of
food could be delivered to a location via a parachute drop, but some other piece of
equipment going to the same site requires a landing, then both items can be delivered
on the same plane (the one that lands) and the extra steps required for the parachute
drop can be deleted.

Example 3. Scheduling is another area in which the planning technology is currently being
exploited. As an example, in a machine shop, consider the problem of finding a
minimum-time schedule for satisfying some set of orders for products that can be
produced in the shop. For each order, there may be a set of alternative schedules for
producing it, and each such schedule consists of a set of operations to be performed
on various machines.

An operation in a schedule is usually associated with a machine for carrying it out. If
two or more operations require the same type of set-up, then doing them on the same
machine may reduce the total time required—and thus reduce the total time required
to complete all the schedules. In this case, we consider these operations as mergeable.

Example 4. Another important area of problems related to planning is that of multiple-
query optimization in database systems. Let Q@ = {Q1,Q2,...,Q,} be a set of queries
to be processed. Associated with each query ); is a set of alternate access plans
{Pi, P2, ..., Pi,;}. Each plan is a set of partially ordered tasks that produces the
answer to (). For example, one task might be to find all employees in some department
whose ages are less than 30, and whose salaries are over $50,000. Each task has a cost,
and the cost of a plan is the sum of the costs of its tasks. Two tasks can be merged if
they are the same, or if the result of evaluating one task reduces the cost of evaluating
the other. The multiple-query optimization problem [Sellis, 1988] is to find a global
access plan by selecting and merging the individual plans so that the cost of the global
plan is minimized. As described in [Shim et al. 1991], the plan merging techniques
described in this paper provide significantly improved performance in solving this
problem.

In this paper we consider two different cases of the optimal merged plan problem. The
first case, discussed in Section 4, is where a single plan is generated for each goal (i.e., each
P; contains exactly one plan). In this case, there is a set of restrictions that defines a class
of problems that is reasonably large and interesting, but that can be solved in low-order
polynomial time.

The second case is where more than one plan may be generated for each goal (i.e., each
P; may contain more than one plan). This necessitates choosing among the plans available
for each goal in order to find an optimal global plan. As discussed in Section 5, this case is
NP-hard, but we define a heuristic search technique that works quite well in practice.



4 One Plan for Each Goal

Most planning systems, both domain-independent and domain-dependent, plan only until
they find some set of actions that are expected to satisfy the goal when applied in the initial
situation. Since planning is often extremely difficult or inefficient, most planning systems
stop once they have found a single plan for each goal, without trying to find other plans as
well. In this section we examine the merging of plans that are created by such planners.

4.1 Plan Existence with One Plan per Goal

We start out by looking at the merged plan existence problem with one plan per goal. In
Section 3, we pointed out that whether or not there exists a global plan is independent
of whether there are any action-merging interactions. Thus, for the merged plan existence
problem we can ignore all action-merging interactions completely. Thus, suppose we are
given the following:

1. A set of plans S = {Py, Ps,..., P} containing one plan P; for each goal G;. Let n
be the total number of actions in 5.

2. A set of interactions, I, among the actions in the plans (for example, members of this
set could be statements such as “action @ in plan P; must precede action b in plan
P;”). Let i be the total number of interactions in this set (note that i = O(n?)).”

Unless the interactions prevent the plans in 5 from being merged into a global plan, the
global plan is just the union of the individual plans in 5, with additional ordering constraints
imposed upon the actions in these plans in order to handle the interactions. This combined
plan is called combine()5), and the following algorithm will produce it.

Algorithm 1.

1. For each plan P in S, create a graph representing P as a Hasse diagram.® Also, create
a sorted linear index, L, of the actions in the plans. This step can be done in time

O(n?).

2. For each action-precedence interaction in the interaction list I, modify the graph by
creating a precedence arc between the actions named in the interaction. For each
simultaneous-action interaction in the interaction list, create a simultaneous-action arc
between the actions named in the interaction. For each identical-action interaction in
the interaction list, combine the actions named in the interaction into a single action.
If this step is done by sorting the interaction list and then checking it against the
index of actions L, it can be done in time O(ilogi 4 (i + n)n) = O(n?).

"In practice, of course, there may be more than one list of interactions—but in this case we simply take
the union of the sets.

8A Hasse diagram is a standard representation of a
partially ordered set (e.g., see [Preparata and Yeh, 1973]). We actually need a slight generalization of a
Hasse diagram here, since we also have the case where two non-identical actions are constrained to occur at
the same time.
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3. Check to see whether the graph still represents a consistent partial ordering (this can
be done in time O(n?) using a topological sorting algorithm [Knuth, 1968], with a
straightforward extension to handle the simultaneous-action interactions). If it does
not, then exit with failure (no global plan exists for this problem).

Algorithm 1 produces the combined plan combine(.9) if it exists, in the case where there
is one plan for each goal (7;. The total time required is O(n?), where n is the total number
of actions in the plans. Note that combine()5), if it exists, is unique, but is only partially
ordered rather than totally ordered. Of course, every valid embedding of combine(.S') within
a total ordering is guaranteed to be a valid plan, and Step 3 of Algorithm 1 can easily be
modified to produce all of these embeddings if so desired.

4.2 Plan Optimality with One Plan per Goal
4.2.1 Finding Optimal Plans (with Two Restrictions)

In Section 4.1, we showed that if there is just one plan per goal, it is easy to find a merged
plan if one exists. However, if we want instead to find the optimal merged plan, the problem
becomes NP-hard. A proof of this, using a reduction of the shortest common subsequence
(SCS of n sequences) is shown in Appendix A. One standard way to address an NP-hard
problem is to look for restricted versions of the problem that are easier to solve. This section
considers two restrictions that make it feasible to look for an optimal merged plan, rather
than just a consistent one. (In the following section we relax the more limiting of these
restrictions and show it is still possible to generate near-optimal plans.)

Restriction 1. If 5 is a set of plans, then the set of all actions in S may be partitioned
into equivalence classes of actions Ey, Es, ..., E,, such that for every set of actions A,
the actions in A are mergeable if and only if they are in the same equivalence class.
We call these equivalence classes mergeability classes.

Restriction 2. If combine(\5) exists, then it defines a partial order over the mergeability
classes defined in Restriction 1; i.e., if F; and F; are two distinct mergeability classes
and if combine(.9) requires that some action in F; occur before some action in £}, then
combine()9') cannot require that some action in E; occur before some action in F;.
(This does not rule out the possibility of an action in F; occurring immediately before
another action in £;; in such a case, the two actions can be merged.) Intuitively,
Restriction 2 requires that merging one set of actions in a mergeability class does not
preclude the possibility of merging other actions in the plans. So, for example, the
plans in Figure 2 do not satisfy Restriction 2, since merging actions B1 and B2 will
preclude merging actions A1 and A3. Although this restriction is more limiting, it
still allows many interesting problems.

Although these restrictions look quite formidable, we believe that they will hold for
many interesting problems in domains of interest to Al planning researchers. In fact, we
believe that in most domains in which the interactions are limited as described in this
paper, there exist potentially useful subsets for which these restrictions hold. Revisiting the
examples from Section 3 we give some examples:
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Pi: [At]—[Bi]

Py [A2]—[B2]—[A3]

Figure 2: Merging actions By and By precludes merging Ay and As.

1. Restrictions 1 and 2 both already hold in the automated manufacturing domain de-
scribed in Example 1 of Section 3. In this case, there is a common sense ordering
of the machining operations (e.g., don’t twist-drill a hole after it has been bored, or
the class of milling operations always precedes the class of drilling operations) that is
quite natural to use for this problem. For a more detailed discussion of this problem,
see [Karinthi et al., 1992].

2. Although many logistics planning problems do not have both restrictions holding,
there are interesting problems that do. For example, the “delivery scheduler” of
Section 3 clearly has mergable actions for means of “loading,” “transporting,” and
“delivering” that would fall into mergeability classes — for example, loading a plane
cannot be merged with delivering a payload. In the special case where all of the
possible merges of “loads” must occur prior to any merges of “transports,”
turn must occur prior to any merges of “delivers,” Restrictions 1 and 2 apply. (The
more general case (in which we do not require “loads” before “transports” before
“delivers”) is handled in Section 4.2.2).

which in

3. A job-shop scheduling problem involves selecting a sequence of operations (i.e. a
process routing) whose execution results in the completion of an order, or several
orders. An order is a description of a product to be made, including its due-date,
quality, and material. A scheduling algorithm assigns start and end times as well as
resources (machines, human operators, etc.) to each operation.

When several orders are submitted, a global schedule for all orders is required to sat-
isfy various constraints on time and resouces. Each schedule for an individual order
might include operations for retrieving all the raw stocks, followed by the machining
(see example 1), followed by the distribution of parts through the warehouse and to
distribution points. When several schedules are combined, there are many opportu-
nities for merging similar operations together to reduce the total time, and improve
the quality, of the global schedule. For example, if machine set-up costs are high,
then doing the same type of operation on the same machine can help save the set-up
costs, and reduce the mazimal lateness of the global schedule. While a better schedule
might allow some of these operations to be performed in parallel, making this assump-
tion might allow us to recognize a lot of important merging opportunities, with low
computational costs.

4. Finally, restrictions 1 and 2 also hold in the multiple-query optimization problem
discussed in Example 3 of Section 3. To see this, let P and P’ be plans for processing
queries () and @', respectively. Let s and ¢ be any two steps of P, and s’ and ¢’ be
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any two steps of P’. Then s, ¢, s, and ¢’ are database operations (such as retrieval or
join operations). Suppose it is necessary for s to precede ¢t. Then it must be the case
that the output of s is needed to produce the input of t. Now, suppose s’ is mergeable
with s, and ¢ is mergeable with ¢. Given the nature of the problem, it follows that
the output of ¢ is not needed to produce the input of s’, so it is not necessary for ¢’
to precede s’. Thus, the mergeability classes form a partial order, in which the class
that contains s and s’ precedes the class that contains ¢ and #’. For a more detailed
discussion of the multiple-query optimization problem and how plan-merging applies
to it, see [Shim et al. 1991].

Suppose the above restrictions are satisfied, and suppose we are given a set of plans 5
and a list of interactions, as was done in Section 4.1. If a global plan exists, then Algorithm
1 will produce the global plan combine(5). However, by merging some of the actions in
combine()9), it may be possible to find other less costly plans. The following algorithm will
find an optimal (i.e., least costly) plan.

Algorithm 2.

1. Use Algorithm 1 to produce a digraph representing the combined plan combine(5). This
can be done in time O(n?). If Algorithm 1 succeeds, then continue; otherwise, exit
with failure.

2. For each mergeability class F; of actions in combine(.S), merge all of the actions in
F;. This produces a digraph in which each class of action occurs only once (e.g., see
Figure 3). From Restriction 2, it follows that this is a consistent plan; we call this plan
merge(combine(5)). From Restriction 1 and the definition of mergeability, it can be
proved by induction that this is the least costly plan that can be found by combining
and merging actions in 5. Merging the classes will, at worst, require redirecting all of
the arcs in the digraph-—and this can be done in time O(n?).

In the case where there is one plan for each goal G, Algorithm 2 produces an optimal
way to combine and merge these plans if it is possible to combine them at all. The total
time required is O(n?), where n is the total number of actions in the plans.

4.2.2 Finding Near-Optimal Plans (without Restriction 2)

Algorithm 2 returns an optimal merged plan for any set of plans that can be combined, as
long as the mergeability classes satisfy the partial order restriction (Restriction 2) While we
have presented examples of problems that satisfy Restriction 2, there are others do not fall
in this class. In the “bread and milk” example in Section 1, the actions drive from bakery to
home and drive from home to the dairy belong to one mergeability class, while the actions
drive from dairy to home and drive from home to the bakery belong to the another class.
However, merging two actions in one class precludes merging the actions in the other class.
Thus, Restriction 2 is not satisfied in this example. Similarly, logistics planning problems,
such as those described in Example 2 of Section 3, could include numerous deliveries to a
number of different destinations—in which case some “load” steps could occur before some
“deliver” steps, but after others. In this case, restriction 2 would clearly be violated.

13



P1: P2:

merge(combine({P1,P2})):

M({A1,A2})

M({C1,C2})

Bl

Figure 3: Plans P; and P, are merged using Algorithm 2, producing Ps.

In this section, we consider how to merge plans when Restriction 2 is not satisfied. As
we demonstrated earlier, if Restriction 2 is not satisfied then it is NP-hard to find an opti-
mal merged plan. An alternative option is to find an algorithm that produces near-optimal
plans. In [Foulser et al. 1992], an algorithm is presented to find merged plans in the case
where the only allowable interactions are action-merging interactions. Results presented
in [Foulser et al. 1992] show that their algorithm is guaranteed to find near-optimal plans.
Algorithm 3, shown below, generalizes their algorithm to handle the case where there can
be not only action-merging interactions, but also simultaneous action interactions, identi-
cal action interactions, and action-precedence interactions. Algorithm 3 makes use of the
following functions:

1. Given a set of plans 5, one can find a set of actions with no other actions before
them. This set of actions is only preceded by the initial state. We denote this set by
Start(.9).

2. Let ¥ be a set of actions in §. Then remove(X, 5) is the plan with all actions in ¥
removed, and with all the precedence relations relevant to actions in ¥ removed.

3. According to Restriction 1, actions in P can be partitioned into & mergeability classes.
For an action a in mergeability class i, we define Type(a) = 1.

Intuitively, Algorithm 3 operates in a manner similar to Algorithm 2. It first invokes
Algorithm 1 to handle all the simultaneous action interactions, identical action interactions
and action-precedence interactions. If the plans can be combined, then it merges the actions
in the resultant plans from start to end. In each iteration of the merging process, actions
in Start(5) that belong to the same mergeability class are merged into a final plan. The
algorithm appears below.

14



Algorithm 3.

1. Use Algorithm 1 to produce a digraph representing the combined plan combine(5). This
can be done in time O(n?). If Algorithm 1 succeeds, then continue; otherwise, exit

with failure.
2. let ¥ := Start(,9), R := () and T := {Type(a) | @ € T}.
3. Until T is empty, do

3a. Partition X into £ classes, such that each class Y; contains actions that
are mergeable. Let Y; be the subclass with merged action p, such that
cost(X;) — cost(merge(X;)) is maximal.

3b. Il := remove(X;, 1I), R := RU{X:}, T := T — Type(p).

3c. ¥ :={a|a € Start(Il) and Type(a) € T'}.

5. If 5 is not empty, goto 2.

6. In the set of original plans 5, merge the actions in each set as given by R.

If there are n actions in the plans, with k& mergeability classes and m plans, then step
1 of this algorithm takes time O(n®), and steps 2 through 5 take time O(kn/m). Step 6
redirects all of the arcs in the digraph representing 5, which can be done in time O(n?) in
the worst case. Therefore, the total time complexity is O((kn/m) + n®).

Consider the “bread and milk” example of Section 1. The two plans for the goals (HAVE
BREAD) and (HAVE MILK) are listed below:

Py (go Home Bakery) then (buy Bread) then (go Bakery Home);
Ps: (go Home Dairy) then (buy Milk) then (go Dairy Home).

The action (go Home Bakery) of P; can be merged with (go Dairy Home) of P, with
a merged action (go Dairy Bakery), since this action is cheaper than the two original
actions, and since the merged plan is still correct. Likewise, (go Bakery Home) of P; can
be merged with (go Home Dairy) of P,, yielding a merged action (go Bakery Dairy).
Thus, the number of mergeability classes is k = 2.

Applying Algorithm 3 to this problem, we obtain the following trace:

1. Initially, Start(5) = {(go Home Bakery), (go Home Dairy)}, and 7' = {1,2}. Since
the two actions belong to different mergeability classes, the algorithm arbitrarily
chooses an action and put it in set R. Thus, R = {{(go Home Bakery)}}. After
this step, T' = {2}.

2. With the first action of P; removed, the algorithm then recomputes Start(5):
Start(5) = {(go Bakery Home), (go Home Dairy)}
Since both actions belong to the same mergeability class, they are merged, yielding
R = {{(go Home Bakery)},{(go Bakery Home), (go Home Dairy)}}

and T = (.
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3. The last iteration of Algorithm 3 picks up the second action in P, with an increment

R := RU{{(go Dairy Home) }}.
4. Step 6 of the algorithm merges all action sets in R, resulting in a merged plan:

(go Home Bakery) then (buy Bread) then
(go Bakery Dairy) then (buy Milk) then (go Dairy Home).

In this case, this plan is the optimal merged plan.

4.3 Analysis: One plan per goal

Korf [Korf, 1987a] has pointed out that given certain assumptions, one can reduce exponen-
tially the time required to solve a conjoined-goal planning problem if the individual goals
are independent. Below, we generalize Korf’s result. Instead of requiring that the individ-
ual goals be completely independent, we relax this requirement by allowing the interactions
defined in Section 3—provided, of course, that they do not prevent plans for the individual
goals from being combined into a plan for the conjoined goal. We show that in this case,
one can still reduce the time required for planning exponentially.

4.3.1 Independent Goals

In our conjunctive goal G = {G,Go, ..., G}, suppose that for each ¢, the set of actions A;
relevant for achieving the goal (7; is completely separate from the set of actions A; relevant
for achieving any other goal ;. Then if we decompose the initial state I into substates
I, 15, ..., I, and plan for each individual goal G; separately using only the actions in A;,
we can concatenate the plans for all the GG;’s to produce a plan for the conjoined goal G. In
[Korf, 1987a], Korf discusses this approach in the context of a particular example, namely
the 8-puzzle. Below, we restate Korf’s assumptions and results in a more general abstract
manner, allowing us (in Section 4.3.2) to use them to derive a similar result for the case of
(restricted) dependent goals.

One way to try to find a plan for G; is by doing a state-space search, starting at I; and
performing actions in A; as they become applicable. Let b; be the average branching factor
for the state space (i.e., the average number of actions applicable at each node in the space),
and d; be the length of the shortest plan for ;. For the analysis in this section, we make
the following assumptions: (1) in order to find a plan for G, our planner takes worst-case
time O(b"), (2) the planner finds a plan of length O(d;), and (3) there is a b > 1 such that
by =by =...=b,, =b. Then Korf’s reasoning gives us the following results:

1. Suppose that in order to find a plan for &G, we plan for the individual goals separately
and concatenate the resulting plans. The time needed by our planner to find a plan for
G, is O(b;li), and the number of actions in the resulting plan for GG; is d;. Concatenating
the plans for all the GG;’s can be done in time O(dy 4+ dz + ...+ d,,). Thus, the time
required to plan for G in this way is

O +0% + .. 408 4 dy +dy+ ...+ dyp) = O(bTmax),

where dp.x = max; d;.
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2. If we do not decompose the goal & into the individual goals, then each state s in
the state space for GG represents a combination of problem states sy, $5,...,,, for the
individual goals Gy,Ga,...,G . Thus, the operators applicable to s include all the
operators applicable to sy, s5,...,5,. Therefore, the branching factor for this space
is by + by + ...+ b, = mb. Furthermore, since the conjoined goal can be achieved
only by achieving all of the individual goals, the length of the shortest plan for G is
O(dy +da + ...+ dy,). Thus, if we assume (as Korf did) that assumptions (1) and
(2) also apply to the conjoined problem, then the time required to find a plan for G

without goal decomposition will be O((mb)dr+d2t-tdm),

From the above analysis, it follows that in the worst case, planning for G by decomposing
it into the individual goals will achieve an exponential amount of reduction in the time
required to solve the problem, provided that the individual goals are independent (the same
result that Korf derived for the 8-puzzle in [Korf, 1987a]).

4.3.2 Dependent Goals

In Section 4.3.1, we assumed that all goals were independent. In this section we general-
ize this result. In particular, instead of requiring that the operators for each goal G; be
completely independent of the operators for any other goal &, suppose instead that we
allow the kinds of interactions described in Section 3, provided that these interactions do
not prevent us from combining the plans for the individual goals into a plan for G. Let us
leave Korf’s other assumptions unchanged. Then we get the following results:

1. Suppose that in order to find a plan for &G, we plan for the individual goals separately
and combine the resulting plans. As before, the time needed to plan for a single
individual goal G; is O(b%), and the length of the resulting plan is O(d;). We can
no longer simply concatenate the resulting plans, but we can combine them using
Algorithm 2. This can be done in time O((dy + d2 + ...+ dy,)?). Thus, the time

required to plan for G in this way is
O + 09 + ...+ b + (dy +da + ...+ dy)®) = O(b™),
which is the same as before.

2. If we do not decompose the goal & into the individual goals, then each state s in
the state space for GG represents a combination of problem states sy, $5,...,,, for the
individual goals Gy, G, ..., G,,. Because of the interactions, not necessarily all of the
operators applicable to sq,s2,...,s,, will be applicable to s, but in the worst case,
the branching factor will still be O(mb). Furthermore, since we have assumed that
the interactions do not prevent us from combining the plans for the individual goals
into a plan for GG, the length of the shortest plan for G'is O(dy; +d3+ ...+ d,;,). Thus,
as before, the time required to find a plan for G without goal decomposition will be
O((mb)d1+d2+"'+dm).

From the above analysis, it follows that in the worst case, planning for G by decomposing
it into the individual goals will achieve an exponential amount of reduction in the time
required to solve the problem even if the individual goals are not independent, provided
that the dependencies do not prevent the plans for the individual goals from being combined.
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4.4 Summary: One Plan per Goal

So far, we have examined the case in which a single plan® is generated for each goal, and
these plans are then merged into a single plan for the conjoined goal. In this case, there is
an efficient algorithm to find out whether a consistent merged plan exists—but the problem
of generating the optimal such plan is NP-hard.

By adding further limitations, particularly the restrictions that the mergeable actions
fall into a set of classes and that these classes can be partially ordered, we are able to
develop an efficient algorithm for producing an optimal merged plan. The resulting plan is
guaranteed to be the lowest-cost plan that can be produced by combining the separate plans
and merging those actions that can be merged. We argued that several domains currently
being explored by planning reseachers admit interesting cases for which these restrictions
hold. Furthermore, in situations where the mergeability classes are not partially ordered,
we have also presented an algorithm that produces near-optimal merged plans.

Finally, we have shown a mathematical analysis of the situation in which separately
generated plans are merged into a conjoined plan. We derive a result identical to Korf{’s for
multiple goal plans in which the separate plans are completely independent—an exponential
improvement is possible. However, we also show that this same exponential improvement
is possible even without the assumption of independence, provided that the kinds of inter-
actions that occur are only those described in Section 3.

5 More than One Plan for Each Goal

When generating plans, it is often possible within one run of the planner to find several
possible methods for achieving a goal. As possibilities are explored and a plan is generated,
adding extra backtracking (i.e. treating goal success as failure) may allow other possible
action sequences to be found.

For example, one idea currently being explored is to let a planner continue working to
improve a plan as long as time permits [Drummond and Bresina, 1990]. The planner can
successively generate different (usually improving) plans until some time threshold is ex-
ceeded. A similar idea, although less time-dependent, appears in the SIPS process planning
system, which generates sequences of machining operations for producing machinable parts
(cf. Example 2 of Section 3). SIPS finds multiple plans for each part to be manufactured
[Nau, 1987]). Although this system finds the lowest-cost plans first (thus additional plans
may require more extensive machining) and although finding more than one plan for each
goal is more complex computationally than finding just one plan for each goal, SIPS gen-
erates alternative plans precisely because they can lead to better overall plans using the
merging techniques described in this paper.

To understand why generating multiple plans may lead to better results even if the
least costly plan is generated first, consider once again the planning situation described in
Section 1:

John lives one mile from a bakery and one mile from a dairy. The two stores
are 1.5 miles apart. John has two goals: to buy bread and to buy milk.

®Which, we remind the reader, may be a partial order. No assumption of total ordering was made.
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This time, however, let us add the fact (based on [Wilensky, 1983]) that
John lives 1.25 miles from a large grocery store that sells both bread and milk.

The best plans for the individual goals involve two separate trips: one to the store and one
to the dairy. However, this would require making two 2-mile trips for a total of 4 miles. The
approach described in the previous section would allow them to be merged so that John
could go directly from one store to the other (for a total trip of 1 + 1.5 4+ 1 = 3.5 miles).
A better plan, however, is to use the second-best plan for each goal (going to the grocery
store). Even though taken separately these would generate a worse plan (two 2.5-mile trips
for a total of 5 miles), they permit more significant merging when combined together (a
single trip of 1.2541.25 = 2.5 miles). Thus, if the planners for the individual trips delivered
more than one solution for each goal, this better plan could be found.

5.1 Plan Existence with Multiple Plans per Goal

If more than one plan is available for each G;, then there may be several different possible
identities for the set S5 discussed in Section 4.1, and it may be necessary to try several
different possibilities for S in order to find one for which combine()5) exists. This problem
is the merged plan existence problem—and in the case where there is more than one plan
for each goal, it is NP-hard even when Restrictions 1 and 2 of Section 4.2.1 are satisfied. A
proof of this using a reduction of CNF-satisfiability is provided in Appendix B.

Polynomial-time solutions do exist for several special cases of the merged plan existence
and optimal merged plan problems. For plan existence, one obvious special case is the
one discussed in Section 4, in which the number of plans for each goal was taken to be 1.
For plan optimization, a special case occurs if the number of different mergeability classes
is less than 3. In this case, if no conflicting constraints are allowed to exist, the optimal
merged plan problem can be solved in polynomial time, even if Restriction 2 is lifted. (For
example, this would occur in Example 2 of Section 3 if there were only two different kinds
of machining procedures to be considered).

5.2 Plan Optimality with Multiple Plans per Goal

5.2.1 Finding Optimal Plans (with the Two Restrictions)

Since the merged plan existence problem with more than one plan per goal is NP-hard
even when Restrictions 1 and 2 hold, the same is true of the optimal merged plan problem.
However, there is a heuristic approach that performs well in practice when Restrictions 1
and 2 hold. As we describe below, this approach involves formulating the problem as a
state-space search and solving it using a best-first branch-and-bound algorithm.

Suppose that we are given the following;:

1. for each goal G, a set of plans P; containing one or more plans for G;
2. a list of the interactions among the actions in all of the plans.
Our state space is a tree in which each state at the 2’th level is a plan for the goals

G1,Gq,...,G,. This tree is defined as follows (an example is shown in Figure 4):
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1. the initial state is the empty set;

2. for each state S at level 7 of the tree, the children of 5 consist of all plans of the form
merge(combine(9, P)) such that P € P;yq is a plan for Gi4q.

Every state at level m is a goal state, for these states are plans for the conjoined goal

G = {G17G27"'7Gm}‘

P1y,P21 P11, P2g P1y,P23 P12, Po1 P12, Pag P12, P23

Figure 4: An example state space. Here F;; is the jth alternate plan for goal G;.

To search the state space, we use the best-first branch-and-bound algorithm shown
below. This algorithm maintains an active (or open) set A that contains all states eligible
for expansion. To choose which member of A to expand next, the algorithm makes use of a
function L(5) that returns a lower bound on the costs of all descendants of S that are goal
states. It always chooses for expansion the state S € A for which L(5) is smallest.!?

Algorithm 4.
A= {0} (A is the branch-and-bound active set)
loop
remove from A the state S for which L(.9) is smallest
if S is a goal state then return 9
else A := A U {the children of S}

repeat

If L(5) is a lower bound on the costs of all descendants of 5 that are goal states, then
L is admissible, in the sense that Algorithm 4 will be guaranteed to return the optimal
solution. Below we develop a lower bound function that is informed enough to reduce the
search space dramatically in many cases.

The relationship between best-first branch and bound and the A* algorithm is well known
[Nau et al. 1984]. The quantities L(S), cost(S), and L(S) — cost(.S) used above are analogous to the quan-
tities f(S), g(S), and h(S) used in A*.
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Let S5 be any state at level ¢ in the state space, and T be any child of 5. Then T is the
result of merging S with some plan P € P; 1. Thus, if N(P,5) is the set of all actions in
P that cannot be merged with actions in S5, then

cost(T) > min cost(N(P,S5))+ cost(9).

PePin

Similarly, if U is any child of T', then

cost(U') > max( min cost(N(P,5)), min cost(N(P,S5)))+ cost(5).

PePin PeEPiyo
By applying this argument repeatedly, we get

(V) > (S t PS5
cost(V') > cost( )—I—Iglglxjgrg})l]cos( (P,95))

for every goal state V below S. Thus Lq(.5) = cost(.9) is an admissible lower bound function
(this would correspond to using h = 0 in the A* search algorithm). However, a better lower
bound can be found from the same formula:

Loy(S) = cost(5) + IgngX]gIél})l] cost(N(P,5))
Ly is an admissible lower bound function that is better than L. However, by making more
intelligent use of the information contained in the sets N(P,5), we can compute an even
better lower bound function: the function L3(.5') described below.

Let S be a state at level 7 in the state space, and let j, £ > i. We say that P; and Py, are S-
connected if either of the following conditions holds: (1) there are plans P € P; and ) € Py
such that N(P,5) and N(Q,S5) contain some actions that are mergeable, or (2) there is a
set P, that is S-connected to both P; and Pj. S-connectedness is an equivalence relation,
so we let C1(9),C5(S), ..., be the equivalence classes (thus each class Ci(.9) contains one or
more of the P;’s). We refer to these equivalence classes as S-connectedness classes. Having
done this, we can now define

L3(5) = cost(5) + Z Pkrélgx Jgré%lk cost(N (P, 5)) (1)

It can easily be shown that Lj is a lower bound on the cost of any descendant of § that is
a goal state.

In order to compute L3(.5), we need efficient ways to compute the sets N(P,5) and the
sets C;(.9). These sets can be computed in low-order polynomial time as described below:

1. If S is the initial state (i.e., S = (), then for every plan P in any of the sets
P1,Payeeos Py, N(P,S) = A(P). If S is at level ¢ in the state space and P is in
one of Piy1,Piyas-- .y Pm, then

N(P,S)= N(P,S") —{all actions in P that can be merged with actions in 5'},

where S is the parent of 5. Thus, by retaining the value computed for N(P,S"), we
can compute the value of N(P,S5) in time O(|S| + |P|), where |S| and |P| are the
numbers of actions in 5 and P, respectively.
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2. Whether or not P; and Py, are S-connected depends on the actions in the sets N (P, 5)
such that P is in P; or Py. Since each set N(P,5)is a subset of N(P,5"), this means
that P; and Pj cannot be S-connected unless they are S’-connected. Thus the 5-
connectedness classes can be computed by splitting the S’-connectedness classes into
subclasses.

To demonstrate the application of Algorithm 4, consider the following example from a
machining domain. Suppose that the goal is to drill two holes hy and hy on a piece of metal
stock. To make hole hq, the plan is

Py : (spade-drill hq) then (bore hy).
To make hole hy, however, there are two alternative plans:

Psy. (twist-drill hy) then (bore hs).
Psy. (spade-drill h;) then (bore hs).

Each time one switches to a different kind of machining operation, a different cutting tool
must be mounted. Suppose that the relative costs are as follow: 1 for each tool change,
1 for each twist drilling operation, 1 for each boring operation, and 1.5 for each spade
drilling operation. Then the costs of the individual plans are cost(P;) = cost(Fs1) = 4 and
cost(Pa2) = 4.5.

At level 0, the initial state So = (, and the plan sets Py = {P1} and Py = {Py1, Pao}
are S-connected since they share tool-changing operations for boring and spade-drilling.

At level 1, the state-space has only one state, namely 57 = {Pi}. N(F2,51) =
{twist-drill(hy)} and N(Ps3,51) = 0. Thus,

L3(S51) = cost(51) + min{cost( N (P21, 51), N( Pz, 51))} = 4.
At level 2, the two successor states of 57 are:
S91 = {merge(combine( Py, P21))}, S22 = {merge(combine( Py, P22))}
Their heuristic estimates are L3(S21) = 7, L3(922) = 6.5. Thus, the optimal goal state is

S92 = (spade-drill hy, hy) then (bore hy; and hs).

5.2.2 Finding Near-Optimal Plans (without Restriction 2)

The admissibility of the heuristic functions L, Ly and L3 depends on the optimality of the
cost computation of any given state 5. When Restriction 2 is not satisfied, Algorithm 2
can no longer be applied for obtaining the optimal solution. But in this case, we can apply
Algorithm 3 to compute the cost of a state, and then use this cost value for computing
the lower bound functions L; used in Algorithm 4. We will refer to this new algorithm as
Algorithm 5.

Since Algorithm 5 uses Algorithm 3, and since the plans produced by Algorithm 3 are
near-optimal rather than optimal, the solutions returned by Algorithm 5 will not always
be optimal. However, we can give a bound on how far they are from the optimal solutions.
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Suppose the goal GG is the conjunct of a number of other goals Gy, Go, ..., Gy, and suppose
that for each G; we have a set of plans P;. Let P be the Cartesian product

P=P1xPyx...xPn.

Then each T € P contains one plan for each goal. For each T € P, if it is possible to
combine the plans in T, then Algorithm 3 will combine and merge them to produce a
merged plan Pp. Since Algorithm 5 systematically enumerates the states in the search
space, it will terminate with a Py if there exists a set T’ of plans that can be combined. In
addition, although Pr may not be the least costly plan that can be produced by combining
and merging the plans in 7', the heuristic functions L; are still lower bounds on the costs
of Pr’s. As a result, Algorithm 5 will select the least costly plan in {Pr|T" € P}. In other
words, Algorithm 5 is optimal with respect to Algorithm 3.

We now demonstrate Algorithm 5 on the “bread and milk” example given in the begin-
ning of Section 5. The plans for the goal (HAVE BREAD) are

Pi1: (go Home Bakery) then (buy Bread) , then (go Bakery Home);

Pyt (go Home Grocery) then (buy Bread) , then (go Grocery Home).
The plans for the goal (HAVE MILK) are

Ps1: (go Home Dairy) then (buy Milk) then (go Dairy Home).

Psy: (go Home Grocery) then (buy Milk) then (go Grocery Home).

We now trace the operation of Algorithm 5.
At level 1, there are two states,

S1={Pu}, 5 = { P12}

Taking the distance between any two locations as the cost of going from one to the other,

we have
cost(S1) = 2, cost(S2) = 2.5.

The heuristic function values are
L3(51) = 2 4+ min{cost({(buy Milk)}), cost(Pz2)} = 2, and

L3(S2) = 2.5 + min{cost( Py ), cost({(buy Milk)})} = 2.5.

Thus, Algorithm 4 will expand 57 next.
There are two successors of 57.

Ty = { P, Pu}; Ty = {Pi2, Paa}.

As a result of applying Algorithm 3, the merged plan T3 corresponds to going to the dairy
to buy milk, going from the dairy to the bakery to buy bread, and finally going home from
the bakery. The cost of this plan is cost(71) = 14+ 1.5+ 1 = 3.5. T corresponds to going
to the bakery and the grocery store on separate trips, giving rise to a cost of 4.5. Since
both are more costly than S5, 55 will be expanded next. One successor of 53 combines and
merges P with Py, yielding the plan
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(go Home Grocery) , then (buy Milk and Bread) then (go Grocery Home).

In this case, this plan is the optimal merged plan, with a cost of 2.5. However, as we
mentioned previously, in other cases the merged plan found by the algorithm may not
always be the optimal one.

5.3 Analysis: Multiple Plans per Goal

In the worst case, Algorithm 4 takes exponential time. Since the optimal merged plan
problem is NP-hard, this is not surprising. A better analysis would be to describe how well
the search algorithm does in the average case. However, the structure of the optimal merged
plan problem is complicated enough that it is not clear how to characterize what an “average
case” should be. Furthermore, the “average case” may be different in different application
areas. Therefore, the best analysis we can offer is an empirical study of Algorithm 4’s
performance on problems that appear to be typical of the class of problems in which plan
merging looks to be most interesting: those where the restrictions described above hold,
but aren’t overly constraining.

As an example of such a domain, we have conducted experiments with the algorithm
using the EFHA process planning system [Thompson, 1989], a domain-dependent planner
based on the earlier SIPS process planner [Nau, 1987]. The decision to use EFHA was made
for a largely pragmatic reason: as the developers of the code, we had complete access and
could implement the algorithms in precise detail. In addition, we could vary the parameters
involved in the generation of alternate plans, to make sure they would not be overly uniform.
We attempted to design a problem for EFHA to solve that would be typical of the class
of problems we would expect the merging techniques to solve, but that wouldn’t be overly
simple.

The problem we chose was to find a least-cost plan for making several holes in a piece
of metal stock (similar to the problem described in Example 2 of Section 3). We generated
specifications for 100 machined holes, randomly varying various hole characteristics such
as depth, diameter, surface finish, locational tolerance, etc. We used these holes as input
to the EFHA system, allowing it to produce at most 3 plans for each hole. EFHA found
plans for 81 of the holes (for the other 19 the machining requirements were so stringent that
EFHA could not produce any plans using the machining techniques in its knowledge base).

The distributions of the hole characteristics were chosen so that the plans generated for
the holes would have the following characteristics:

1. a wide selection of plans, rather than lots of duplicate plans for different holes;

2. not very many holes having an “obviously best” plan (i.e., a plan that is a sub-plan
of all the other plans for that hole);

3. lots of opportunities to merge actions in different plans;

4. a large number of “mergeability tradeoffs”’ in choosing which plan to use for a goal.

For example, the plan P for the goal G; may merge well with the actions in some set
of plans P for the other goals, and the plan ¢} may merge well with the actions in
some set of plans Q for the other goals—but if neither P nor Q are subsets of each
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Table 1: Experimental results for Algorithm 4 using Ls.

Number of holes » Nodes in the search space Nodes expanded
1 2 1
2 10 2
3 34 3
4 98 4
5 284 6
6 852 9
7 2372 12
8 6620 16
9 19480 22

10 54679 28
11 153467 38
12 437460 51
13 1268443 61
14 3555297 86
15 9655279 110
16 29600354 170
17 80748443 223
18 250592571 250

other, then it is unclear (without lots of searching) which of P and @ will result in
the best set of merges.

The results of the experiments are shown in Table 1. Each entry in the table represents
an average result over 450 trials. Each trial was generated by randomly choosing n of the
81 holes (duplicate choices were allowed ), invoking Algorithm 4 on the plans for these holes
using the lower bounding function Ls, and recording how many nodes it expanded in the
search space. The total cost of each plan was taken to be the sum of the costs of the
machining operations in the plan and the costs for changing tools.

Figure 5 plots the average number of nodes in the search space and the average number
of nodes expanded by the algorithm (Columns 2 and 3 of Table 1, respectively) , as functions
of the number of holes n (Column 1 of Table 1). As shown in this figure, these numbers
closely match the functions y = 1.3(2.9") and y = 1.2(1.4").

We regard the performance of the algorithm as quite good—especially since the test
problem was chosen to be significantly more difficult than the kind of problem that would
arise in real-world process planning. In real designs, designers would normally specify holes
in a much more regular manner than our random choice of holes, making the merging task
much easier. For example, when merging real-world process plans, we doubt that there
would be many of the mergeability tradeoffs mentioned earlier; and without such tradeoffs,
the complexity of the algorithm is polynomial rather than exponential.
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Figure 5: Data and curve-fits for the performance of Algorithm 4.

5.4 Summary: Multiple Plans per Goal

Section 5 has dealt with the case in which there may be more than one plan for each goal. In
this case, the problem of generating the lowest-cost conjoined plan is NP-hard, even when
Restrictions 1 and 2 hold. However, we have developed a heuristic search algorithm to
solve the problem when these restrictions hold, and an extension of the heuristic algorithm
when Restriction 2 does not hold. Our heuristic function for this algorithm (the function
L3) is admissable, and thus the algorithm is guaranteed to find optimal merged plans, with
respect to the plan merging algorithm used for merging one set of plans.

Since the problem is NP-hard, the worst-case time complexity of the search algorithm
is exponential in the worst case. However, our empirical results show that the algorithm
performs quite well for a relatively complex problem in the domain of process planning.
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6 Future Work

One major limitation of the work described in this paper is that it only concentrates on how
to combine plans that have already been developed for individual goals. In the application
domains in which we have been working, particularly process planning, we have developed
domain-dependent techniques for developing plans for the individual goals—but an obvious
question is whether there is a natural extension of our approach for creating plans rather
than just optimizing existing plans. One way to create plans is to partition a multiple goal
into several subgoals to solve, apply an algorithm for solving each subgoal currently, and
then apply Algorithm 2 for combining and merging the individual plans into a global plan.
The procedure multi-goal-plan(G) below is one way to do this:

procedure multi-goal-plan(G).
G is a set of goals G = G1,G4, .Gy
for every G; in G
P; := plan-for-goal(G;)
endfor;
return merge(combine( Py, Py, ..., P,));
end multi-goal-plan.

procedure plan-for-goal(G))
nondeterministically choose an action A capable of achieving G|
for every precondition H; of A
P; = plan-for-goal(H;)
P; is a partially ordered set of actions that achieves H;
endfor;
P := combine( Py, Ps, ..., P,)
() := P followed by A
return ()
end plan-for-goal.

The procedure plan-for-goal generates one plan for each goal and then merges them—
but since it does this nondeterministically, it will find an optimal plan if one exists. If

1. there are only action-precedence, simultaneous-action, identical-action and action-
merging interactions among the actions of different plans F;

2. the action-merging interactions satisfy Restrictions 1 and 2 of this paper, and
3. there exists at least one plan per goal,

then the nondeterministic procedure plan-for-goal(G;) will halt in polynomial time if a
plan exists. In this case the problem is at most NP-hard (as opposed to the traditional
planning problem, which can be considerably worse [Erol et al., 1991, Erol et al., 1992a,
Erol et al., 1992b].
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Although it is clear that this algorithm will work, we classify this phase of our research as
future work, since it is not clear as to either how general the result and how the algorithm
would perform in practice. The key issues, which we plan to address in the future, are
to characterize domains where these restrictions hold for plan creation, and to analyze
the worst case and average case behavior of plan generation procedure in these domains.
In addition, it may be possible to develop similar techniques for use in planning or plan
optimization in cases where the interactions satisfy other kinds of limitations instead of the
specific ones described in this paper.

Another question that remains to be answered is whether the particular interactions
discussed in this paper are too restrictive. For example, there may be reasonable ways
to solve the optimal merged plan problem in the case where there are a limited number
of violations of Restriction 2. In addition, relaxing these restrictions will not produce
exponential behavior in every case. A further classification of these exceptions may lead
to a less restrictive set of limitations. A related problem is how to generalize the kind of
interactions allowed. For example, if one allows arbitrary deleted-condition interactions,
then a similar search algorithm could be used, except that the resulting search tree would
have a greater branching factor. Thus, it would appear that in domains where the number
of such conflicts is limited, our approach is still viable.

Finally, we believe that a parallel can be drawn between the optimal merged plan prob-
lems and constraint satisfaction problems (CSP’s) [Freuder, 1982, Mackworth, 1981]. In
CSP, there is a set of variables, each with a set of possible values to be assigned to it, and a
set of consistency relations between the variables. A solution to a problem using constraint
propagation is to find one or all consistent variable assignments. In optimal merged plan
problems, each goal can be considered as a variable, and the set of alternate plans for a goal
as values for that variable. The consistency relations between the variables are defined in
terms of the action-precedence, identical-action and simultaneous-action interactions.

However, there are also major differences between CSP and optimal merged plan prob-
lems. A solution for an optimal merged plan problem has to be minimal in cost, while most
well-known algorithms for CSP are based on backtracking algorithms that do not guar-
antee optimality—and action-merging interactions, which make it possible to reduce costs
of combined plans in optimal merged plan problems, are not considered at all in existing
CSP research. Thus, our approach can be considered as an extension of CSP research to
include the task of achieving optimality. We are currently exploring whether this relation-
ship between CSP and plan merging can be exploited either for generating faster solutions
to merging problems (using variants of the CSP techniques) or for guaranteeing optimal
solutions to CSP problems that admit merging interactions.

7 Conclusion

In this paper we have been exploring a technique for merging together sets of plans generated
either by a single planner (used separately for each goal) or by a set of special purpose
planners. Such a technique has been explored in the literature either in the context of search
problems relating to planning [Korf, 1987a] or using complex mechanisms for integrating
the outputs of a set of planners (as discussed in Section 2).

The approach taken in the paper has been to explore the merging of these plans in
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the context of a set of limitations on the interactions between plans. The interactions pro-
posed, although by no means fully general, are less restrictive than those of “independence,”
“serializability,” or “linearity” previously proposed in the literature.

We have explored two different variants of this problem. Where a single plan is generated
for each goal the primary results include:

1. The optimal merged plan problem is NP-hard.

2. An efficient algorithm is presented to generate a combined plan from the individual
goals. Without further restrictions, the generated plan cannot be guaranteed to be
the optimal combination.

3. By imposing two further restrictions, that we propose as reasonable for many realistic
problem domains, an efficient algorithm for generating the optimal combined plan is
presented. Furthermore, when the more limiting of the restrictions is not satisfied, we
have also presented an algorithm that will find near-optimal plans.

4. An analysis is providing showing that where the interactions are limited as described,
an exponential amount of savings over solving a conjoined goal is possible.

Where more than one plan may be generated for each goal, the best conjoined plan is often
not simply the conjunct of the lowest cost individual plans — higher cost plans may allow
more merging. Where multiple plans are generated, the primary results include:

1. Even with the restrictions used in the single goal case, the problem is still NP-hard.

2. A branch-and-bound heuristic search algorithm is demonstrated for finding conjoined
plans. An admissable heuristic, and several variants, are proposed to show that this
search can find optimal plans.

3. Empirical results are shown demonstrating that in an interesting class of automated
manufacturing problems, the heuristic algorithm performs quite well, still growing
exponentially but by a very small factor.

We regard this work as a first step, which demonstrates the potential improvements
to planning that can be found by exploiting restrictions on allowable interactions. In the
previous section, we have outlined several possible extensions of this work—but even with-
out these, this approach is currently being used successfully in at least one application
domain [Nau, 1987, Nau et al. 1988]. As we continue our research into more general forms
of limited-interaction planning, we are convinced that this approach has potential for sig-
nificantly improving the performance of planning systems across a number of additional
domains.
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A NP-Hardness of the Optimal Merged Plan Problem

In this appendix, we show that the optimal merged plan problem is NP-hard even if there
is only one plan per goal.

The Shortest Common Supersequence (SCS) problem is as follows: given m sequences of
characters 51, 5%, ..., 5,, what is the shortest sequence 5 such that each 5; is a subsequence
of §7 This problem has been shown to be NP-hard [Maier, 1978].

Below, we sketch how the SCS problem can be reduced in polynomial time to the optimal
merged plan problem with one plan per goal (the details of this reduction are left to the
reader):

For each sequence S; = (¢i1,¢i2,...,¢k), we define a plan P =
(a1, a2, ..., a;x, ), where all actions have the same costs, and a goal G; achieved
by P;. The only kind of interaction that occurs in an action-merging interaction:
we define two actions a;; and ay to be mergeable if and only if ¢;; = ¢p. It
follows that the plans Py, ..., P, can be merged into a plan P = (a1, az, ..., a;)
iff the sequence S = (¢1,¢2,...,¢x) is a supersequence for S1,...,5,.

From the above, it follows that the optimal merged plan problem with one plan per goal is

NP-hard.

B NP-Completeness of the Merged Plan Existence Prob-
lem

The purpose of this appendix is to show that if there may be more than one plan for each
goal, then the merged plan existence problem is NP-complete. To do this, we show that

33



NP-completeness occurs in the special case where the only kind of goal interaction that
occurs is the identical-action interaction.

It is easy to see that the problem is in NP, so the proof will be complete if the problem
is shown to be NP-hard. We do this by reducing the CNF-satisfiability problem to it.

Given a set U of variables and a collection C of clauses over U, the CNF-satisfiability
problem asks whether there is an assignment of truth values to the variables in U that
satisfies every clause in C'. To reduce this problem to the merged plan existence problem,
we associate a goal G; with each clause C; of C'. G is the conjunct of the individual goals
(. For each literal [;; € C;, we create a plan (a;;,b;;) for the goal G;. If [;; = Iy, then
we specify that a;; and aj; must be identical, and b;; and by must also be identical. If
l;; = —ly, then we specify that a;; and by must be identical, and b;; and aj; must also be
identical.

It is easy to see that that this reduction can be computed in polynomial time. It remains
to be shown that (1) if C' is satisfiable, then there is a consistent global plan for G'; and (2)
if there is a consistent global plan for G, then ' is satisfiable. These two statements are
proved below.

1. Suppose there is an assignment of truth values to the variables in U that satisfies
C'. Then we construct a set S of plans, one for each goal GG;. For each ¢, the clause
C; in C contains some literal 7 in C; whose value is TRUE; we let S contain the
corresponding plan (a;;,b;;). Suppose that the plans in 5 cannot be combined into
a consistent global plan. Then there are two plans p; = (a;;,b;;) and py = (ag, bir)
such that a;; and by are constrained to be identical, and b;; and ay; are constrained
to be identical. But this means that {7 = =/}, violating our requirement that both [*
and [} have the value TRUE. Thus, the plans in 5 can be combined into a consistent
global plan.

2. Conversely, suppose there is a set of plans 5 that can be combined into a consistent
global plan. Then we assign truth values to the variables in U as follows: for each
variable v € U, if its corresponding plan is in 5, then assign it the value TRUE;
otherwise, assign it the value FALSE. Since S can be combined into a consistent
global plan, this means that no variable can receive both the values TRUE and FALSE.
Furthermore, since S must contain at least one plan for each goal G, at least one
literal in each clause will receive the value TRUE. Thus, this assignment of truth
values satisfies C'.
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