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Temporal Planning

® Motivation: want to do planning in situations where actions
¢ have nonzero duration
¢ may overlap 1n time

® Need an explicit representation of time

® In Chapter 10 we studied a “temporal” logic
¢ Its notion of time 1s too simple: a sequence of discrete events
¢ Many real-world applications require continuous time
¢ How to get this?
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Temporal Planning

® The book presents two equivalent approaches:

1. Use logical atoms, and extend the usual planning operators to
include temporal conditions on those atoms

» Chapter 14 calls this the “state-oriented view "

2. Use state variables, and specify change and persistence
constraints on the state variables

» Chapter 14 calls this the “time-oriented view”

® In cach case, the chapter gives a planning algorithm that’s like a
temporal-planning version of PSP
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The Time-Oriented View

® We’ll concentrate on the “time-oriented view : Sections 14.3.1-14.3.3
¢ [t produces a simpler representation
¢ State variables seem better suited for the task

@® States not defined explicitly

¢ Instead, can compute a state for any time point, from the values of the

state variables at that time
> time

Function of time

Y

State

variables State
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State Variables

@ A state variable is a partially specified function telling what is true at
some time ¢

¢ cpos(c1) : time — containers U cranes U robots
» Tells what ¢1 is on at time ¢
¢ rloc(r1) : time — locations
» Tells where r1 is at time ¢
® Might not ever specify the entire function

® cpos(c) refers to a collection of state variables
¢ But we’ll be sloppy and just call it a state variable
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® robot r1 DWR Example

¢ in loc1 at time ¢,

¢ leaves loc1 at time ¢,

, routes Toc2  [routes
¢ enters loC2 at time £, = = routes

locl routes
routes .

¢ leaves loc2 at time ¢,

rloc(ri

¢ cnters / at time ¢ ,
| 5 t t, ty t, t time
® container ¢1
¢ in pile1 until time 7, —
. (&)
¢ held by crane2 until; 7 crane2 craned
o
Q

r1

¢ sits on 1 until #

¢ held by crane4 until ¢, s 7 s ‘9 to

¢ sits on p until 7, I L
(or later)

® ship Uranus

dock5b

Uranus

¢ stays at dockd
from ¢, to t,,

t to
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Temporal Assertions

® Temporal assertion:
¢ Event: an expression of the form x@t : (v,v,)
» At time ¢, x changes from v, to v, # v,
¢ Persistence condition: x(@[t,t,) : v
» x = v throughout the interval [#,,,)
¢ where
» t, t,, t, are constants or temporal variables
» v, v, V, are constants or object variables
@® Note that the time intervals are semi-open
¢ Why?
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Temporal Assertions

® Temporal assertion:
¢ Event: an expression of the form x@t : (v,v,)
» At time ¢, x changes from v, to v, # v,
¢ Persistence condition: x(@[t,t,) : v
» x = v throughout the interval [#,,,)
¢ where
» t, t,, t, are constants or temporal variables
» v, v, V, are constants or object variables
@® Note that the time intervals are semi-open
¢ Why?

¢ To prevent potential confusion about x’s value at the endpoints
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Chronicles

® Chronicle: a pair ® = (F,C)
¢ F1s a finite set of temporal assertions
¢ (' 1s a finite set of constraints
» temporal constraints and object constraints
¢ (' must be consistent
» 1.€., there must exist variable assignments that satisfy it

® Timeline: a chronicle for a single state variable

® The book writes F'and C in a calligraphic font

¢ Sometimes I will, more often I’'ll just use italics
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Example

. l, loc2 |_l * Similar to Figure 14.5,
T b 1 4 but changed to match
8 locl Is 11oc3 the timeline
e 5 — >

t, t, t, t, t time

® Timeline for rloc(r1), from Example 14.9 of the book

rloc(rl)C

rloc(r

({ (rl
(rl

rloc(rl

(rl

(rl

(rl

)@
)a
)a
rloc(rl)@
rloc(rl)@
rloc(rl)@
)@
(

t1
[
to
t3
[
tq
rloc(rl)@ts
[

(|0C2 14)

. (15a |0C3) }3

{ adjacent(ly,locl), adjacent(locl, [3),
adjacent(l3, loc2), adjacent(loc2, l4), adjacent(l5, loc3),
t1 <t2<t3<t4<t5}).
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C-consistency

® A timeline (F,C) is c-consistent (chronicle-consistent) if
¢ (' 1s consistent, and

¢ Every pair of assertions in F are either disjoint or they refer to the same value
and/or time points:

» If I contains both x@][t,,t,):v, and x@)]#;,¢,):v,, then C must entail
LS4, {1 S 1), or {v; = vy
» If F contains both x@t:(v,,v,) and x@]¢,,,):v, then C must entail
{t<t,}, {t, <t}, {v=v,,t,=t},or {t,=t,v=v,}
» If F contains both x@t:(v,,v,) and x@t"(v';,v’,), then C must entail
{F L} or {vy =v', v, =V}
® (F,()is c-consistent iff every timeline in (F,C) is c-consistent
® The book calls this consistency, not c-consistency
¢ But it’s a stronger requirement than ordinary mathematical consistency
® Mathematical consistency: C doesn’t contradict the separation constraints
® c-consistency: C must actually entail the separation constraints
¢ It’s sort of like saying that (£, C) contains no threats
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l loc2 [,

T : A
Example 2 loct - o
t, t, ty t, t time
A N
® Let (F,C) be the timeline given earlier for r1
® (F,C)1s not c-consistent
¢ To ensure that rloc(r1)@]¢,,t,):1o0c1 and rloc(r1)@t;:(l;,Joc2) don’t conflict,
needt, <t;or #; <t
¢ To ensure that rloc(r1)@]|z,,¢,):loc1 and rloc(r1)@],,¢,):10c2 don’t conflict,
need t, <t or t,<t
¢ LEfc.
® If we add some additional time constraints, (F,C) will be consistent:
®ecg, t,<t, and t,<t,
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Support and Enablers
® Let o be either x@t:(v,v") or x@|t,t"):v
¢ Note that a requires x = v either at ¢ or just before ¢
® Intuitively, a chronicle ® = (F,C) supports a if
¢ F contains an assertion 3 that we can use to establish x = v at some time s <t,
» B 1s called the support for a
¢ and if it’s consistent with @ for v to persist over [s,7) and for o be true
® Formally, ® = (F,C) supports a if
¢ F contains an assertion 3 of the form = x@s:(w'w) or f=x@][s's):w, and
¢ 1 separation constraints C' such that the following chronicle is c-consistent:
» (FU {x@[s,t):v,a}, CUC'U {w=v, s <t})
¢ (' can either be absent from ® or already in ®@
® The chronicle 6 = ({x@][s,?):v, a}, C'U {w=v, s < t}) is an enabler for a
& Analogous to a causal link in PSP

® Just as there could be more than one possible causal link in PSP, there can be more
than one possible enabler
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routes loc2
Example - - routes routes_
ke locl routes
'c—: ﬁ rgutes | _
B, = rloc(r1)@t, : (loc1, routes) 4 b 5 Y 5 ime
B, = rloc(r1)@t, : (loc2, routes) o, = rloc(r1)@s : (routes, loc3)

® @ supports a, in two different ways:
¢ [3, establishes rloc(r1) = routes at time ¢,
» this can support o, if we constrain t, < ¢ <#,
» enabler is 0, = ({rloc(r1)@]¢,,t):routes, a,}, {t, <t <t}
¢ f3, establishes rloc(r1) = routes at time ¢,
» this can support o, 1if we constrain 7, < <,
» enabler is 0, = ({rloc(r1)@]¢,,t):routes, a,}, {t, <t <t}
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Enabling Several Assertions at Once

® O =(F,C)supports a set of assertions £ = {«y, ..., o} 1f both of the following
are true

¢ ['U FE contains a support 3, for ¢, other than a; itself

¢ There are enablers 0, ..., 0, for «, ..., oy such that
the chronicle ® U 6, U ... U 9, is c-consistent

® Note that some of the assertions in £ may support each other!
® ¢9=1{0,, ..., 0.} 1s an enabler for E
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routes loc2
- routes

Example

locl

rloc(rl)

routes

B, = rloc(r1)@t, : (loc1, routes) ey’
B, = rloc(r1)@t, : (loc2, routes)
B; = rloc(r1)@t,:(loc2, routes)

ty t, t time

a, = rloc(r1)@:t : (routes, loc3)
o, = rloc(r1)@]¢,¢") : loc3

0, = ({rloc(r1)@]t,,t):routes, a,}, {t, <t <t;}
0, = ({rloc(r1)@]t,,t):routes, a,}, {t, <t <t}
® & supports{a,, a,}1in four different ways:

¢ As before, for a, we can use either 3, and 0, or 3, and 0,
¢ We can support a, with 3,

» Enabler is d; = ({rloc(r1)@)]¢,t":1oc3, a,}, {{=10C3, t; < t'})
¢ Or we can support o, with a,
» If used B, and o, for a,,
e Then a,’s enabler is J, = ({rloc(r1)@[z¢):loc3, a,}, {t <t'<t;})

» If we used B, and o, for a,, then replace #; with £ 1n 9,
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One Chronicle Supporting Another

® Let d'=(F'C") be achronicle
Suppose ® = (F,C) supports F.
® Leto,, ..., 0, be all the possible enablers of @’
¢ Foreacho, leto’, =0, U ('
® If thereis a o', such that ® U ¢’ 1s c-consistent,
¢ Then ® supports @', and 0'; 1s an enabler for O’
¢ If o' C P, then ® entails P’
® The set of all enablers for ®'"is O(P/P") = {0’ : P U 9', 1s c-consistent}
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Chronicles as Planning Operators

® Chronicle planning operator: a pair o = (name(o), (¥(0),C(0)), where
¢ name(o) 1s an expression of the form o(¢, ¢,, ..., v{, v, ...)
» 0 1S an operator symbol
» L, t, ..., V], Vs, ... are all the temporal and object variables in o
¢ (F(0), C(0)) 1s a chronicle

® Action: a (partially) instantiated operator, a
® If a chronicle ®@ supports (F(a),C(a)), then a 1s applicable to ®
¢ a may be applicable in several ways, so the result is a set of chronicles
» Y(P,a)={DPU ¢| ¢pE 0(a/D)}
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Example: Operator for Moving a Robot

— routes T
L .
=
- I
- —_— time
-
ts\ i
move(r,, t,,t,, t,, 1, 1, 1) = _ \ f
= AR
{ rloc(r)@t, . (Lroutes), @ 1
rloc(r)@[t,t,) : routes, Iz S '

/
rloc(r)@t, . (routes, I), S ! -
contains(l)@t . (r,empty), t, !
contains(I')@t, : (empty,r), _ Sew.

ol bat > e
adjacent(l, I -
jacent(l,7) } 5 -

[

8 e

L
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Applying a Set of
Actions

® Just like several temporal assertions can
support each other, several actions
can also support each other

¢ Letz={a, ..., a,} be asetof actions

¢ Let®, = U, (F(a).C(a)

¢ [f O supports ®_ then x 1s applicable to O
¢ Result 1s a sef of chronicles

V(P,m) = {P U ¢ | pE O(D,/D)}
® Example:

¢ Suppose P asserts that at time ¢,
robots r1 and r2 are at
adjacent locations loc1 and loc2

] g, —=<

¢ Leta, and a, be as shown

¢ Then ® supports {a,, a,} with
[,=loc1,l,=loc2, !, =loc2, ', =loc1,
fy <ty <1, <1}, 1, <t <t <t
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Domains and Problems

® Temporal planning domain:
¢ A pair D = (A4,0)
» O = {all chronicle planning operators in the domain}
» Ay = {all chronicles allowed in the domain}
® Temporal planning problem on D:
¢ Atriple P=(D,0,,P,)
» D 1is the domain
» @, and @, are initial chronicle and goal chronicle
» O 1s the set of chronicle planning operators
® Statement of the problem P:
¢ Atriple P=(0, 9, D)
» O 1s the set of chronicle planning operators
» @, and @, are initial chronicle and goal chronicle
® Solution plan:

¢ A setof actions = = {ay, ..., a,} such that at least one chronicle in y(®,7)

entails CI)g
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set of open goals (fges) ® As in plan-space planning, there are two
kinds of flaws:

/ set of sets of enablers .
/ ¢ Open goal: a fge that 1sn’t yet enabled

CP(P, G, K, ) ¢ Threat: an enabler that hasn’t yet been
if G = K = ¢ then return(r) incorporated into @

perform the two following steps in any order
if G # ¢ then do
selectany o € G
if 0(a/d) # ¥ then return(CP(d, G — {a}, K U{B(a/®)} 7))
else do
relevant < {a | a contains a support for «}
if relevant = ¥ then return(failure)
nondeterministically choose a € relevant
return(CP(® U (F(a),C(a)), GU F(a), LU {O(a/d)}, ® U{a}))
if IC # () then do
select any C € K
threat-resolvers < {¢ € C | ¢ consistent with &}
if threat-resolvers = (# then return(failure)
nondeterministically choose ¢ € threat-resolvers
return(CP(® U ¢, G, K — C, 7))
end 22



Resolving Open Goals

® Lct o € G be an open goal
® Case 1: @ supports a
¢ Resolver: any enabler for o that’s consistent with ®
¢ Refinement:
» G<— G- {a}
» K< KU 6(0/P)
® Case 2: ® doesn’t support o
¢ Resolver: an action a = (F(a),C(a)) that supports o
» We don’t yet require a to be supported by @
¢ Refinement:
» t<—rx U {a}
» O < U (F(a), C(a))
» G<— GUF(a) Don’tremove a yet: we haven’t chosen an enabler for it
- We’ll choose one 1n a later call to CP, in Case 1 above
» K< KU &a/®P) puta’s set of enablers into K
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Resolving Threats

® Threat. each enabler in K that i1sn’t yet entailed by ® 1s threatened
¢ For each C in K, we need only one of the enablers in C
» They’re alternative ways to achieve the same thing

¢ “Threat” means something different here than in PSP, because we won’t try
to entail all of the enablers

» Just the one we select
¢ Resolver: any enabler ¢ in C that 1s consistent with @
¢ Refinement:

» K< K—-C

» P<—DU ¢

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

24



routes locZ |routes

- routes _
o locl [ routes
° oo /
< routes — .
Exam p le t, t, ty ty b time
N, \\/4/ A
= pjlel 1 P
&) — ] 1
a crane2 craned
- ) e
(&)
X - >y T o
lg &z lg y Lo
6 7
® Let d,be as shown,and 2
-
P, =Dy U ({0,00),13), docks |
where a, and o, are -
the same as before: 1 -~ he

¢ o, =rloc(r1)@t:(routes, loc3)
¢ o, =rloc(r1)@]¢,¢"):loc3

® As we saw earlier, we can support {a,,0,} from @,
¢ Thus CP won’t add any actions

¢ It will return a modified version of @, that includes the enablers for {a,,a,}
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. routes loc2 routes
— — routes ;
Modified 2 Lot loca
. — >
N \\\/4 N\
= pjlel 1 P
(&) - I I
> crane2 craned
: / C /
(]
X - >y T
s t; Iy Iy Lo
6 7
® Let @, be as shown, and 3 Hocks
_ (1°]
(I)g T (I)O U ({0‘19(12}9{})9 é’, 1
where a, and o, are t g
the same as before: 11 I iy
¢ o, =rloc(r1)@t:(routes, loc3)
¢ o, =rloc(r1)@]¢,¢"):loc3
¢ This time, CP will need to insert an action move(t,, ¢,, ¢, t,, r'1, loc4, loc3)
» withts <t <t <t,<t,
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