Chapter 2
Representations for Classical Planning

Dana S. Nau
University of Maryland

4:56 PM January 30, 2012
Quick Review of Classical Planning

- Classical planning requires all eight of the restrictive assumptions:
 - A0: Finite
 - A1: Fully observable
 - A2: Deterministic
 - A3: Static
 - A4: Attainment goals
 - A5: Sequential plans
 - A6: Implicit time
 - A7: Offline planning
Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as s_0, s_1, s_2, \ldots
- Represent each state as a set of features
 - e.g.,
 - a vector of values for a set of variables
 - a set of ground atoms in some first-order language L
- Define a set of operators that can be used to compute state-transitions
- Don’t give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed
Outline

● Representation schemes
 ◆ Classical representation
 ◆ Set-theoretic representation
 ◆ State-variable representation
 ◆ Examples: DWR and the Blocks World
 ◆ Comparisons
Classical Representation

- Start with a first-order language
 - Language of first-order logic
 - Restrict it to be *function-free*
 - Finitely many predicate symbols and constant symbols, but *no* function symbols

- Example: the DWR domain
 - Locations: l1, l2, …
 - Containers: c1, c2, …
 - Piles: p1, p2, …
 - Robot carts: r1, r2, …
 - Cranes: k1, k2, …
Classical Representation

- **Atom**: predicate symbol and args
 - Use these to represent both fixed and dynamic relations
 - adjacent(l, l')
 - attached(p, l)
 - belong(k, l)
 - occupied(l)
 - at(r, l)
 - loaded(r, c)
 - unloaded(r)
 - holding(k, c)
 - empty(k)
 - in(c, p)
 - on(c, c')
 - top(c, p)
 - top(pallet, p)

- **Ground** expression: contains no variable symbols - e.g., in(c1, p3)
- **Unground** expression: at least one variable symbol - e.g., in(c1, x)

- **Substitution**: \(\theta = \{ x_1 \leftarrow v_1, x_2 \leftarrow v_2, \ldots, x_n \leftarrow v_n \} \)
 - Each \(x_i \) is a variable symbol; each \(v_i \) is a term

- **Instance of \(e \)**: result of applying a substitution \(\theta \) to \(e \)
 - Replace variables of \(e \) simultaneously, not sequentially
States

- **State**: a set s of ground atoms
 - The atoms represent the things that are true in one of Σ’s states
 - Only finitely many ground atoms, so only finitely many possible states

\[
\begin{align*}
s_1 &= \{\text{attached}(p1,\text{loc1}), \text{in}(c1,p1), \text{in}(c3,p1), \text{top}(c3,p1), \text{on}(c3,c1), \\
 & \quad \text{on}(c1,pallet), \text{attached}(p2,\text{loc1}), \text{in}(c2,p2), \text{top}(c2,p2), \text{on}(c2,pallet), \\
 & \quad \text{belong}(\text{crane1},\text{loc1}), \text{empty}(\text{crane1}), \text{adjacent}(\text{loc1},\text{loc2}), \\
 & \quad \text{adjacent}(\text{loc2},\text{loc1}), \text{at}(r1,\text{loc2}), \text{occupied}(\text{loc2}, \text{unloaded}(r1))\}
\end{align*}
\]
Operators

- **Operator**: a triple \(o = (\text{name}(o), \text{precond}(o), \text{effects}(o)) \)
 - **precond\((o)\)**: *preconditions*
 » literals that must be true in order to use the operator
 - **effects\((o)\)**: *effects*
 » literals the operator will make true
 - **name\((o)\)**: a syntactic expression of the form \(n(x_1,\ldots,x_k) \)
 » \(n \) is an *operator symbol* - must be unique for each operator
 » \((x_1,\ldots,x_k) \) is a list of every variable symbol (parameter) that appears in \(o \)

- Purpose of **name\((o)\)** is so we can refer unambiguously to instances of \(o \)

- Rather than writing each operator as a triple, we’ll usually write like this:

\[
\text{take}(k,l,c,d,p)
\]

;; crane \(k \) at location \(l \) takes \(c \) off of \(d \) in pile \(p \)
precond: belong\((k,l) \), attached\((p,l) \), empty\((k) \), top\((c,p) \), on\((c,d) \)
effects: holding\((k,c) \), \(\neg \) empty\((k) \), \(\neg \) in\((c,p) \), \(\neg \) top\((c,p) \), \(\neg \) on\((c,d) \), top\((d,p) \)
An action is a ground instance (via substitution) of an operator

- Let $\theta = \{k \leftarrow \text{crane1}, l \leftarrow \text{loc1}, c \leftarrow c3, d \leftarrow c1, p \leftarrow p1\}$
- Then $(\text{take}(k, l, c, d, p))\theta$ is the following action:
 \[
 \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1)
 \]

 - precond: $\text{belong}(\text{crane}, \text{loc1})$, $\text{attached}(p1, \text{loc1})$, $\text{empty}(\text{crane1})$, $\text{top}(c3, p1)$, $\text{on}(c3, c1)$
 - effects: $\text{holding}(\text{crane1}, c3)$, $\neg\text{empty}(\text{crane1})$, $\neg\text{in}(c3, p1)$, $\neg\text{top}(c3, p1)$, $\neg\text{on}(c3, c1)$, $\text{top}(c1, p1)$

- i.e., crane crane1 at location loc1 takes c3 off of c1 in pile p1
Notation

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$

- Let a be an operator or action. Then
 - $\text{precond}^+(a) = \{\text{atoms that appear positively in } a\text{'s preconditions}\}$
 - $\text{precond}^-(a) = \{\text{atoms that appear negatively in } a\text{'s preconditions}\}$
 - $\text{effects}^+(a) = \{\text{atoms that appear positively in } a\text{'s effects}\}$
 - $\text{effects}^-(a) = \{\text{atoms that appear negatively in } a\text{'s effects}\}$

- Example: $\text{take}(\text{crane1,loc1,c3,c1,p1})$
 - $\text{precond: } \text{belong} (\text{crane,loc1}), \text{attached} (\text{p1,loc1}),$
 $\text{empty} (\text{crane1}), \text{top} (\text{c3,p1}), \text{on} (\text{c3,c1})$
 - $\text{effects: } \text{holding} (\text{crane1,c3}), \neg \text{empty} (\text{crane1}), \neg \text{in} (\text{c3,p1}),$
 $\neg \text{top} (\text{c3,p1}), \neg \text{on} (\text{c3,c1}), \text{top} (\text{c1,p1})$
 - $\text{effects}^+ (\text{take}(\text{crane1,loc1,c3,c1,p1})) = \{\text{holding} (\text{crane1,c3}), \text{top} (\text{c1,p1})\}$
 - $\text{effects}^- (\text{take}(\text{crane1,loc1,c3,c1,p1}))$
 $= \{\text{empty} (\text{crane1}), \text{in} (\text{c3,p1}), \text{top} (\text{c3,p1}), \text{on} (\text{c3,c1})\}$
Applicability

- Let \(s \) be a state and \(a \) be an action
- \(a \) is *applicable* to (or *executable* in) \(s \) if \(s \) satisfies \(\text{precond}(a) \)
 - \(\text{precond}^+(a) \subseteq s \)
 - \(\text{precond}^-(a) \cap s = \emptyset \)

- An action:

 \[
 \text{take}(\text{crane1}, \text{loc1}, \text{c3}, \text{c1}, \text{p1})
 \]

 \[
 \text{precond: } \begin{align*}
 & \text{belong(}\text{crane,loc1}\text{)}, \\
 & \text{attached(}p1,\text{loc1}\text{)}, \\
 & \text{empty(}\text{crane1}\text{)}, \text{top(}c3,\text{p1}\text{)}, \\
 & \text{on(}c3,\text{c1}\text{)}
 \end{align*}
 \]

 \[
 \text{effects: } \begin{align*}
 & \text{holding(}\text{crane1},\text{c3}\text{)}, \\
 & \neg \text{empty(}\text{crane1}\text{)}, \\
 & \neg \text{in(}c3,\text{p1}\text{)}, \neg \text{top(}c3,\text{p1}\text{)}, \\
 & \neg \text{on(}c3,\text{c1}\text{)}, \text{top(}c1,\text{p1}\text{)}
 \end{align*}
 \]

- A state it’s applicable to

 \[
 s_1 = \{\text{attached(}p1,\text{loc1}\text{)}, \text{in(}c1,\text{p1}\text{)}, \\
 \text{in(}c3,\text{p1}\text{)}, \text{top(}c3,\text{p1}\text{)}, \text{on(}c3,\text{c1}\text{)}, \\
 \text{on(}c1,\text{pallet}\text{)}, \text{attached(}p2,\text{loc1}\text{)}, \\
 \text{in(}c2,\text{p2}\text{)}, \text{top(}c2,\text{p2}\text{)}, \text{on(}c2,\text{palet}\text{)}, \\
 \text{belong(}\text{crane1,loc1}\text{)}, \\
 \text{empty(}\text{crane1}\text{)}, \\
 \text{adjacent(}\text{loc1,loc2}\text{)}, \\
 \text{adjacent(}\text{loc2,loc1}\text{)}, \text{at(}r1,\text{loc2}\text{)}, \\
 \text{occupied(}\text{loc2,unloaded(}r1)\text{)}\}
 \]
Executing an Applicable Action

- Remove a’s negative effects, and add a’s positive effects

$$\gamma(s,a) = (s - \text{effects}^{-}(a)) \cup \text{effects}^{+}(a)$$

take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

effects: holding(crane1,c3),
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1),
¬on(c3,c1), top(c1,p1)

$$s_2 = \{\text{attached}(p1,\text{loc}1), \text{in}(c1,p1), \text{in}(c3,p1), \text{top}(c3,p1), \text{on}(c3,c1), \text{on}(c1,\text{pallet}), \text{attached}(p2,\text{loc}1), \text{in}(c2,p2), \text{top}(c2,p2), \text{on}(c2,\text{palet}), \text{belong}(\text{crane}1,\text{loc}1), \text{empty}(\text{crane}1), \text{adjacent}(\text{loc}1,\text{loc}2), \text{adjacent}(\text{loc}2,\text{loc}1), \text{at}(r1,\text{loc}2), \text{occupied}(\text{loc}2, \text{unloaded}(r1), \text{holding}(\text{crane}1,c3), \text{top}(c1,p1)\}$$
\textbf{Planning domain}: language plus operators

- Corresponds to a set of state-transition systems
- Example: operators for the DWR domain

\begin{itemize}
 \item \texttt{move}(r, l, m)

 ;; robot \textit{r} moves from location \textit{l} to location \textit{m}

 precond: adjacent\((l, m)\), \textit{at}(r, l), \neg \text{occupied}(m)

 effects: \textit{at}(r, m), \text{occupied}(m), \neg \text{occupied}(l), \neg \text{at}(r, l)

 \item \texttt{load}(k, l, c, r)

 ;; crane \textit{k} at location \textit{l} loads container \textit{c} onto robot \textit{r}

 precond: \text{belong}(k, l), \text{holding}(k, c), \textit{at}(r, l), \textit{unloaded}(r)

 effects: \textit{empty}(k), \neg \text{holding}(k, c), \textit{loaded}(r, c), \neg \textit{unloaded}(r)

 \item \texttt{unload}(k, l, c, r)

 ;; crane \textit{k} at location \textit{l} takes container \textit{c} from robot \textit{r}

 precond: \text{belong}(k, l), \textit{at}(r, l), \textit{loaded}(r, c), \textit{empty}(k)

 effects: \neg \textit{empty}(k), \text{holding}(k, c), \textit{unloaded}(r), \neg \textit{loaded}

 \item \texttt{put}(k, l, c, d, p)

 ;; crane \textit{k} at location \textit{l} puts \textit{c} onto \textit{d} in pile \textit{p}

 precond: \text{belong}(k, l), \text{attached}(p, l), \text{holding}(k, c), \text{top}(d, p)

 effects: \neg \text{holding}(k, c), \textit{empty}(k), \text{in}(c, p), \text{top}(c, p), \text{on}(c, d), \neg \text{top}(d, p)

 \item \texttt{take}(k, l, c, d, p)

 ;; crane \textit{k} at location \textit{l} takes \textit{c} off of \textit{d} in pile \textit{p}

 precond: \text{belong}(k, l), \text{attached}(p, l), \textit{empty}(k), \text{top}(c, p), \text{on}(c, d)

 effects: \text{holding}(k, c), \neg \textit{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)
\end{itemize}
Planning Problems

- Given a planning domain (language L, operators O)
 - **Statement** of a planning problem: a triple $P = (O, s_0, g)$
 - O is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)
 - **Planning problem**: $\mathcal{P} = (\Sigma, s_0, S_g)$
 - s_0 = initial state
 - S_g = set of goal states
 - $\Sigma = (S, A, \gamma)$ is a state-transition system that satisfies all of the restrictive assumptions in Chapter 1
 - S = {all sets of ground atoms in L}
 - A = {all ground instances of operators in O}
 - γ = the state-transition function determined by the operators
 - I’ll often say “planning problem” to mean the statement of the problem
Plans and Solutions

- Let $P=(O,s_0,g)$ be a planning problem
- Plan: any sequence of actions $\pi = \langle a_1, a_2, \ldots, a_n \rangle$ such that each a_i is an instance of an operator in O
- π is a solution for $P=(O,s_0,g)$ if it is executable and achieves g
 - i.e., if there are states s_0, s_1, \ldots, s_n such that
 - $\gamma(s_0,a_1) = s_1$
 - $\gamma(s_1,a_2) = s_2$
 - \ldots
 - $\gamma(s_{n-1},a_n) = s_n$
 - s_n satisfies g
Example

Let $P_1 = (O, s_1, g_1)$, where

- $O = \{\text{the four DWR operators given earlier}\}$
- $s_1 = \{\text{attached}(p1, \text{loc}1), \text{in}(c1, p1), \text{in}(c3, p1), \text{top}(c3, p1), \text{on}(c3, c1), \text{on}(c1, \text{pallet}), \text{attached}(p2, \text{loc}1), \text{in}(c2, p2), \text{top}(c2, p2), \text{on}(c2, \text{pallet}), \text{belong}(\text{crane}1, \text{loc}1), \text{empty}(\text{crane}1), \text{adjacent}(\text{loc}1, \text{loc}2), \text{adjacent}(\text{loc}2, \text{loc}1), \text{at}(r1, \text{loc}2), \text{occupied}(\text{loc}2), \text{unloaded}(r1)\}$
- $g_1 = \{\text{loaded}(r1, c3), \text{at}(r1, \text{loc}2)\}$
● Two redundant solutions (can remove actions and still have a solution):

\[
\langle \text{move}(r1,\text{loc2},\text{loc1}), \\
\text{take}(\text{crane1},\text{loc1},\text{c3},\text{c1},p1), \\
\text{move}(r1,\text{loc1},\text{loc2}), \\
\text{move}(r1,\text{loc2},\text{loc1}), \\
\text{load}(\text{crane1},\text{loc1},\text{c3},r1), \\
\text{move}(r1,\text{loc1},\text{loc2}) \rangle
\]

\[
\langle \text{take}(\text{crane1},\text{loc1},\text{c3},\text{c1},p1), \\
\text{put}(\text{crane1},\text{loc1},\text{c3},\text{c2},p2), \\
\text{move}(r1,\text{loc2},\text{loc1}), \\
\text{take}(\text{crane1},\text{loc1},\text{c3},\text{c2},p2), \\
\text{load}(\text{crane1},\text{loc1},\text{c3},r1), \\
\text{move}(r1,\text{loc1},\text{loc2}) \rangle
\]

● A solution that is both irredundant and shortest:

\[
\langle \text{move}(r1,\text{loc2},\text{loc1}), \\
\text{take}(\text{crane1},\text{loc1},\text{c3},\text{c1},p1), \\
\text{load}(\text{crane1},\text{loc1},\text{c3},r1), \\
\text{move}(r1,\text{loc1},\text{loc2}) \rangle
\]

● Are there any other shortest solutions? Are irredundant solutions always shortest?
Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic
 - Equivalent to a classical representation in which all of the atoms are ground

- States:
 - Instead of ground atoms, use propositions (boolean variables):

\[\{\text{on(c1,pallet), on(c1,r1), on(c1,c2), \ldots, at(r1,l1), at(r1,l2), \ldots}\}\]

\[\{\text{on-c1-pallet, on-c1-r1, on-c1-c2, \ldots, at-r1-l1, at-r1-l2, \ldots}\}\]
No operators, just actions:

- Instead of ground atoms, use propositions
- Instead of negative effects, use a delete list
- If there are any negative preconditions, create new atoms to represent them
- E.g., instead of using ¬foo as a precondition, use not-foo
 - Delete foo iff you add not-foo
 - Delete not-foo iff you add foo

```
take(crane1,loc1,c3,c1,p1)
precond: belong(crane,loc1),
         attached(p1,loc1), empty(crane1),
         top(c3,p1), on(c3,c1)
effects: holding(crane1,c3),
         ¬empty(crane1),
         ¬in(c3,p1), ¬top(c3,p1), ¬on(c3,c1),
         top(c1,p1)
```

take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1,
 attached-p1-loc1, empty-crane1,
 top-c3-p1, on-c3-c1
delete: empty-crane1,
 in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1
Exponential Blowup

- Suppose the language contains c constant symbols
- Let o be a classical operator with k parameters
- Then there are c^k ground instances of o
 - Hence c^k set-theoretic actions
- Example:
 take(crane1,loc1,c3,c1,p1)
 - $k = 5$
 - 1 crane, 2 locations, 3 containers, 2 piles
 - 8 constant symbols
 - $8^5 = 32768$ ground instances
- Can reduce this by assigning data types to the parameters
 - e.g., first arg must be a crane, second must be a location, etc.
 - Number of ground instances is now $1 \times 2 \times 3 \times 3 \times 2 = 36$
 - Worst case is still exponential
State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to state variables
 - Like fields in a record structure
- Classical and state-variable representations take similar amounts of space
 - Each can be translated into the other in low-order polynomial time

\[
\text{move}(r, l, m) \\
;; \text{robot } r \text{ at location } l \text{ moves to an adjacent location } m \\
\text{precond: } \text{rloc}(r) = l, \text{adjacent}(l, m) \\
\text{effects: } \text{rloc}(r) \leftarrow m
\]

\[
\begin{align*}
s_1 &= \{ \text{top}(p1)=c3, \\
&\quad \text{cpos}(c3)=c1, \\
&\quad \text{cpos}(c1)=\text{pallet,} \\
&\quad \text{holding}(\text{crane1})=\text{nil}, \\
&\quad \text{rloc}(r1)=\text{loc2}, \\
&\quad \text{loaded}(r1)=\text{nil}, \ldots \}
\end{align*}
\]
Example: The Blocks World

- Infinitely wide table, finite number of children’s blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- There’s a robot gripper that can hold at most one block

- Want to move blocks from one configuration to another
 - e.g.,

 ![Diagram of the blocks world](image)

 - initial state
 - goal

 - Like a special case of DWR with one location, one crane, some containers, and many more piles than you need
Classical Representation: Symbols

- **Constant symbols:**
 - The blocks: a, b, c, d, e

- **Predicates:**
 - `ontable(x)` - block x is on the table
 - `on(x,y)` - block x is on block y
 - `clear(x)` - block x has nothing on it
 - `holding(x)` - the robot hand is holding block x
 - `handempty` - the robot hand isn’t holding anything
Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬clear(x), ¬handempty,
 holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),
 on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),
 ¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),
 clear(x), handempty
Set-Theoretic Representation: Symbols

- For five blocks, there are 36 propositions
- Here are 5 of them:
 - `ontable-a` - block a is on the table
 - `on-c-a` - block c is on block a
 - `clear-c` - block c has nothing on it
 - `holding-d` - the robot hand is holding block d
 - `handempty` - the robot hand isn’t holding anything
Set-Theoretic Actions

- 60 actions
- 50 if we exclude nonsensical ones, e.g., unstack-e-e

Here are four of them:

unstack-c-a
- Pre: on-c-a, clear-c, handempty
- Del: on-c-a, clear-c, handempty
- Add: holding-c, clear-a

stack-c-a
- Pre: holding-c, clear-a
- Del: holding-c, clear-a
- Add: on-c-a, clear-c, handempty

pickup-b
- Pre: ontable-b, clear-b, handempty
- Del: ontable-b, clear-b, handempty
- Add: holding-b

putdown-b
- Pre: holding-b
- Del: holding-b
- Add: ontable-b, clear-b, handempty
State-Variable Representation: Symbols

- **Constant symbols:**
 - a, b, c, d, e of type block
 - 0, 1, table, nil of type other

- **State variables:**
 - `pos(x) = y` if block `x` is on block `y`
 - `pos(x) = table` if block `x` is on the table
 - `pos(x) = nil` if block `x` is being held
 - `clear(x) = 1` if block `x` has nothing on it
 - `clear(x) = 0` if block `x` is being held or has another block on it
 - `holding = x` if the robot hand is holding block `x`
 - `holding = nil` if the robot hand is holding nothing
State-Variable Operators

With data types:

unstack(x : block, y : block)
 Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil
 Effects: pos(x)←nil, clear(x)←0, holding←x, clear(y)←1

stack(x : block, y : block)
 Precond: holding=x, clear(x)=0, clear(y)=1
 Effects: holding←nil, clear(y)←0, pos(x)←y, clear(x)←1

pickup(x : block)
 Precond: pos(x)=table, clear(x)=1, holding=nil
 Effects: pos(x)←nil, clear(x)←0, holding←x

putdown(x : block)
 Precond: holding=x
 Effects: holding←nil, pos(x)←table, clear(x)←1
Expressive Power

- Any problem that can be represented in one representation can also be represented in the other two.
- Can convert in linear time and space in all cases except one:
 - Exponential blowup when converting to set-theoretic.
Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- Set-theoretic representation
 - Can take much more space than classical representation
 - Useful in algorithms that manipulate ground atoms directly
 - e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
 - Useful for certain kinds of theoretical studies

- State-variable representation
 - Equivalent to classical representation in expressive power
 - Less natural for logicians, more natural for engineers and most computer scientists
 - Useful in non-classical planning problems as a way to handle numbers, functions, time