Chapter 7
Propositional Satisfiability Techniques

Dana S. Nau
University of Maryland

12:58 PM February 15, 2012
Motivation

● Propositional satisfiability: given a boolean formula
 » e.g., \((P \lor Q) \land (\neg Q \lor R \lor S) \land (\neg R \lor \neg P)\), does there exist a model
 » i.e., an assignment of truth values to the propositions that makes the formula true?

● This was the very first problem shown to be NP-complete

● Lots of research on algorithms for solving it
 ◆ Algorithms are known for solving all but a small subset in average-case polynomial time

● Therefore,
 ◆ Try translating classical planning problems into satisfiability problems, and solving them that way
Outline

● Encoding planning problems as satisfiability problems
● Extracting plans from truth values
● Satisfiability algorithms
 ◆ Davis-Putnam
 ◆ Local search
 ◆ GSAT
● Combining satisfiability with planning graphs
 ◆ SatPlan
Overall Approach

A bounded planning problem is a pair \((P,n)\):
- \(P\) is a planning problem; \(n\) is a positive integer
- Any solution for \(P\) of length \(n\) is a solution for \((P,n)\)

Planning algorithm:

Do iterative deepening like we did with Graphplan:
- for \(n = 0, 1, 2, \ldots\),
 » encode \((P,n)\) as a satisfiability problem \(\Phi\)
 » if \(\Phi\) is satisfiable, then
 • From the set of truth values that satisfies \(\Phi\), a solution plan can be constructed, so return it and exit
Notation

- For satisfiability problems we need to use propositional logic
- Need to encode ground atoms into propositions
 - For set-theoretic planning we encoded atoms into propositions by rewriting them as shown here:
 - Atom: at(r1,loc1)
 - Proposition: at-r1-loc1
- For planning as satisfiability we’ll do the same thing
 - But we won’t bother to do a syntactic rewrite
 - Just use at(r1,loc1) itself as the proposition
- Also, we’ll write plans starting at a_0 rather than a_1
 - $\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle$
Fluents

- If \(\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle \) is a solution for \((P,n)\), it generates these states:
 \[
 s_0, \quad s_1 = \gamma(s_0, a_0), \quad s_2 = \gamma(s_1, a_1), \quad \ldots, \quad s_n = \gamma(s_{n-1}, a_{n-1})
 \]

- Fluent: proposition saying a particular atom is true in a particular state
 - \(\text{at}(r1,\text{loc1},i) \) is a fluent that’s true iff \(\text{at}(r1,\text{loc1}) \) is in \(s_i \)
 - We’ll use \(l_i \) to denote the fluent for literal \(l \) in state \(s_i \)
 - e.g., if \(l = \text{at}(r1,\text{loc1}) \)
 \[
 \text{then } l_i = \text{at}(r1,\text{loc1},i)
 \]
 - \(a_i \) is a fluent saying that \(a \) is the \(i \)'th step of \(\pi \)
 - e.g., if \(a = \text{move}(r1,\text{loc2},\text{loc1}) \)
 \[
 \text{then } a_i = \text{move}(r1,\text{loc2},\text{loc1},i)
 \]
Encoding Planning Problems

- Encode \((P,n)\) as a formula \(\Phi\) such that
 - \(\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle\) is a solution for \((P,n)\) if and only if \(\Phi\) can be satisfied in a way that makes the fluents \(a_0, \ldots, a_{n-1}\) true

- Let
 - \(A = \{\text{all actions in the planning domain}\}\)
 - \(S = \{\text{all states in the planning domain}\}\)
 - \(L = \{\text{all literals in the language}\}\)

- \(\Phi\) is the conjunct of many other formulas …
Formulas in Φ

1. Formula describing the initial state:
 - $\land \{l_0 \mid l \in s_0\} \land \land \{\neg l_0 \mid l \in L - s_0\}$

2. Formula describing the goal:
 - $\land \{l_n \mid l \in g^+\} \land \land \{\neg l_n \mid l \in g^-\}$

3. For every action a in A and for $i = 1, \ldots, n$, a formula describing what changes a would make if it were the i’th step of the plan:
 - $a_i \Rightarrow \land \{p_i \mid p \in \text{Precond}(a)\} \land \land \{e_{i+1} \mid e \in \text{Effects}(a)\}$

4. Complete exclusion axiom:
 - For every pair of actions a and b, and for $i = 0, \ldots, n-1$, a formula saying they can’t both be the i’th step of the plan
 - $\neg a_i \lor \neg b_i$
 - this guarantees there can be only one action at a time

- Is this enough?
Frame Axioms

5. Frame axioms:
 - Formulas describing what doesn’t change between steps i and $i+1$
 - Several ways to write these

 One way: *explanatory frame axioms*
 - For $i = 0, \ldots, n-1$, an axiom for every literal l
 - Says that if l changes between s_i and s_{i+1}, then the action at step i must be responsible:

\[
\begin{align*}
(\neg l_i \land l_{i+1} & \Rightarrow \forall a \in A \{ a_i \mid l \in \text{effects}^+(a) \}) \\
\land (l_i \land \neg l_{i+1} & \Rightarrow \forall a \in A \{ a_i \mid l \in \text{effects}^-(a) \})
\end{align*}
\]
Example

- Planning domain:
 - one robot r_1
 - two adjacent locations l_1, l_2
 - one planning operator (to move the robot from one location to another)

- Encode (P,n) where $n = 1$

 1. Initial state: \{at(r_1,l_1)\}
 Encoding: \(\text{at}(r_1,l_1,0) \land \neg \text{at}(r_1,l_2,0)\)

 2. Goal: \{at(r_1,l_2)\}
 Encoding: \(\text{at}(r_1,l_2,1) \land \neg \text{at}(r_1,l_1,1)\)

 3. Operator: see next slide
Example (continued)

- **Operator:** \(\text{move}(r,l,l') \)

 precond: \(\text{at}(r,l) \)

 effects: \(\text{at}(r,l'), \neg \text{at}(r,l) \)

Encoding:

\[
\begin{align*}
\text{move}(r1,l1,l2,0) & \Rightarrow \text{at}(r1,l1,0) \land \text{at}(r1,l2,1) \land \neg \text{at}(r1,l1,1) \\
\text{move}(r1,l2,l1,0) & \Rightarrow \text{at}(r1,l2,0) \land \text{at}(r1,l1,1) \land \neg \text{at}(r1,l2,1) \\
\text{move}(r1,l1,l1,0) & \Rightarrow \text{at}(r1,l1,0) \land \text{at}(r1,l1,1) \land \neg \text{at}(r1,l1,1) \\
\text{move}(r1,l2,l2,0) & \Rightarrow \text{at}(r1,l2,0) \land \text{at}(r1,l2,1) \land \neg \text{at}(r1,l2,1) \\
\text{move}(l1,r1,l2,0) & \Rightarrow \ldots \\
\text{move}(l2,l1,r1,0) & \Rightarrow \ldots \\
\text{move}(l1,l2,r1,0) & \Rightarrow \ldots \\
\text{move}(l2,l1,r1,0) & \Rightarrow \ldots \\
\end{align*}
\]

- **Operator:** \(\text{move}(r: \text{robot}, l: \text{location}, l': \text{location}) \)

 precond: \(\text{at}(r,l) \)

 effects: \(\text{at}(r,l'), \neg \text{at}(r,l) \)

nonsensical, and we can avoid generating them if we use data types like we did for state-variable representation
Example (continued)

4. Complete-exclusion axiom:
 \[\neg \text{move}(r1,l1,l2,0) \lor \neg \text{move}(r1,l2,l1,0) \]

5. Explanatory frame axioms:
 \[\neg \text{at}(r1,l1,0) \land \text{at}(r1,l1,1) \implies \text{move}(r1,l2,l1,0) \]
 \[\neg \text{at}(r1,l2,0) \land \text{at}(r1,l2,1) \implies \text{move}(r1,l1,l2,0) \]
 \[\text{at}(r1,l1,0) \land \neg \text{at}(r1,l1,1) \implies \text{move}(r1,l1,l2,0) \]
 \[\text{at}(r1,l2,0) \land \neg \text{at}(r1,l2,1) \implies \text{move}(r1,l2,l1,0) \]

 \[\Phi \text{ is the conjunct of all of these} \]
Summary of the Example

- P is a planning problem with one robot and two locations
 - initial state \{at(r1,l1)\}
 - goal \{at(r1,l2)\}
- Encoding of $(P,1)$
 - $\Phi = [at(r1,l1,0) \land \neg at(r1,l2,0)]$ (initial state)
 $\land [at(r1,l2,1) \land \neg at(r1,l1,1)]$ (goal)
 $\land [move(r1,l1,l2,0) \Rightarrow at(r1,l1,0) \land at(r1,l2,1) \land \neg at(r1,l1,1)]$ (action)
 $\land [move(r1,l2,l1,0) \Rightarrow at(r1,l2,0) \land at(r1,l1,1) \land \neg at(r1,l2,1)]$ (action)
 $\land [\neg move(r1,l1,l2,0) \lor \neg move(r1,l2,l1,0)]$ (complete exclusion)
 $\land [\neg at(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0)]$ (frame axiom)
 $\land [\neg at(r1,l2,0) \land at(r1,l2,1) \Rightarrow move(r1,l1,l2,0)]$ (frame axiom)
 $\land [at(r1,l1,0) \land \neg at(r1,l1,1) \Rightarrow move(r1,l1,l2,0)]$ (frame axiom)
 $\land [at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0)]$ (frame axiom)
Extracting a Plan

- Let Φ be an encoding of (P,n)
- Suppose we find an assignment of truth values that satisfies Φ.
 - This means P has a solution of length n

- For $i=1,\ldots,n$, there will be exactly one action a such that $a_i = true$
 - This is the i’th action of the plan.

Example

The formula on the previous slide
- Φ can be satisfied with $move(r1,l1,l2,0) = true$
 - Thus $\langle move(r1,l1,l2,0) \rangle$ is a solution for $(P,1)$
- It’s the only solution - no other way to satisfy Φ
Planning

- How to find an assignment of truth values that satisfies Φ?
 - Use a satisfiability algorithm

- Example: the *Davis-Putnam* algorithm

 - First need to put Φ into conjunctive normal form

 \[\Phi = D \land (\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land A\]

 - Write Φ as a set of *clauses* (disjuncts of literals)

 \[\Phi = \{\{D\}, \{\neg D, A, \neg B\}, \{\neg D, \neg A, \neg B\}, \{\neg D, \neg A, B\}, \{A\}\}\]

 - Some special cases:
 - If $\Phi = \emptyset$ then Φ is always true
 - If $\Phi = \{\ldots, \emptyset, \ldots\}$ then Φ is always false (hence unsatisfiable)
 - If Φ contains a unit clause, l, then l must be true in order to satisfy Φ
The Davis-Putnam Procedure

Backtracking search through alternative assignments of truth values to literals

- $\mu = \{$literals to which we have assigned the value TRUE$\}$
 - initially empty
- For every unit clause l
 - add l to μ
 - remove clauses that contain l
 - modify clauses that contain $\neg l$
- If Φ contains \emptyset, μ fails
- If $\Phi = \emptyset$, μ is a solution
- Select a Boolean variable P in Φ
- do two recursive calls
 - $\Phi \land P$
 - $\Phi \land \neg P$

\[
\text{Davis-Putnam}(\Phi, \mu)
\]

\[
\begin{align*}
\text{Unit-propagate}(\Phi, \mu) & \\
\text{if $\emptyset \in \Phi$ then return} & \\
\text{if $\Phi = \emptyset$ then exit with μ} & \\
\text{select a variable P such that P or $\neg P$ occurs in ϕ} & \\
\text{Davis-Putnam}(\Phi \cup \{P\}, \mu) & \\
\text{Davis-Putnam}(\Phi \cup \{\neg P\}, \mu) & \\
\end{align*}
\]

\[
\text{Unit-Propagate}(\Phi, \mu)
\]

\[
\begin{align*}
\text{while there is a unit clause $\{l\}$ in Φ do} & \\
\mu & \leftarrow \mu \cup \{l\} & \\
\text{for every clause $C \in \Phi$} & \\
\text{if $l \in C$ then $\Phi \leftarrow \Phi \setminus \{C\}$} & \\
\text{else if $\neg l \in C$ then $\Phi \leftarrow \Phi \setminus \{C\} \cup \{C \setminus \{\neg l\}\}$} & \\
\end{align*}
\]
Local Search

- Let u be an assignment of truth values to all of the variables
 - $\text{cost}(u, \Phi) =$ number of clauses in Φ that aren’t satisfied by u
 - $\text{flip}(P,u) =$ u except that P’s truth value is reversed

- Local search:
 - Select a random assignment u
 - while $\text{cost}(u, \Phi) \neq 0$
 - if there is a P such that $\text{cost}(\text{flip}(P,u), \Phi) < \text{cost}(u, \Phi)$ then
 - randomly choose any such P
 - $u \leftarrow \text{flip}(P,u)$
 - else return failure

- Local search is sound
- If it finds a solution it will find it very quickly
- Local search is not complete: can get trapped in local minima
GSAT

- **Basic-GSAT:**
 - Select a random assignment u
 - while cost(u, Φ) ≠ 0
 - choose a P that minimizes cost(flip($P, u), \Phi$), and flip it
- Not guaranteed to terminate

- **GSAT:**
 - restart after a max number of flips
 - return failure after a max number of restarts

- The book discusses several other stochastic procedures
 - One is Walksat
 - works better than both local search and GSAT
 - I’ll skip the details
Discussion

- Recall the overall approach:
 - for $n = 0, 1, 2, \ldots$,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ, extract a solution plan and return it

- By itself, not very practical (takes too much memory and time)
- But it can work well if combined with other techniques
 - e.g., planning graphs
SatPlan

- SatPlan combines planning-graph expansion and satisfiability checking
- Works roughly as follows:
 - for $k = 0, 1, 2, \ldots$
 - Create a planning graph that contains k levels
 - Encode the planning graph as a satisfiability problem
 - Try to solve it using a SAT solver
 - If the SAT solver finds a solution within some time limit,
 - Remove some unnecessary actions
 - Return the solution
- Memory requirement still is combinatorially large
 - but less than what’s needed by a direct translation into satisfiability
- BlackBox (predecessor to SatPlan) was one of the best planners in the 1998 planning competition
- SatPlan was one of the best planners in the 2004 and 2006 planning competitions
Other Translation Approaches

- Translate planning problems into 0-1 integer programming problems
 - Then solve them using an integer programming package such as CPLEX
 - Techniques are somewhat similar to translation of planning to satisfiability

- Translate planning problems into constraint satisfaction problems
 - Then solve them using CSP techniques such as arc consistency and path consistency
 - For details, see Chapter 8