Lecture slides for
Automated Planning: Theory and Practice

Chapter 9
Heuristics in Planning

Dana S. Nau
University of Maryland

3:08 PM March 7, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning as Nondeterministic Search

Abstract-search(u)
if Terminal(u) then return(u)

u «— Refine(u) .. refinement step
B « Branch(u) .. branching step
B" < Prune(B) ;. pruning step

if B’ = () then return(failure)
[nondeterministically choose v € B’ |
return(Abstract-search(v))
end

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Making it Deterministic

Depth-first-search(u)
if Terminal(u) then return(u)

u «— Refine(u) ., refinement step
B « Branch(u) .. branching step
C « Prune(B) ., pruning step
while C # () do
v« Select(C) ;i node-selection step |
C —C—{v}

7 < Depth-first-search(v)
if 7 # failure then return(r)
return(failure)
end

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Digression: the A* algorithm (on trees)

® Suppose we’re searching a tree in which each edge (s,s") has a cost c(s,s")

¢ Ifp is a path, let c(p) = sum of the edge costs g(s)
¢ For classical planning, this is the length of p %
Ore
® For every state s, let %
¢ g(s) = cost of the path from s, to s

& h*(s) = least cost of all paths from s to goal nodes | h*(s) Kg&

® *(s) = g(s) + h*(s) = least cost of all paths
from s, to goal nodes that go through s

® Suppose A(s) is an estimate of /1 *(s)
& Let f(s) = g(s) + h(s)
» f(s) 1s an estimate of f*(s)
& & is admissible if for every state s, 0 < h(s) < h*(s)
¢ If /1 is admissible then fis a lower bound on f*

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

The A* Algorithm

® A¥* on trees:

loop

choose the leaf node s such that f(is) is smallest % g(s)
if s is a solution then return it and exit o e
expand it (generate its children)

® On graphs, A* is more complicated
o additional machinery to deal with) Y { e
multiple paths to the same node

® If a solution exists (and certain other
conditions are satisfied), then:

¢ If A(s) 1s admissible, then A* 1s guaranteed to find an optimal solution

¢ The more “informed” the heuristic is (i.e., the closer it is to &%),
the smaller the number of nodes A* expands

& If /i(s) 1s within ¢ of being admissible, then A* is
guaranteed to find a solution that’s within ¢ of optimal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Hill Climbing

® Use /1 as a node-selection heuristic
¢ Seclect the node v in C for which A(v) 1s smallest .,
®

® Why notuse f?

® Do we care whether / 1s admissible? cléd
Depth-first-search(u)
if Terminal(u) then return(u)
u «— Refine(u) .. refinement step
B « Branch(u) .. branching step ®
C < Prune(B) ., pruning step /\'
while C # () do °
[v « Select(C) .. node-selection step |
C « C—{v}
7 < Depth-first-search(v)
if = # failure then return(r)
return(failure)
end
1ons.org/licenses/by-nc-sa/2.0/

FastForward (FF)

® Depth-first search
® Sclection heuristic: relaxed Graphplan ol

¢ Letvbeanodein C

¢ Let P, be the planning problem of getting Clee
from v to a goal
¢ use Graphplan to find a solution for a
relaxation of P, ®
¢ The length of this solution is a lower / .\.

bound on the length of a solution to P,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Selection Heuristic

® Given a planning problem P, create a relaxed planning problem P’
and use GraphPlan to solve it

¢ Convert to set-theoretic representation
» No negative literals; goal 1s now a set of atoms
¢ Remove the delete lists from the actions

¢ Construct a planning graph until a layer 1s found that contains all
of the goal atoms

¢ The graph will contain no mutexes because the delete lists were
removed

¢ Extract a plan 7’ from the planning graph
» No mutexes = no backtracking = polynomial time

® |7 1s a lower bound on the length of the best solution to P,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

FastForward

® FF evaluates all the nodes in the set C of u’s successors
® Ifnone of them has a better heuristic value than u, FF does a
breadth-first search for a state with a strictly better evaluation ®

® The path to the new state 1s added to the current plan, and the \.
search continues from this state ¢

® Works well because plateaus and local minima tend to be
small in many benchmark planning problems

® Can’t guarantee how fast FF will find a solution,
or how good a solution it will find o

¢ However, it works pretty well on many problems

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

AIPS-2000 Planning Competition

® FastForward did quite well
® In the this competition, all of the planning problems were classical
problems

® Two tracks:
¢ “Fully automated” and “hand-tailored” planners

¢ FastForward participated in the fully automated track
» It got one of the two “outstanding performance” awards

¢ Large variance in how close its plans were to optimal
» However, it found them very fast compared with the other
fully-automated planners

Dana Nau: Lecture slides for Automated Planning 10

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

2002 International Planning Competition

® Among the automated planners, FastForward was roughly in the middle

® LPG (graphplan + local search) did much better, and got a “distinguished
performance of the first order” award

® It s interesting to see how FastForward did in problems that went beyond
classical planning

» Numbers, optimization
® Example: Satellite domain, numeric version

¢ A domain inspired by the Hubble space telescope
(a lot simpler than the real domain, of course)

» A satellite needs to take observations of stars

» Gather as much data as possible
before running out of fuel

¢ Any amount of data gathered 1s a solution
» Thus, FastForward always returned the null plan

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ i

2004 International Planning Competition

® FastForward’ s author was one of the competition chairs
¢ Thus FastForward did not participate

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

12

Plan-Space Planning

Abstract-search(u)
if Terminal(u) then return(u)

u «— Refine(u) .. refinement step
B « Branch(u) .. branching step
B'" < Prune(B) ., pruning step

if B’ = () then return(failure)
nondeterministically choose v € B’
return(Abstract-search(v))

end

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Refine = select next flaw
to work on

Branch = generate
resolvers

Prune = remove some of
the resolvers

nondeterministic choice
= resolver selection

13

Abstract-search(u)
if Terminal(u) then return(u)

Flaw Selection

[u «— Refine(u) - reflnement step]
B «— Branch(u) .; branching step ¢ Ni};;t efxlfentually reglolve afll
B" < Prune(B) . pruning step Of e HaWs, TCEardiess o

which one we choose first

if B' = () then return(failure)
¢ an “AND” branch

nondeterministically choose v € B’

return(Abstract-search(v)) | partial plan x |
nnestablished unestablished seaona
Jleaws: Q- ven threatens H's
precondition g, precondition g, By
d precondition p

resolvers:

resolvers: resolvers:

actio action

a a, a before b b befor
partial partial partial partial partial
plan plan o, plan s, plan plan s,

Dana Nau: Lecture slides for ; ; :% ﬂ

Licensed under the Creative

‘2l S

Serializing and AND/OR Tree

® The search space is
an AND/OR tree

Partial plan p

.

Goal g, | | Goal g,

e

Operator o,

Operator o,

Constrain Order

“| variable v | 77| tasks

® Decciding what flaw to work on next = serializing this tree (turning it into

a state-space tree)

¢ at each AND branch,

choose a child to
expand next, and
delay expanding
the other children

=

Goal g,

Dana Nau: Lecture slides for Automated Planning

Partial plan p

I
Goal g,

Operator 0,

Partial plan p,

Constrain
"| variable v

"| tasks

Operator o,

AN
Partial plan p,

e N

Order Goal g,) Constrain

| variable v

Order

"| tasks

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

15

acLion
{1y

One Serialization

a belore b

partial
plan m,,

partial
plan x|

partial plan x

aclion «,

partial
plan m,

action

acluon

1y

b belore a

partial
plan T,

acton

partial
plan o

partial
plan |

partial
plan 5,

partial
plan 7,

partial
plan s,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Another Serialization

partial plan nt

action ¢, action ¢,

aclon as

partial partizal partial
plan st plan T, plan i,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

a belore b hefore a belore) before
b a b u
partial partial parual partial partial partial
planm, | | plan m, plan m, plan 15, plan sty plan m.,
aclign &, aclign a, actiqna, aclign «, actign @, aclidn a,
partial partial partial partial partial partial
plan . | | plan T, plan s, plan 1., plan g4, plan m,,

17

Why Does This Matter?

® Different refinement strategies produce different serializations
¢ the search spaces have different numbers of nodes
® In the worst case, the planner will search the entire serialized search space
® The smaller the serialization, the more likely that the planner will be efficient

® One pretty good heuristic: fewest alternatives first

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

18

A Pretty Good Heuristic

® Fewest Alternatives First (FAF)
¢ Choose the flaw that has the smallest number of alternatives

¢ In this case, unestablished
precondition g,

partial plan x

. y action @
mnestablished nnestablished)
flews: _ . ees. threatens H's
' precondition g, precondition g; .Y
precondition p
resolvers: resolvers: I S

ACTiON 1 action
(12

actio

x b before a

: a before b

partial partial
plan g plan s,

SRR

partial partial partial
plan plan plan .

XA U

Dana Nau: Lecture slides for Automated Flanning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

How Much Difference Can the Refinement
Strategy Make?

® Case study: build an AND/OR graph from repeated occurrences of this pattern:

W_J
b
® Example: i
¢ number of levels k=3
N N N

¢ branching factor b =2

® Analysis:
¢ Total number of nodes in the AND/OR graph is n = O(b")
¢ How many nodes in the best and worst serializations?

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Case Study, Continued

® The best serialization contains (H)(b2k) nodes
® The worst serialization contains @(Zkbzk) nodes

¢ The size differs by an exponential factor

¢ But both serializations are doubly exponentially large
® This limits how good any flaw-selection heuristic can do

¢ To do better, need good ways to do node selection, branching, pruning

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Abstract-search(u)
if Terminal(u) then return(u)

Resolver Selection

u «— Refine(u) .. refinement step o
B « Branch(u) .; branching step ® This is an “or” branch
B" < Prune(B) ;. pruning step
if B’ = () then return(failure)
| nondeterministically choose v € B’]
return(Abstract-search(v)) | partial plan |
e 4//’§Z>l
flaws: unestab.lif; hed unestab.] is_;_hed th::::z:sab’s
precondition g, precondition g, precondition 7

resolvers:

resolvers: resolvers:

action
("2

actio .
a before b b befor

partial partial
plan plan s,

‘2l S

partial partial partial
plan plan v, plan .

Dana Nau: Lecture slides for ; ; :% ﬁ

Licensed under the Creative

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

23

