Chapter 11
Hierarchical Task Network Planning

Dana S. Nau
University of Maryland

2:26 PM April 18, 2012
Motivation

- We may already have an idea how to go about solving problems in a planning domain

Example: travel to a destination that’s far away:
 - Domain-independent planner:
 » many combinations of vehicles and routes
 - Experienced human: small number of “recipes”
 e.g., flying:
 1. buy ticket from local airport to remote airport
 2. travel to local airport
 3. fly to remote airport
 4. travel to final destination

- How to enable planning systems to make use of such recipes?
Two Approaches

- Control rules (previous chapter):
 - Write rules to prune every action that doesn’t fit the recipe

- Hierarchical Task Network (HTN) planning:
 - Describe the actions and subtasks that do fit the recipe

Abstract-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow \text{Refine}(u)$;; refinement step
 $B \leftarrow \text{Branch}(u)$;; branching step
 $B' \leftarrow \text{Prune}(B)$;; pruning step
 if $B' = \emptyset$ then return(failure)
 nondeterministically choose $v \in B'$
 return(Abstract-search(v))
end

Abstract-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow \text{Refine}(u)$;; refinement step
 $B \leftarrow \text{Branch}(u)$;; branching step
 $B' \leftarrow \text{Prune}(B)$;; pruning step
 if $B' = \emptyset$ then return(failure)
 nondeterministically choose $v \in B'$
 return(Abstract-search(v))
end
HTN Planning

- **Problem reduction**
 - *Tasks* (activities) rather than goals
 - *Methods* to decompose tasks into subtasks
 - Enforce constraints
 - E.g., taxi not good for long distances
 - Backtrack if necessary

Tasks:

- travel(x,y)

Method: taxi-travel(x,y)

- get-taxi
- ride(x,y)
- pay-driver

Method: air-travel(x,y)

- get-ticket($a(x),a(y)$)
- fly($a(x),a(y)$)
- travel($a(y),y$)
- travel($x,a(x)$)

BACKTRACK

- travel(x,y)
HTN Planning

- HTN planners may be domain-specific
 - e.g., see Chapters 20 (robotics) and 23 (bridge)
- Or they may be domain-configurable
 - Domain-independent planning engine
 - Domain description that defines not only the operators, but also the methods
 - Problem description
 » domain description, initial state, initial task network

Task: travel(x,y)

Method: taxi-travel(x,y)

- get-taxi
- ride(x,y)
- pay-driver

Method: air-travel(x,y)

- get-ticket(a(x),a(y))
- fly(a(x),a(y))
- travel(x,a(x))
- travel(a(y),y)
Simple Task Network (STN) Planning

- A special case of HTN planning

- States and operators
 - The same as in classical planning

- Task: an expression of the form $t(u_1,\ldots,u_n)$
 - t is a task symbol, and each u_i is a term
 - Two kinds of task symbols (and tasks):
 - *primitive*: tasks that we know how to execute directly
 - task symbol is an operator name
 - *nonprimitive*: tasks that must be decomposed into subtasks
 - use methods (next slide)
Methods

- Totally ordered method: a 4-tuple
 \[m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{subtasks}(m)) \]
 - \text{name}(m): an expression of the form \(n(x_1, \ldots, x_n) \)
 \(x_1, \ldots, x_n \) are parameters - variable symbols
 - \text{task}(m): a nonprimitive task
 - \text{precond}(m): preconditions (literals)
 - \text{subtasks}(m): a sequence of tasks \(\langle t_1, \ldots, t_k \rangle \)

\[\text{air-travel}(x, y) \]

- \text{task}: \text{travel}(x, y)
- \text{precond}: \text{long-distance}(x, y)
- \text{subtasks}: \langle \text{buy-ticket}(a(x), a(y)), \text{travel}(x, a(x)), \text{fly}(a(x), a(y)), \text{travel}(a(y), y) \rangle
Methods (Continued)

- Partially ordered method: a 4-tuple

 \[m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{subtasks}(m)) \]

 - name(m): an expression of the form \(n(x_1, \ldots, x_n) \)

 \(x_1, \ldots, x_n \) are parameters - variable symbols

 - task(m): a nonprimitive task

 - precond(m): preconditions (literals)

 - subtasks(m): a partially ordered set of tasks \(\{t_1, \ldots, t_k\} \)

\[\text{air-travel}(x,y) \]

- task: \(\text{travel}(x,y) \)

- precond: \(\text{long-distance}(x,y) \)

- network: \(u_1 = \text{buy-ticket}(a(x), a(y)), u_2 = \text{travel}(x, a(x)), u_3 = \text{fly}(a(x), a(y)) \)

 \(u_4 = \text{travel}(a(y), y), \{ (u_1, u_3), (u_2, u_3), (u_3, u_4) \} \)
Domains, Problems, Solutions

- STN planning domain: methods, operators
- STN planning problem: methods, operators, initial state, task list
- Total-order STN planning domain and planning problem:
 - Same as above except that all methods are totally ordered

Solution: any executable plan that can be generated by recursively applying
 - methods to nonprimitive tasks
 - operators to primitive tasks
Example

- Suppose we want to move three stacks of containers in a way that preserves the order of the containers.
Example (continued)

- A way to move each stack:
 - first move the containers from p to an intermediate pile r
 - then move them from r to q
take-and-put\((c, k, l_1, l_2, p_1, p_2, x_1, x_2)\):
 task: move-topmost-container(p_1, p_2)
 precond: top(c, p_1), on(c, x_1), ; true if \(p_1\) is not empty
 attached(p_1, l_1), belong(k, l_1), ; bind \(l_1\) and \(k\)
 attached(p_2, l_2), top(x_2, p_2) ; bind \(l_2\) and \(x_2\)
 subtasks: \(\langle \text{take}(k, l_1, c, x_1, p_1), \text{put}(k, l_2, c, x_2, p_2) \rangle\)

recursive-move(p, q, c, x):
 task: move-stack(p, q)
 precond: top(c, p), on(c, x) ; true if \(p\) is not empty
 subtasks: \(\langle \text{move-topmost-container}(p, q), \text{move-stack}(p, q) \rangle\)
 ; ; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
 task: move-stack(p, q)
 precond: top(pallet, p) ; true if \(p\) is empty
 subtasks: \(\langle \rangle \) ; no subtasks, because we are done

move-each-twice()
 task: move-all-stacks()
 precond: ; no preconditions
 subtasks: ; move each stack twice:
 \(\langle \text{move-stack}(p_1a, p_1b), \text{move-stack}(p_1b, p_1c), \text{move-stack}(p_2a, p_2b), \text{move-stack}(p_2b, p_2c), \text{move-stack}(p_3a, p_3b), \text{move-stack}(p_3b, p_3c) \rangle\)
Partial-Order Formulation

take-and-put\(c, k, l_1, l_2, p_1, p_2, x_1, x_2\):
 task: move-topmost-container\(p_1, p_2\)
 precond: top\(c, p_1\), on\(c, x_1\), ; true if \(p_1\) is not empty
 attached\(p_1, l_1\), belong\(k, l_1\), ; bind \(l_1\) and \(k\)
 attached\(p_2, l_2\), top\(x_2, p_2\) ; bind \(l_2\) and \(x_2\)
 subtasks: \(\langle\)take\(k, l_1, c, x_1, p_1\), put\(k, l_2, c, x_2, p_2\)\(\rangle\)

recursive-move\(p, q, c, x\):
 task: move-stack\(p, q\)
 precond: top\(c, p\), on\(c, x\) ; true if \(p\) is not empty
 subtasks: \(\langle\)move-topmost-container\(p, q\), move-stack\(p, q\)\(\rangle\)
 ;; the second subtask recursively moves the rest of the stack

do-nothing\(p, q\)
 task: move-stack\(p, q\)
 precond: top\(\text{pallet}, p\) ; true if \(p\) is empty
 subtasks: \(\langle\rangle\) ; no subtasks, because we are done

move-each-twice():
 task: move-all-stacks()
 precond: ; no preconditions
 network: ; move each stack twice:
 \(u_1 =\)move-stack\(p_1a, p_1b\), \(u_2 =\)move-stack\(p_1b, p_1c\),
 \(u_3 =\)move-stack\(p_2a, p_2b\), \(u_4 =\)move-stack\(p_2b, p_2c\),
 \(u_5 =\)move-stack\(p_3a, p_3b\), \(u_6 =\)move-stack\(p_3b, p_3c\),
 \(\{(u_1, u_2), (u_3, u_4), (u_5, u_6)\}\)
Solving Total-Order STN Planning Problems

\[
\text{TFD}(s, (t_1, \ldots, t_k), O, M)
\]

if \(k = 0 \) then return \(\langle \rangle \) (i.e., the empty plan)

if \(t_1 \) is primitive then

\[
\text{active} \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O, \\
\sigma \text{ is a substitution such that } a \text{ is relevant for } \sigma(t_1), \\
\text{and } a \text{ is applicable to } s\}
\]

if \(\text{active} = \emptyset \) then return failure

nondeterministically choose any \((a, \sigma) \in \text{active}\)

\[
\pi \leftarrow \text{TFD}(\gamma(s, a), \sigma(\langle t_2, \ldots, t_k \rangle)), O, M)
\]

if \(\pi = \text{failure} \) then return failure

else return \(a. \pi \)

else if \(t_1 \) is nonprimitive then

\[
\text{active} \leftarrow \{m \mid m \text{ is a ground instance of a method in } M, \\
\sigma \text{ is a substitution such that } m \text{ is relevant for } \sigma(t_1), \\
\text{and } m \text{ is applicable to } s\}
\]

if \(\text{active} = \emptyset \) then return failure

nondeterministically choose any \((m, \sigma) \in \text{active}\)

\[
w \leftarrow \text{subtasks}(m). \sigma(\langle t_2, \ldots, t_k \rangle)
\]

return \(\text{TFD}(s, w, O, M) \)
Comparison to Forward and Backward Search

- In state-space planning, must choose whether to search forward or backward

 ![State-space planning diagram]

- In HTN planning, there are two choices to make about direction:
 - forward or backward
 - up or down

 ![HTN planning diagram]

- TFD goes down and forward
Comparison to Forward and Backward Search

- Like a backward search, TFD is goal-directed
 - Goals correspond to tasks
- Like a forward search, it generates actions in the same order in which they’ll be executed
- Whenever we want to plan the next task
 - we’ve already planned everything that comes before it
 - Thus, we know the current state of the world
Limitation of Ordered-Task Planning

- TFD requires totally ordered methods

- Can’t interleave subtasks of different tasks

- Sometimes this makes things awkward
 - Need to write methods that reason globally instead of locally
Partially Ordered Methods

- With partially ordered methods, the subtasks can be interleaved

- Fits many planning domains better
- Requires a more complicated planning algorithm
Algorithm for Partial-Order STNs

Algorithm: PFD(s, w, O, M)

1. if $w = \emptyset$ then return the empty plan
2. nondeterministically choose any $u \in w$ that has no predecessors in w
3. if t_u is a primitive task then
 a. $active \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,$
 \hspace{1cm} \sigma \text{ is a substitution such that } \text{name}(a) = \sigma(t_u),$
 \hspace{1cm} \text{and } a \text{ is applicable to } s\}$
4. if $active = \emptyset$ then return failure
5. nondeterministically choose any $(a, \sigma) \in active$
6. $\pi \leftarrow \text{PFD}(\gamma(s, a), \sigma(w - \{u\}), O, M)$
7. if $\pi = \text{failure}$ then return failure
8. else return $a. \pi$

else

9. $active \leftarrow \{(m, \sigma) \mid m \text{ is a ground instance of a method in } M,$
 \hspace{1cm} \sigma \text{ is a substitution such that } \text{name}(m) = \sigma(t_u),$
 \hspace{1cm} \text{and } m \text{ is applicable to } s\}$
10. if $active = \emptyset$ then return failure
11. nondeterministically choose any $(m, \sigma) \in active$
12. nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$$$
13. return(PFD(s, w', O, M)
Algorithm for Partial-Order STNs

- Intuitively, \(w \) is a partially ordered set of tasks \(\{t_1, t_2, \ldots\} \)
 - But \(w \) may contain a task more than once
 - e.g., travel from UMD to LAAS twice
 - The mathematical definition of a set doesn’t allow this
- Define \(w \) as a partially ordered set of task nodes \(\{u_1, u_2, \ldots\} \)
 - Each task node \(u \) corresponds to a task \(t_u \)
- In my explanations, I’ll talk about \(t \) and ignore \(u \)
Algorithm for Partial-Order STNs

\[\pi = \{a_1, \ldots, a_k\}; \quad w = \{t_1, t_2, t_3, \ldots\} \]

operator instance \(a \)

\[\pi = \{a_1, \ldots, a_k, m\}; \quad w' = \{t_2, t_3, \ldots\} \]

method instance \(m \)

\[w = \{t_1, t_2, \ldots\} \]

\[w' = \{t_{11}, \ldots, t_{1k}, t_2, \ldots\} \]
Algorithm for Partial-Order STNs

\[
\pi = \{a_1, \ldots, a_k, \underline{a}\}; \ w' = \{t_2, t_3, \ldots\}
\]

\[
\delta(w, u, m, \sigma) \text{ has a complicated definition in the book. Here’s what it means:}
\]

- We nondeterministically selected \(t_1\) as the task to begin first
 - i.e., do \(t_1\)’s first subtask before the first subtask of every \(t_i \neq t_1\)
- Insert ordering constraints to ensure that this happens

\[
\pi = \{a_1, \ldots, a_k, \underline{a}\}; \ w' = \{t_2, t_3, \ldots\}
\]

\[
w = \{t_1, t_2, \ldots\}
\]

method instance \(m\)
Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

- Any classical planning problem can be translated into an ordered-task-planning problem in polynomial time
- Several ways to do this. One is roughly as follows:
 - For each goal or precondition \(e \), create a task \(t_e \)
 - For each operator \(o \) and effect \(e \), create a method \(m_{o,e} \)
 » Task: \(t_e \)
 » Subtasks: \(t_{c_1}, t_{c_2}, \ldots, t_{c_n}, o \), where \(c_1, c_2, \ldots, c_n \) are the preconditions of \(o \)
 » Partial-ordering constraints: each \(t_{c_i} \) precedes \(o \)

- (I left out some details, such as how to handle deleted-condition interactions)
Comparison to Classical Planning (cont.)

● Some STN planning problems aren’t expressible in classical planning

● Example:
 ◆ Two STN methods:
 » No arguments
 » No preconditions
 ◆ Two operators, a and b
 » Again, no arguments and no preconditions
 ◆ Initial state is empty, initial task is t
 ◆ Set of solutions is \{a^n b^n \mid n > 0\}
 ◆ No classical planning problem has this set of solutions
 » The state-transition system is a finite-state automaton
 » No finite-state automaton can recognize \{a^n b^n \mid n > 0\}

● Can even express undecidable problems using STNs
Increasing Expressivity Further

- If we always know the current state, we can make several enhancements:
 - States can be arbitrary data structures
 - Preconditions and effects can include
 - logical inferences (e.g., Horn clauses)
 - complex numeric computations
 - interactions with other software packages
 - e.g., SHOP and SHOP2
 - algorithms similar to PFD and PFD, with the above enhancements
 - SHOP2 won an award at the 2002 Planning Competition
Increasing Expressivity Further

- If we always know the current state, we can make several enhancements:
 - States can be arbitrary data structures

<table>
<thead>
<tr>
<th>Us: East declarer, West dummy</th>
<th>Opponents: defenders, South & North</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract: East – 3NT</td>
<td>On lead: West at trick 3</td>
</tr>
<tr>
<td>East: ♠KJ74</td>
<td>West: ♠A2</td>
</tr>
<tr>
<td>Out: ♠QT98653</td>
<td></td>
</tr>
</tbody>
</table>

- Preconditions and effects can include
 - logical inferences (e.g., Horn clauses)
 - complex numeric computations
 - interactions with other software packages

- TLPlan and TALplanner also have some (but not all) of these enhancements

- What about adding them to a planner like FastForward?
Example

- Simple travel-planning domain
 - State-variable formulation
- Planning problem:
 - I’m at home, I have $20
 - Want to go to a park 8 miles away

\[s_0 = \{\text{location}(\text{me}) = \text{home}, \text{cash}(\text{me}) = 20, \text{distance}(\text{home, park}) = 8\} \]

\[t_0 = \text{travel}(\text{me, home, park}) \]

- \text{method} travel-by-foot
 - precondition: \(\text{distance}(x, y) \leq 2 \)
 - task: \(\text{travel}(a, x, y) \)
 - subtasks: \(\text{walk}(a, x, y) \)

- \text{method} travel-by-taxi
 - task: \(\text{travel}(a, x, y) \)
 - precondition: \(\text{cash}(a) \geq 1.5 + 0.5 \times \text{distance}(x, y) \)
 - subtasks: \(\langle \text{call-taxi}(a, x), \text{ride}(a, x, y), \text{pay-driver}(a, x, y) \rangle \)

- \text{operator} walk
 - precondition: \(\text{location}(a) = x \)
 - effects: \(\text{location}(a) \leftarrow y \)

- \text{operator} call-taxi(a, x)
 - effects: \(\text{location}(\text{taxi}) \leftarrow x \)

- \text{operator} ride-taxi(a, x)
 - precondition: \(\text{location}(\text{taxi}) = x, \text{location}(a) = x \)
 - effects: \(\text{location}(\text{taxi}) \leftarrow y, \text{location}(a) \leftarrow y \)

- \text{operator} pay-driver(a, x, y)
 - precondition: \(\text{cash}(a) \geq 1.5 + 0.5 \times \text{distance}(x, y) \)
 - effects: \(\text{cash}(a) \leftarrow \text{cash}(a) - 1.5 - 0.5 \times \text{distance}(x, y) \)
Initial task: \(\text{travel}(\text{me}, \text{home}, \text{park}) \)

- **Precondition**: \(\text{distance}(\text{home}, \text{park}) \leq 2 \)
- **Precondition fails**

- **Decomposition into subtasks**
 - \(\text{travel-by-foot} \)
 - \(\text{travel-by-taxi} \)

Example, Continued

- **Initial state**:
 - \(\text{location}(\text{me}) = \text{home}, \text{cash}(\text{me}) = 20, \text{distance}(\text{home}, \text{park}) = 8 \)

- **Subtasks**:
 - \(\text{call-taxi}(\text{me}, \text{home}) \)
 - \(\text{ride}(\text{me}, \text{home}, \text{park}) \)
 - \(\text{pay-driver}(\text{me}, \text{home}, \text{park}) \)

- **Final state**:
 - \(\text{location}(\text{me}) = \text{park}, \text{location}(\text{taxi}) = \text{park}, \text{cash}(\text{me}) = 14.50, \text{distance}(\text{home}, \text{park}) = 8 \)
HTN Planning

- HTN planning can be even more general
 - Can have constraints associated with tasks and methods
 - Things that must be true before, during, or afterwards
 - Some algorithms use causal links and threats like those in PSP
- There’s a little about this in the book
 - I won’t discuss it
SHOP & SHOP2 vs. TLPlan & TALplanner

● These planners have equivalent expressive power
 ◆ Turing-complete, because both allow function symbols

● They know the current state at each point during the planning process, and use this to prune actions
 ◆ Makes it easy to call external subroutines, do numeric computations, etc.

● Main difference: how the pruning is done
 ◆ SHOP and SHOP2: the methods say what can be done
 » Don’t do anything unless a method says to do it
 ◆ TLPlan and TALplanner: the say what cannot be done
 » Try everything that the control rules don’t prohibit

● Which approach is more convenient depends on the problem domain
Domain-Configurable Planners Compared to Classical Planners

● Disadvantage: writing a knowledge base can be more complicated than just writing classical operators

● Advantage: can encode “recipes” as collections of methods and operators
 ◆ Express things that can’t be expressed in classical planning
 ◆ Specify standard ways of solving problems
 » Otherwise, the planning system would have to derive these again and again from “first principles,” every time it solves a problem
 » Can speed up planning by many orders of magnitude (e.g., polynomial time versus exponential time)
Example from the AIPS-2002 Competition

- The satellite domain
 - Planning and scheduling observation tasks among multiple satellites
 - Each satellite equipped in slightly different ways
- Several different versions. I’ll show results for the following:
 - **Simple-time:**
 - concurrent use of different satellites
 - data can be acquired more quickly if they are used efficiently
 - **Numeric:**
 - fuel costs for satellites to slew between targets; finite amount of fuel available.
 - data takes up space in a finite capacity data store
 - Plans are expected to acquire all the necessary data at minimum fuel cost.
 - **Hard Numeric:**
 - *no logical goals at all* — thus even the null plan is a solution
 - Plans that acquire more data are better — thus the null plan has no value
 - None of the classical planners could handle this