Lecture slides for
Automated Planning: Theory and Practice

Chapter 11
Hierarchical Task Network Planning

Dana S. Nau
University of Maryland

2:26 PM April 18,2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

® We may already have an 1idea how to go about solving
problems in a planning domain

® Example: travel to a destination that’s far away:

¢ Domain-independent planner:
» many combinations of vehicles and routes

¢ Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport

2. travel to local airport
3. fly to remote airport
4. travel to final destination

® How to enable planning systems to make use of such recipes?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

® Control rules (previous chapter):

Two Approaches

Abstract-search(u)

if Terminal(u) then return(u)

¢ Write rules to prune every

action that doesn ’t fit the
recipe

® Hierarchical Task Network
(HTN) planning:

¢ Describe the actions and

subtasks that do fit the recipe

Dana Nau: Lecture slides for Automated Planning

u «— Refine(u) ., refinement step

B « Branch(u) ;; branching step

B' < Prune(B) ,;__pruning step

if B" = () then return(failure)
nondeterministically choose v € B’
return(Abstract-search(v))

end

Abstract-search(u)

if Terminal(u) then return(u)
u «— Refine(u) .. refinement step

B « Branch(u) ;;__branching step

B' « Prune(B) :; pruning step
if B' = () then return(failure)
nondeterministically choose v € B’
return(Abstract-search(v))

end

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Task: | travel(x,y)
4 o \/ \/ o N
Method: taxi-travel(x,y) Method: air-travel(x,y)
. . . et-ticket(a(x),a
get-taxi [ride(x,y) |~ |pay-driver 5 (ax) (y))/\‘ fly(a(x),a(y)) (= travel(a(y),y)
NG / _ | travel(x,a(x)))

HTN Planning

® Problem reduction

travel(UMD, LAAS)

go-to-travel-web-site
find-flights(BWI, TLS)

BACKTRACK -

¢ Tasks (activities) rather than goals

® Methods to decompose tasks into subtasks
¢ Enforce constraints
» E.g., taxi not good for long distances

¢ Backtrack if necessary

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

get-ticket(IAD, TLS)

\

go-to-travel-web-site
find-flights(IAD,TLS)
buy-ticket(IAD,TLS)

travel(UMD, 1AD)

get-taxi
ride(UMD, TAD)
pay-driver

fly(BWI, Toulouse)
travel(TLS, LAAS)

get-taxi
ride(TLS, Toulouse)
pay-driver

HTN Planning

® HTN planners may be domain-specific
¢ c.g., see Chapters 20 (robotics) and 23 (bridge)
® Or they may be domain-configurable

¢ Domain-independent planning engine

¢ Domain description that defines not only the operators, but

also the methods
¢ Problem description

» domain description, initial state, initial task network

Task: | travel(x,y)

- ¢\ -

Method: taxi-travel(x,y) Method: air-travel(x,y)

\

\ 4

oet-taxi | ride(r.y) |—|pay-driver get—ticket(a(x),a()/))/\‘ fly(a(x).20))

travel(a(y),y)

- J

_ | travel(x,a(x))

)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

5

Simple Task Network (STN) Planning

® A special case of HTN planning
@ States and operators
¢ The same as 1n classical planning
® Task: an expression of the form #(u,...,u,)
® ¢ 1s a task symbol, and each u; 1s a term
¢ Two kinds of task symbols (and tasks):
» primitive: tasks that we know how to execute directly
e task symbol 1s an operator name
» nonprimitive: tasks that must be decomposed into subtasks

e use methods (next slide)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Methods

® Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

¢ name(m): an expression of the form n(x,,...,x,)

» X1,...,X, are parameters - variable symbols

¢ task(m): a nonprimitive task

¢ precond(m): preconditions (literals)

¢ subtasks(m): a sequence

travel(x,y)

/‘

air-travel(x,y)

long-distance(x,)

B i ——

travel (x, a(x))

fly (a(x), a(y))

travel (a(y), y)

of tasks (¢, ..., t,)
: -tick :
air-travel(x,y) buy-ticket (alx), 20))
task: travel(x,y)

precond: long-distance(x,y)
subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y))

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Methods (Continued)

® Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

¢ name(m): an expression of the form n(x,,...,x,)

» X1,...,X, are parameters - variable symbols
¢ task(m): a nonprimitive task el

¢ precond(m): preconditions (literals)

¢ subtasks(m): a partially ordered
set of tasks {#,, ..., 1} long-distance(x,y)

N\ T~

air-travel (x.)) buy-ticket (a(x), a(y))||travel (x, a(x))||fly (a(x), a(y))||travel (a(y), y)
B ’ _/ \-/‘
task: travel(x,y) ~

precond: long-distance(x,y)
network: u,=buy-ticket(a(x),a(y)), u,= travel(x,a(x)), u;= fly(a(x), a(y))
u,=travel(a(y),y), {(u,us), (uy,u3), (us,uy)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

travel(x,y)

Domains, Problems, Solutions

® STN planning domain: methods, operators
® STN planning problem: methods, operators, initial state, task list
® Total-order STN planning domain and planning problem:

¢ Same as above except that
all methods are totally ordered

nonprimitive task

® Solution: any executable plan

precond

that can be genergted by ey
recursively applying —
¢ methods to primitive task primitive task

nonprimitive tasks @tor inst@ @tor inst@
N\ N\

¢ opcrators to
primitive tasks

sy | |precond| |effects| | s, | [precond| |effects| | s,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

yd

Example

® Suppose we want to move three stacks of containers in a way that
preserves the order of the containers

"4

rA
‘ cranel * crane2 ‘ crane3
c31
/7| c21 /7| €32 A
cll - plc c22 — p2c c33 ~ P3¢
cl12 L 7/ c23 L 7/ c34 L 7/
e plb VE p2b D3a p3b
locl loc2 loc3
(a) initial state
& & -
‘ cranel l crane2 * crane3 c31
c21 c32
clil c22 c33
cl2 c23 c34
. plc g p2c . pP3c

pla

plb

p3b

p2a p2b p3a

locl

loc2

(b) goal

loc3

10

Example (continued)

® A way to move each stack:

¢ first move the

pd

containers cranel crane2 cranes
from p to an i
Intermediate c11 557 | ooz A= T A
pile r L oy A e 4 T
locl loc2 loc3

(a) initial state

¢ then move

them from £
C 0 cranel crane2 *crane3 | €31
c21 c32
4 tO q cll c22 c33
cl2 c23 c34
plc p2c p3c
ARy — Ay ~— AEmmy
1 plb p2b p3b
pla p2a p3a
locl loc2 loc3

(b) goal
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

take'and'pUt(C3 ka ll) l2ap19p29 L1, CL'Q):
task: move-topmost-container(pi, p2)
precond: top(c,p1), on(c,z1), true if p1 is not empty

Total-Order

attached(p1, 1), belong(k,11), ; bindly andk Formulation

attached(pg,lg), top(xz,pQ) ; bind lo and x9
subtasks: (take(ka lla C, xlapl)- pUt(ka l23 C, .’Bg,pg»

recursive-move(p, g, ¢, x):
task: move-stack(p, q)
precond: top(c,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, q), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()

task: move-all-stacks()
precond: ; no preconditions
subtasks: ; move each stack twice:

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

yd

‘ cranel
Y &
cli . plc
cl2 A
bia plb
locl
&
‘ cranel
cli
cl2
o plc
— L7
pia plb
locl

12

take—and-put(c, ks ll) l2ap19p2a L1, $2):
task: move—topmost—container(p1, p2)
precond: top(c,p1), on(c,z1), ; true if p; is not empty

Partial-Order

attached(ps, 1), belong(k, 1), ;bindly andk Formulation

attached(pz, l2), tOp(:L‘Q,pQ) ; bind lo and x4
subtasks: <take(k, lla C, xlapl)' pUt(ka l2a C, $2,p2)>

recursive-move(p, g, ¢, x):
task: move-stack(p, q)
precond: top(c,p), on(e,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()
task: move-all-stacks()
precond: ; no preconditions
network: ; move each stack twice:

u1 =move-stack(pla,plb), us =move-stack(plb,plc),
us =move-stack(p2a,p2b), us =move-stack(p2b,p2c),
us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),
{(u1,u2), (u3,ua), (us, us) }

yd

‘ cranel
Y &
cli . plc
cl2 A
bia plb
locl
&
‘ cranel
cli
cl2
o plc
— L7
pia plb
locl

13

Solving Total-Order STN Planning Problems

TFD(s, (t1,..., &), O, M)
if k = 0 then return () (i.e., the empty plan)
if t; is primitive then
active < {(a,o) | a is a ground instance of an operator in O,
o is a substitution such that a is relevant for o (t;),
and a is applicable to s}
if active = @ then return failure
nondeterministically choose any (a,o) € active

state s; task list T=(|t, |,t,,...)

n <« TFD(y(s,a),0({t2,..., %)), O, M) action|a
if m = failure then return failure
else return a. state|y(s,a) |; task list T=(t,, ...)

else if #; is nonprimitive then
active < {m | m is a ground instance of a method in M,
o is a substitution such that m is relevant for o (£;),
and m is applicable to s} task list T=(t,|,t,,...)
if active = @ then return failure

nondeterministically choose any (m, o) € active method instance m
w < subtasks(m).o ({tz,..., tk)) ke T t
return TFD(s, w, O, M) ask list T=(|uy,...,u,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Comparison to
Forward and Backward Search

® In state-space planning, must choose whether to search
forward or backward < >

So S Sy > e S; |

® In HTN planning, there are two choices to make about direction:

¢ forward or backward >
¢ up or down task t,
. TFD goes / \
down and task t,, coo task t_
forward /¢>\ /4>\

Vs, S Sy > ... S; |

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

15

Comparison to
Forward and Backward Search

® Like a backward search, task t,
TFD is goal-directed / \
¢ Goals
task t coo task t
correspond m ”

to tasks /4)\ /<>\

® Like a forward search, 1t generates actions
in the same order in which they’ll be executed

® Whenever we want to plan the next task
¢ we’ve already planned everything that comes before it

¢ Thus, we know the current state of the world

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Limitation of Ordered-Task Planning

® TFD requires totally ordered get-both(p.g)

methods / \

get(p) get(q)

walk(a,b) | | pickup(p) | | walk(b,a) | | walk(a,b) | | pickup(p) | | walk(b,a)

® Can’t interleave subtasks of different tasks
® Sometimes this makes things awkward

¢ Need to write methods that reason

globally instead of locally get- bOth(p q

goto(b plckup -both(p,q) | | goto(a

/\

walk(a,b) | | pickup(p) | | pickup(q) | | walk(b,a)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Partially Ordered Methods

® With partially ordered methods, the subtasks can be interleaved

get-both(p,q)

get(p) get(q)

walk(a,b) | | stay-at(b) | pickup(p) | | pickup(q) | walk(b,a) | | stay-at(a)

® Fits many planning domains better

® Requires a more complicated planning algorithm

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

s wom Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t, is a primitive task then
active < {(a,o) | ais a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}
if active = @ then return failure n={a,,...,a}; w={|t,|;t,, ts...}
nondeterministically choose any (a, o) € active
n <« PFD(y(s,a),0(w — {u}), O, M)
if # = failure then return failure
else return a.
else
active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (¢,),
and m is applicable to s}

operator instance | a

n={a,...,a,|al; w={t,t;, ...}

if active = @ then return failure | w={ |5 }
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w’, O, M)

r_—

. ' W _{ tll""’tlk ,tz,...}
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

o om Algorkithm for Partial-Order STNs

if w = @ then return the empby plan

inw
® Intuitively, w 1s a partially ordered set of tasks {7, #,, ...}
¢ But w may contain a task more than once),
» e.g., travel from UMD to LAAS twice (t),

¢ The mathematical definition of a set doesn’t allow this
® Define w as a partially ordered set of task nodes {u,, u,, ...}
¢ Each task node u corresponds to a task ¢,

® In my explanations, I’ll talk about # and i1gnore u
EISE TETUTTT @. 7T

else

active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (¢,),
and m is applicable to s}

s w={|t{|ty, t5... }

instance | a

al;, w={t,t;, ...}

. . . w={t,|.t,,...
if active = @ then return failure Yt
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

/
return(PFD(s, w’, O, M) o PR P
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

s wom Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t,, is a primitive task then
active < {(a,o) | ais a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}

if active = @ then return failure n={a,,..,a}; w={{t,|t,, t;...}

nondeterministically choose any (a, o) € active
n <« PFD(y(s,a),0(w — {u}), O, M)
if w = failure then return failure
else return a. 7
else
active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (¢,),

operator instance | a

and m is applicable to s}

if active = @ then return failure w={

t,

m

nondeterministically choose any (m, o) € active method instance

nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w’, O, M)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

n={a, ..., a, |al; w={t,t;, ..

W’ ={ tll,...,tlk ,tz’. o

3

PFD(s, w, O, M)

Algorithm for Partial-Order STNs

if w = @ then return the empty plan

nondeterministically choose any u € w that has no predecessors in w
if ¢, is a primitive tack then

active <«

if active
nondeter

m <« PFI

O(w, u, m, o) has a complicated definition in the book. Here’s what
1t means:

® We nondeterministically selected ¢, as the task to begin first
* 1.e., do ¢, s first subtask before the first subtask of every ¢, # ¢,

® Insert ordering constraints to ensure that this happens

if w = failure then return failure
else return a.

else

if active = @ then return failure
nondeterministically choose any (m, o) € active

o 1is a substitution such that name
and m is applicable to s}

method instance |m

nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w’, O, M)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

w={ t;|.L,,...

W’ ={ tll,...,tlk ,tz’. . .}

w={a, ...,a,|al; w={t,t; ...}

Comparison to Classical Planning

STN planning 1s strictly more expressive than classical planning

® Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

® Scveral ways to do this. One 1s roughly as follows:
¢ For each goal or precondition e, create a task 7,
¢ For each operator o and effect e, create a method m,,
» Task: ¢,

» Subtasks: 7., ¢, ..., t,,, 0, where ¢, ¢,, ..., ¢, are the

ceoy Cn’

preconditions of o

» Partial-ordering constraints: each ¢.; precedes o

® (I left out some details, such as how to handle deleted-condition
interactions)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Comparison to Classical Planning (cont.)

® Some STN planning problems aren’t expressible in classical planning

® Example:
¢ Two STN methods:

» No arguments E method1 :> method?2
» No preconditions

b a b

t t

a t

¢ Two operators, @ and b
» Again, no arguments and no preconditions

¢ Initial state is empty, initial task is t

¢ Set of solutions is {a@"b" | n >0}

¢ No classical planning problem has this set of solutions
» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {a"b” | n >0}

® Can even express undecidable problems using STNs

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

24

Increasing Expressivity Further

® If we always know the current state, we can make several enhancements:
¢ States can be arbitrary data structures

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East —3NT

Onlead: Westattrick3 |East #KJ74
West: #A2

Out: #QT98653
¢ Preconditions and effects can include

» logical inferences (e.g., Horn clauses)
» complex numeric computations

» Interactions with other software packages
® c.g., SHOP and SHOP2
& http://www.cs.umd.edu/projects/shop
¢ algorithms similar to PFD and PFD, with the above enhancements
¢ SHOP2 won an award at the 2002 Planning Competition

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

25

Increasing Expressivity Further

® If we always know the current state, we can make several enhancements:
¢ States can be arbitrary data structures

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East —3NT

Onlead: Westattrick3 |East #KJ74
West: #A2

Out: #QT98653
¢ Preconditions and effects can include

» logical inferences (e.g., Horn clauses)
» complex numeric computations

» Interactions with other software packages
® TLPlan and TALplanner also have some (but not all) of these enhancements

® What about adding them to a planner like FastForward?

Dana Nau: Lecture slides for Automated Planning 26
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example

method travel-by-foot ® Simple travel-planning domain
precond: distance(z,y) < 2 ¢ State-variable formulation
task: travel(a,z,y) ® Planning problem:

subtasks: walk(a, z,y) ¢ [’'m at home, [have $20

¢ Want to go to a park 8 miles
away

method travel-by-taxi
task: travel(a, z, y)
precond: cash(a) > 1.5+ 0.5 x distance(z,y)
subtasks: (call-taxi(a,z), ride(a, z,y), pay-driver(a,z,y))

operator walk
precond: location(a) = @ —>

effects: location(a) «— y

operator call-taxi(a, =) .

effects: location(tazxi) «— x ¢ 5, = {location(me) = home,
cash(me) = 20,
distance(home,park) =8}

operator ride-taxi(a, x)
precond: location(taxi) = x, location(a) = x

effects: location(taxi) «— vy, location(a) —
(tazi) —y (@) =y ¢ {, = travel(me,home,park)

operator pay-driver(a, z,y)
precond: cash(a) > 1.5+ 0.5 x distance(z,y)
effects: cash(a) < cash(a) — 1.5 — 0.5 X distance(z,y)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licens oy

Initial task:

travel-by-foot

Precond: distance(home,park) <2

Example, Continued

travel(me,home,park)

home

Precond: cash(me) > 1.50 + 0.50*distance(home,park)

yd
<Precondition fails >

< Precondition succeeds >
Decomposition into subtasks

>

T —>

park

@ pay-driver(me,home,park)

@ call-taxi(me,home) @ ride(me,home,park)
Initial ! : ! : ' -
state Precond: ... ! Precond: ... ;! Precond: ... s Final
- Effects: ... ! Effects: ... - Effects: ... / state
|, II' - T==== ':' """"" ~ //”/
.~ R \ ! /" location(me)=park, /
location(taxi)=park, | o

{: cash(me)=20,

Dana Nau: Lecture slides for Automated Planni

/" location(me)=home,

-

cash(me)=20,

e ————

N -

ng

\ distance(home,park)=8 /" location(me)=home,

_distance(home,park)=8 ,”

cash(me)=20,

A Y

-
-

" location(me)=park,

/

- N _distance(home,park)=8 -
location(taxiy=home, 1~ ™" (_ o f)_ B ? 1 location(taxi)=park,
' \ cash(me)=14.50,

‘\\distance(home,park)zg //

~

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/li

-

N
\

\

\
1
1
1
1
1

28

HTN Planning

® HTN planning can be even more general
¢ Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards
¢ Some algorithms use causal links and threats like those in PSP
® There’s a little about this in the book
¢ [won’t discuss 1t

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

29

SHOP & SHOP2 vs. TLPlan & TALplanner

® These planners have equivalent expressive power
¢ Turing-complete, because both allow function symbols

® They know the current state at each point during the planning
process, and use this to prune actions

¢ Makes it easy to call external subroutines, do numeric
computations, etc.

® Main difference: how the pruning is done
¢ SHOP and SHOP?2: the methods say what can be done
» Don’t do anything unless a method says to do it
¢ TLPlan and TALplanner: the say what cannot be done
» Try everything that the control rules don’t prohibit

® Which approach 1s more convenient depends on the problem
domain

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Domain-Configurable Planners
Compared to Classical Planners

® Disadvantage: writing a knowledge base can be more
complicated than just writing classical operators

® Advantage: can encode “recipes’ as collections of methods
and operators

¢ Express things that can’t be expressed 1n classical planning
¢ Specify standard ways of solving problems

» Otherwise, the planning system would have to derive
these again and again from “first principles,” every time
it solves a problem

» Can speed up planning by many orders of magnitude
(e.g., polynomial time versus exponential time)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

31

Example from the AIPS-2002 Competition

® The satellite domain
¢ Planning and scheduling observation tasks among multiple satellites
¢ Each satellite equipped 1n slightly different ways
® Scveral different versions. I’'ll show results for the following:
¢ Simple-time:
» concurrent use of different satellites
» data can be acquired more quickly if they are used efficiently
¢ Numeric:

» fuel costs for satellites to slew between targets; finite amount of fuel
available.

» data takes up space in a finite capacity data store

» Plans are expected to acquire all the necessary data at minimum fuel cost.
¢ Hard Numeric:

» no logical goals at all — thus even the null plan is a solution

» Plans that acquire more data are better — thus the null plan has no value

» None of the classical planners could handle this

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Satellite-Numeric

1e+06 T T 1 j T —T T
LPG (Mid- eettmg‘n (10 ,ol‘ ed)
— F’ . (1‘ | \ : SOV a b
LPG (Speed) (10 solved) 3|
! W SHOP2 (20 solved) —
m TLPlan (20 solved) &
100000 | | -
d o
£
o
g 10000 - . -
c 1
2 g
()]
L |
E
1000 |- i o »
l o S p .
w ' £ hS O
£ ™ ‘
&l o o .
.2 .
100 | | .0/ > -
[@ S O 1
y D \ & L)
’ o (&)
10 o é o é | 1 1 1 L | 1 1
0 2 4 6 8 10 12 14 16 18 20
Problem number
Dana Nau: Lecture slides for Automated Planning 33

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Satellite-Numeric

450
' |] ' - LPG (M (?eettmg A(ol~ ecu
' LPG'(Quality) (10 s
400 | - LPG (Speed) (10 solved) _
SHOP2 (20 solved)
= TLPlan (20 solved)
350 .)
i o
300 -
®
e
_é‘ 250 o ‘ N |
3 0o /8
200 - o 5 |
? o R ° o
150 o -
o - .0 :
100 ° o e)
8 e ¥ +
\ [¢ H
50 y .
]
0 1 1 1 1 | L 1 |
0 2 4 8 10 12 14 16 18 20
Problem number
Dana Nau: Lecture slides for Automated Planning 34

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Satellite-SimpleTime

1e+06 [T T T
LPG (Mid- ‘aettmg» |’)() eolvem
.y o LPG (Quality) (20 solved n
LPG (Speed) (20 solved) 8
! SHOP2 (20 solved) — ¥
TALPlanner (20 solved) B
100000 - TLPlan (20 solved) @ '+
b o
=]
" 10000 |- 7
Re]
c
o 5
3]
2 -
= o =
- 1000 5 = o) o 7
- _ .0 g
o o a . . g L
a o & e 0 1
" e @ @ L |
100 W, -
i * a = ‘ L 3 -3 . .
B o
m m — 2 PR ——— ¥ o
10 T S—N— PR N S S — ! &
0 2 4 8 10 12 14 16 18 20
Problem number
Dana Nau: Lecture slides for Automated Planning 35

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Satellite-SimpleTime
180 T T T T T T T m T
LPQG (Mid-setting) (Lﬂ() solved)
LPG (Quality) (20 solved) e
LPG (Speed) (20 solved) o
160 SHOP2 (20 solved), —«— -
TALPlanner (20 solved) @
TLPlan (20 solved) @
140 +
B g/
g -
120 | | /4
," \ B
g ® ‘.’ ‘ W
© 100 [e . (7/ 4
o \ L)
) A o /@
@ ! \ £ fh/
80 | o Y ER AN |
e 1 =
W () ol o
60 . ‘ a ‘ :] d -
¢ N ’ M
e/ f A a O:---@ i} Q ' o
a0+ ° hi v ¥) @ o -
A L o 5l "
1 | 1 1 | | L | 1
4 6 8 10 12 14 16 18 20
Problem number
36

20
2

0
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Dana Nau: Lecture slides for Automated Planning

Satellite-HardNumeric

10000 T T ; 1 T T T T T]
i SHOP2 (20 solved) — 1
i TLPlan (20 solved) e]
o '3 3 r
! " o
o
P
1000] , -
[e 1
) s :3 w - .
“g s
o i o) ’) O_. - ™ &)
o v '
Q - -
5) > e, W
® ‘ S
100 | -
- 1\ /
: (-‘ 3 v
- e
10 A 1 1] 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Problem number
Dana Nau: Lecture slides for Automated Planning 37

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Satellite-HardNumeric

6000 T T T T T T ’% N . S o I
/ SHOP2 (20 solved) —
" TLPlan (20 solve_d) <)
5000 |- p—o—8—3 PR |
4000 . & _
z
T 3000 |- i
o
(o]
2000 |- o -8 -
1000 |- o/ |
™ P
0 1 1] 1 1 1 1 1]
0 2 <4 6 8 10 12 14 16 18 20
Problem number
Dana Nau: Lecture slides for Automated Planning 38

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

