Lecture slides for
Automated Planning: Theory and Practice

Chapter 7
Propositional Satisfiability Techniques

Dana S. Nau
University of Maryland

12:58 PM February 15,2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

® Propositional satisfiability: given a boolean formula
»eg., PvQaA(-QvRvS)a(-Rv-=P),
does there exist a model
» 1.€., an assignment of truth values to the propositions
that makes the formula true?
® This was the very first problem shown to be NP-complete
® Lots of research on algorithms for solving it

¢ Algorithms are known for solving all but a small subset in
average-case polynomial time

® Therefore,

¢ Try translating classical planning problems into satisfiability
problems, and solving them that way

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Outline

® Encoding planning problems as satisfiability problems
® Extracting plans from truth values
® Satisfiability algorithms
¢ Davis-Putnam
¢ Local search
¢ GSAT
® Combining satisfiability with planning graphs
¢ SatPlan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Overall Approach

® A bounded planning problem 1s a pair (P,n):
¢ P 1s a planning problem; # 1s a positive integer
¢ Any solution for P of length #n 1s a solution for (P,n)

® Planning algorithm:
® Do iterative deepening like we did with Graphplan:
¢ forn=0,1,2, ...,
» encode (P,n) as a satisfiability problem ®
» 1f d 1s satisfiable, then

e From the set of truth values that satisfies ®, a solution
plan can be constructed, so return it and exit

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Notation

® For satisfiability problems we need to use propositional logic
® Nced to encode ground atoms into propositions

¢ For set-theoretic planning we encoded atoms into propositions
by rewriting them as shown here:

» Atom: at(r1,loc1)
» Proposition: at-r1-loc1
® For planning as satisfiability we’ll do the same thing
¢ But we won’t bother to do a syntactic rewrite
¢ Just use at(r1,loc1) itself as the proposition

® Also, we’ll write plans starting at a, rather than a,
o =(ag, a, ...,a,)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Fluents

® Ifz={(aya,,...,a,) isasolution for (P,n), it generates these states:

So» 81 = V(S0eag), S, =y(s1,ay), .o, S, = Y(S, a4,)

® [luent: proposition saying a particular atom is true in a particular state
¢ at(r1,loc1,i) is a fluent that’s true iff at(r1,loc1) is in s,

¢ We’ll use /; to denote the fluent for literal / in state s,
» e.g.,if [=at(r1,loc1)
then /., = at(r1,loc1,i)

¢ a.1s a fluent saying that a 1s the i 'th step of
» e.g., if a=move(r1,loc2,loc1)
then a; = move(r1,loc2,loc1,i)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Encoding Planning Problems

® Encode (P,n) as a formula ® such that

& 7= {a, a,, ..., a,) is asolution for (P,n) if and only if
® can be satisfied in a way that makes the fluents q,,, ..., a, | true

® Let
¢ A = {all actions in the planning domain}
¢ S = {all states in the planning domain}

¢ [= {all literals in the language}

® O is the conjunct of many other formulas ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Formulas in ®

1. Formula describing the initial state:
o N, |lesyt A N{=l, |I€L~-s,}

2. Formula describing the goal:
o N |leghan N{=L | leg)

3. Forevery actiona in 4 and fori=1, ..., n, a formula describing what changes a
would make if it were the i’th step of the plan:

¢ a, = \{p, | p EPrecond(a)} A \ {e,,, | e € Effects(a)}

4. Complete exclusion axiom:

¢ For every pair of actions a and b, and fori =0, ..., n—1, a formula saying they

can’t both be the i’th step of the plan
—a; v - b,

¢ this guarantees there can be only one action at a time

® Is this enough?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Frame Axioms

5. Frame axioms:

¢ Formulas describing what doesn 't change
between steps i and i+1

® Scveral ways to write these

® One way: explanatory frame axioms
¢ Fori=0, ..., n—1, an axiom for every literal /

» Says that if / changes between s; and s,
then the action at step i must be responsible:

(=LAl =V, i, {a; | E effects’(a)})
ANIA=L, =V, i, 1a; | [€ effects(a)})

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example

® Planning domain:
¢ one robot r1

¢ two adjacent locations |1, 12
¢ one planning operator (to move the robot from one location to another)

® Encode (P,n) where n =1

1. Initial state: {at(r1,11)}

Encoding: at(r1,11,0) A —at(r1,12,0)
2. Goal: {at(r1,12)}

Encoding: at(r1,12,1) A —at(r1,11,1)

3. Operator: see next slide

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

Example (continued)

® Operator: move(r,l,!")
precond: at(r,/)
effects: at(r,/'), —at(r,])
Encoding:
move(r1,l11,12,0) = at(r1,11,0) A at(r1,12,1) A -at(r1,11,1)
move(r1,12,11,0) = at(r1,12,0) A at(r1,11,1) A —at(r1,12,1)
move(r1,I1,11,0) = at(r1,11,0) A at(r1,11,1) A —at(r1,11,1)| contradictions
move(r1,12,12,0) = at(r1,12,0) A at(r1,12,1) A —at(r1 ,I2,1)} (casy to detect)
move(l1,r1,12,0) = ...
move(12,11,r1,0) = ...
move(l1,12,r1,0) = ...
move(12,11,r1,0) = ... _

nonsensical, and we can avoid generating
> them if we use data types like we did for
state-variable representation

® Operator: move(r : robot, / : location, /' : location)
precond: at(r,/)
effects: at(r,/"), —at(r,])

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ i

Example (continued)

4. Complete-exclusion axiom:
-move(r1,I1,12,0) v =move(r1,12,11,0)

5. Explanatory frame axioms:
-at(r1,11,0) A at(r1,11,1) = move(r1,12,11,0)
-at(r1,12,0) A at(r1,12,1) = move(r1,11,12,0)
at(r1,11,0) A —at(r1,11,1) = move(r1,i1,12,0)
at(r1,12,0) A —at(r1,12,1) = move(r1,12,11,0)

® O is the conjunct of all of these

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Summary of the Example

® P is a planning problem with one robot and two locations
¢ initial state {at(r1,/1)}
¢ goal {at(r1,12)}
® Encoding of (P, 1)
¢ ®=Jat(r1,11,0) A —at(r1,12,0)]
A [at(r1,12,1) A —at(r1,11,1)]
A [move(r1,I11,12,0)
= at(r1,11,0) A at(r1,12,1) A —at(r1,11,1)]
A [move(r1,12,11,0)
= at(r1,12,0) A at(r1,11,1) A —at(r1,12,1)]
[-move(r1,11,12,0) v =move(r1,12,11,0)]
[-at(r1,11,0) A at(r1,11,1) = move(r1,I12,11,0)]
[-at(r1,12,0) A at(r1,12,1) = move(r1,1,12,0)]
[at(r1,11,0) A —at(r1,11,1) = move(r1,1,12,0)]
A [at(r1,12,0) A —at(r1,12,1) = move(r1,12,11,0)]

Dana Nau: Lecture slides for Automated Planning

> > > >

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

(initial state)
(goal)

(action)

(action)

(complete exclusion)
(frame axiom)
(frame axiom)
(frame axiom)

(frame axiom)

13

Extracting a Plan

® Let d be an encoding of (P,n)
® Suppose we find an assignment of truth values that satisfies ®.
¢ This means P has a solution of length »

® Fori=l,...,n, there will be exactly one action a such that a, = true
¢ This 1s the i’th action of the plan.

® Example
® The formula on the previous slide
¢ & can be satisfied with move(r1,l1,12,0) = true
» Thus (move(r1,I1,12,0)) is a solution for (P,1)
¢ [t’s the only solution - no other way to satisfy ®@

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14

Planning

® How to find an assignment of truth values that satisfies ®?
¢ Use a satisfiability algorithm

® Example: the Davis-Putnam algorithm

¢ First need to put @ into conjunctive normal form
eg.,d=DA(-DvAv-B)aA(-Dv-Av-B)aA(-Dv-AvB)AA

¢ Write @ as a set of clauses (disjuncts of literals)

o ={{D}, {-D,A, -B}, {-D, -A, =B}, {-D, -A, B}, {A}}

¢ Some special cases:
» If ® = then @ is always true
» Ifd={..., 3, ...} then ® is always false (hence unsatisfiable)
» If ® contains a unit clause, [, then [must be true in order to satisfy @

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

The Davis-Putnam Procedure

Backtracking search through alternative assignments of truth values to literals
® u = {literals to which we have assigned the value TRUE}
¢ initially empty

Davis-Putnam(®,)

® For every unit clause / Unit-propagate(®, u)

¢ add/tou if & € @ then return error in the book here
¢ remove clauses if ® = J then exit with u
that contain / select a variable P such that P or =P occurs in ¢

Davis-Putnam(® U {P},)
Davis-Putnam(® U {—P}, 1)
end

¢ modify clauses
that contain —/

® If ® contains &, u fails

If ® =, uis asolution Unit-Propagate(®, 1)
® Select a Boolean while there is a unit clause {I} in ® do
variable P in @ w <« u\J{l}
for every clause C € @
ifl € C then ® « & — {C}
else if =l € C then & «— & — {C}U {C — {—I}}

® do two recursive calls
® AP

® OA-P end

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Local Search

® Let u be an assignment of truth values to all of the variables
¢ cost(u,®) = number of clauses in @ that aren’t satisfied by u
¢ flip(P,u) = u except that P’s truth value 1s reversed

S

® [ocal search:

Boolean variable

¢ Sclect a random assignment u
¢ while cost(u,®) # 0
» 1f there is a P such that cost(flip(P,u),®) < cost(u,P) then
e randomly choose any such P
o u < flip(P,u)
» else return failure
® Local search is sound
® Ifit finds a solution it will find 1t very quickly

® Local search is not complete: can get trapped in local minima

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

17

GSAT

® Basic-GSAT:
¢ Sclect a random assignment u
¢ while cost(u,®) # 0
» choose a P that minimizes cost(flip(P,u),®), and flip it
® Not guaranteed to terminate

® GSAT:

¢ restart after a max number of flips
¢ rcturn failure after a max number of restarts

® The book discusses several other stochastic procedures
¢ One is Walksat
» works better than both local search and GSAT
¢ [’ll skip the details

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Discussion

® Recall the overall approach:
¢ forn=0,1,2, ...,
» encode (P,n) as a satisfiability problem @
» 1f ® 1s satisfiable, then

e From the set of truth values that satisfies ®, extract a solution plan
and return it

® By itself, not very practical (takes too much memory and time)
® But it can work well if combined with other techniques
¢ c.g., planning graphs

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

19

SatPlan

® SatPlan combines planning-graph expansion and satisfiability checking
® Works roughly as follows:
¢ fork=0,1,2, ...

» Create a planning graph that contains £ levels

» Encode the planning graph as a satisfiability problem

» Try to solve it using a SAT solver

e [fthe SAT solver finds a solution within some time limit,
- Remove some unnecessary actions

- Return the solution

® Memory requirement still is combinatorially large
¢ but less than what’s needed by a direct translation into satisfiability

® BlackBox (predecessor to SatPlan) was one of the best planners in the 1998
planning competition
® SatPlan was one of the best planners in the 2004 and 2006 planning competitions

Dana Nau: Lecture slides for Automated Planning 20
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Other Translation Approaches

® Translate planning problems into 0-1 integer programming problems
¢ Then solve them using an integer programming package such as CPLEX
¢ Techniques are somewhat similar to translation of planning to satisfiability

® Translate planning problems into constraint satisfaction problems

¢ Then solve them using CSP techniques such as arc consistency and path
consistency

¢ For details, see Chapter 8

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

21

