CMSC 722, Al Planning

Planning and Scheduling

Dana S. Nau
University of Maryland

1:26 PM April 24, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Scheduling

® Given:

¢ actions to perform

¢ sct of resources to use

¢ time constraints

» €.g., the ones computed by the algorithms in Chapter 14

® Objective:

¢ allocate times and resources to the actions
® What is a resource?

¢ Something needed to carry out the action

¢ Usually represented as a numeric quantity

¢ Actions modify it in a relative way

¢ Several concurrent actions may use the same resource

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning and Scheduling

When and how
What to do to do it

. Set of : Scheduled
Goal »CPlanmng)» setions »CSchedulln@» olan

® Scheduling has usually been addressed separately from planning

¢ E.g., the temporal planning in Chapter 14 didn’t include
scheduling

® Thus, will give an overview of scheduling algorithms

® In some cases, cannot decompose planning and scheduling so
cleanly

¢ Thus, will discuss how to integrate them

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Scheduling Problem

® Scheduling problem
¢ sct of resources and their future availability
¢ actions and their resource requirements
¢ constraints
¢ cost function
® Schedule
¢ allocations of resources and start times to actions

» must meet the constraints and resource requirements

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Actions
® Actiona
& resource requirements
» which resources, what quantities
¢ usually, upper and lower bounds on start and end times
» Start time s(a) € [s,,,,(@),s,,..(a)]
» End time e(a) € [e, . (a).e, (a)]
® Non-preemptive action: cannot be interrupted
¢ Duration d(a) = e(a) — s(a)
® Preemptive action: can interrupt and resume
¢ Duration d(a) =), ;= ;d(a) < e(a) — s(a)
¢ can have constraints on the intervals

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Reusable Resources

® A reusable resource is “borrowed” by an action, and released
afterward

c.g., use a tool, return it when done
® Total capacity Q, for r; may be either discrete or continuous
¢ Current level z(¢) € [0,0/] 1s
» z{t) = how much of r; 1s currently available
® If action requires quantity g of resource r;

¢ Then decrease z; by ¢ at time s(a)
and increase z; by ¢g at time e(a)

® Example: five cranes at location /;:
¢ We might represent this as O, =5
¢ Two of them inuse attime #: z(f) =5-2=3

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Consumable Resources

® A consumable resource 1s used up (or in some cases produced) by
an action

¢ c.g., fuel
® Like before, we have total capacity O, and current level z(¢)
@ [f action requires quantity g of 7;

¢ Decrease z; by g at time s(a)

¢ Don’t increase z; at time e(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

® An action’s resource requirement 1s a conjunct of assertions
¢ consume(a,r;,q;) & ...

® or a disjunct if there are alternatives
¢ consume(a,7,q;) V ...

® z. is called the “resource profile” for 7,

0 Consumable resource
N R

X

| SN [—————

requirc(aj, r, g 1) consume(ay, ¥, ¢1) ===
. produce(as, r, ¢3)
require(a, 7, 42) ZZzzz73

consume(a@), r, 42)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Time constraints

® Bounds on start and end points of an action
¢ absolute times
» e.g., a deadline: e(a) <u
» release date: s(a) >v
¢ rclative times
» latency: u < s(b)—e(a) <v
» total extent: u < e(a)—s(a) <v
® Constraints on availability of a resource
¢ c.g., can only communicate with a satellite at certain times

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Costs

® may be fixed
® may be a function of quantity and duration

¢ c.g., a set-up cost to begin some activity,
plus a run-time cost that’s proportional to the amount of time

® c.g., suppose a follows b

¢ cost c(a,b) for a
¢ duration d.(a,b), i.e., s(b) > e(a) + d.(a,b)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

® Objective: minimize some function of the various costs and/or end-times

® the makespan or maximum ending time of the schedule, i.e., f = max;{e(a;)

|a; € A},

® the fotal weighted completion time, i.e., f = X;wje(a;), where the constant

w; € R is the weight of action a;,

e the maximum tardiness, i.e., f = max{t;}, where the tardiness 7; is
the time distance to the deadline §, when the action a; is late, ie,

7; = max{0, e(a;) — ‘Sa,-},
® the total weighted tardiness, i.e., f = Z;w;T;,

® the total number of late actions, i.e., for which 7; > 0,

® the weighted sum of late actions, i.e., f = X;w;u;, where u; = 1 when action

1 1s late and u; = 0 when i meets its deadline,

® the total cost of the schedule, i.e., the sum of the costs of allocated resources,

of setup costs, and of penalties for late actions,
® the peak resource usage, and

e the total number of resources allocated.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

11

Types of Scheduling Problems

® Machine scheduling
¢ machine i: unit capacity (in use or not in use)
¢ jobj: partially ordered set of actions a;y, ..., a;
¢ schedule:
» a machine 7 for each action a;,
» a time interval during which 7 processes a;,
» no two actions can use the same machine at once
¢ actions in different jobs are completely independent
¢ actions in the same job cannot overlap

» €.g., actions to be performed on the same physical object

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

12

Single-Stage Machine Scheduling

® Single-stage machine scheduling
¢ cach job 1s a single action, and can be processed on any machine
¢ 1dentical parallel machines
» processing time p; 1s the same regardless of which machine
» thus we can model all m machines as a single resource of
capacity m
¢ uniform parallel machines
» machine 7 has speed(i); time for j 1s p;/speed(i)
¢ unrelated parallel machines

» different time for each combination of job and machine

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Multiple-Stage Scheduling

® Multiple-stage scheduling problems

job contains several actions

cach requires a particular machine

¢ flow-shop problems:

» each job j consists of exactly m actions {a;,, a, ..., a;,

» each a;; needs to be done on machine i

» actions must be done 1n order Ajjs gy -+ Ay
¢ open-shop problems

» like flow-shop, but the actions can be done in any order
¢ job-shop problems (general case)

» constraints on the order of actions, and which machine for
each action

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14

Example

® Job shop: machines m,, m,, m; and jobs j,, ..., js

® /.

(my(3), m(3), m3(6)>

¢ i.e., m, for 3 time units

® /.
®
® j,
® .

then m, for 3 time units
then m, for 6 time units

(my(2), m\(5), my(2), msy(7))
(m3(5), my(7), my(3))
(my(4), m3(6), my(4), m (7))
(m5(2), my(6))

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

m, m,

I:l--

5 10 15 20 25

0

| |
I
J2

15

Notation

® Standard notation for designating machine scheduling problems:
alfly
a = type of problem:
e P (identical), U (uniform), R (unrelated) parallel machines
e F (flow shop), O (open shop), J (job shop)

f3 = job characteristics (deadlines, setup times, precedence constraints),
empty if there are no constraints

y = the objective function
® Examples:

® Pm|o|Zwe,
» m 1dentical parallel machines, deadlines on jobs, minimize weighted

completion time
& J|prec| makespan

» job shop with arbitrary number of machines, precedence constrants
between jobs, minimize the makespan

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Problem types
(o in the a|B|y notation):

Complexity

P - identical parallel machines

® Most machine scheduling problems are U - uniform parallel machines
NP-hard R - unrelated parallel machines
® Many polynomial-time reductions F - flow shop
O - open shop
J -job shop
W || W
LWE 27 #latejobs

! r 7

26| | max-tardiness

T

makespan

Reductions for a = type of problem Reductions for y = the objective function

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Solving Machine Scheduling Problems

® Integer Programming (IP) formulations
¢ n-dimensional space
¢ Set of constraints C, all are linear inequalities
¢ Linear objective function f
¢ Find a point p=(x,,..., x,) such that
» p satisfies C
» p 1s integer-valued, 1.e., every x, 1s an integer
» no other integer-valued point p’ satisfies C and has f(p") < f(p)
® A huge number of problems can be translated into this format

® An entire subfield of Operations Research is devoted to IP

¢ Several commercial IP solvers

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

18

IP Solvers

® Most IP solvers use depth-first branch-and-bound
¢ Want a solution u that optimizes an objective function f{u)
¢ Node selection 1s guided by a lower bound function L(u)
» For every node u, L(u) < {f(v) : v 1s a solution 1n the subtree below u}
» Backtrack if L(u) > f(u™), where u™* = the best solution seen so far

procedure DFBB L(u) very similar to
N o A*’s heuristic function
global u* < fail; f* < o) = o(u) + h(w)
call search(r), where r is the initial node S
return (u*,f*) Main difference: L isn’t
broken into f’s two
procedure search(u) components g and 4
if u 1s a solution and f(u) < f*
then u* < u; f* < flu) AZ can be ?bxpres}fed 35
else if u has no unvisited children or L(u) > /* s g
. bound procedure
then do nothing

else call search(v), where v = argmin{L(v) : v is a not-yet-visited child of u}

Dana Nau: Lecture slides for Automated Planning 19
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning as Scheduling

® Some planning problems can be modeled as machine-scheduling problems
® Example: modified version of DWR
¢ m identical robots, several distinct locations Let’s ignore this
¢ job: container-transportation(c,/,/") for a moment
» goto [, load ¢, go to /', unload ¢ /
e All four tasks to be done by the same robot (which can be any robot)
¢ release dates, deadlines, durations

¢ sctup time ¢, if robot i does job j after performing job &
¢ minimize weighted completion time

class P|rjdjti;|Xw; e, where r;,0;, and t;;; denote respectively the release
date, the deadline and the setup times of job j. O
® Can generalize the example to allow cranes for loading/unloading, and
arrangement of containers into piles
® Problem: the machine-scheduling model can’t handle the part I said to ignore
¢ Can specity a specific robot r; for each job j;, but can’t leave 1t unspecified

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Limitations

® Some other characteristics of Al planning problems that don’t fit
machine scheduling

¢ Precedence constraints on ends of jobs
» Beyond the standard classes
» Hard 1n practice for scheduling problems
e How to control the end times of actions?
» Could avoid this i1f we allow containers to be in any order
within a pile
¢ We have ignored some of the resource constraints
» E.g., one robot in a location at a time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

21

Discussion

® Overall, machine scheduling 1s too restricted to handle all the needs
of planning

® But it 1s very well studied

¢ Heuristics and techniques that can be useful for planning with
resources

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

22

Integrating Planning and Scheduling

® Extend the chronicle representation to include resources
¢ finite set Z={z,,...,z,,} of resource variables
» z; 1S the resource profile for resource i

® Like we did with other state variables, will use function-and-arguments notation
to represent resource profiles

¢ cranes(/) = number of cranes available at location /
® Will focus on reusable resources

¢ resources are borrowed but not consumed

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

23

Temporal Assertions

® Resource variable z whose total capacity 1s O
® A temporal assertion on z 1s one of the following:
¢ Deccrease z by amount g at time ;. z@tf : —q
¢ Increase z by amount g at time 1 z(@t : +q
¢ Use amount g of z during [z,¢'): z@[tt') : g
» Equivalentto z@t:—q A z@t':+q

® Consuming a resource 1s like using it ad infinitum:
¢ z(@t: —q 1s equivalent to z@[t,®) : g

® Producing a resource 1s like having a higher initial capacity Q'= Q0 + g
at time 0, and using g of it during [0, ¢):

® z@t: +q 1sequivalentto z@0 : +g & zw][0,f) : g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Resource Capacity

® Also need to specify total capacity of each resource

¢ E.g., suppose we modify DWR so that locations can hold multiple robots
¢ Need to specify how many robots each location can hold

® One way: fixed total capacity O: maximum number of spots at each location
¢ E.g., O =12 means each location has at most 12 spots

¢ Iflocation loc1 has only 4 spots, then we’ve specified 8 more spots than it
actually has

¢ To make the 8 nonexistent spots unavailable, assert that they’re in use
» The initial chronicle will contain space(loc1)@][0,):8

® Another way: make QO depend on the location
¢ O(loc1)=4, O(loc2)=12, ...

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Example

® DWR domain, but locations may hold more than one robot

robot-location(r)

space(l)

space(!l’)

¢ Resource variable space(/) = number of available spots at location /

¢ Each robot requires one spot

routes I move(ts, teo tla t29 r, la l')

= {robot-location(r)@t; : (I, routes),

! time robot-location(r)@|t, t.] : routes,

t t, " robot-location(r)@t, : (routes, I'),
\ 4 space(l)@t; : +1,
U+ space(l')@t, : —1,

. <t <bh <t
adjacent(L,1') }

(e License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Possibly Intersecting Assertions

® Assume distinct resources are completely independent
¢ Using a resource z does not affect another resource z'
¢ Every assertion about a resource concerns just one resource

® Don’t need consistency requirements for assertions about different resource
variables, just need them for assertions about the same variable

® Let d=(F,C)beachronicle
¢ Suppose z@[t,t;'):q; and z@]1,t;):q; be two temporal assertions in F
» both are for the same resource z
® z@[t,t;):q; and z@]t,1,):q, are possibly intersecting
¢ iff[z,¢) and [¢,¢,") are possibly intersecting
¢ 1iff C does not make them disjoint
» i.e., C does not entail #; <t,nor ¢, < ¢,
® Similar if there are than two assertions about z

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

27

Conflict and Consistency

® Intuitively, R_is conflicting if it 1s possible for R_ to use more than z’s total
capacity Q.
Definition 15.2 A set R, of temporal assertions about the resource variable z is conflicting
iff there is a possibly intersecting set of assertions {z@[t;, t;):q; | i € I} C R; such

® To see if R, possibly intersects, it’s sufficient to see if each pair of assertions in R,
possibly intersects:

Proposition 15.1 A set R, of temporal assertions on the resource variable z is conflicting
iff there is a subset {z@[t;, ti’):q,- | 1 € I} € R, such that every pair i,j € I is possibly
intersecting, and) ._; q; > Q.

® A chronicle i1s consistent 1f

¢ Temporal assertions on state variables are consistent, in the sense specified in
Chapter 14

¢ No conflicts among temporal assertions

Dana Nau: Lecture slides for Automated Planning 28
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning Problems

® Suppose we’re only trying to find a feasible plan, not an optimal one

¢ Then except for the resources, our definitions of planning domain, planning
problem, etc. are basically the same as in Chapter 14

® Recall that in Chapter 14 we had two kinds of flaws
¢ Open goals
¢ Threats

® We now have a third kind of flaw

& A resource conflict flaw for a resource variable z in a chronicle ® is a set of
conflicting temporal assertions for z in @

® Given a resource conflict flaw, what are all the possible ways to resolve it?

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

PIA Graphs

® LetR = {z@[t.t,):q, ..., z@]1,t,):q,} be all temporal assertions about z in a
chronicle (F,C)

® The Possibly Intersecting Assertions (PIA) graph 1s H, = (V,E), where:
¢ V contains a vertex v, for each assertion z@]?,,2,):q;

¢ [contains an edge (v;,v)) for each pair of intervals [#,¢,"), [#,¢,") that possibly
intersect

® Example:
o R.={ z2Q[t,t]):50, =zQ[t,,1,):60, =zQlts,15):20, =zQ[ty,1):50,
zQlts, t£):50, 2Q[tg,t5):70, 2Q[t7,1%):40}.
¢ C contains ¢, < ¢, for all 7, and also contains
W<t 0 <le 0, <b, b<t, I§<l, 0 <t, <l t; <l

60 /Y2 20

a- 50,
v]: > kK~
— V450
S V670 e 50
v5:50 3‘%‘ .- 50 V4
—_ -7 - V3
y7-4()
V7. 40 "
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Minimal Critical Sets

® Minimal Critical Set (MCS): a subset U of V' such that
¢ U is an over-consuming clique
¢ No proper subset of U is over-consuming
® Example, continued:
& R, ={ z2Q[t,t]):50, =zQ[ty,1}):60, =zQ[ts,15):20, =zQ[ty,1)):50,
zQlts, t£):50, 2zQltg,t5):70, 2Q@[t7,t5):40}.
¢ Suppose z’s capacity 1s =100
® {v,, vs} 1s aclique, but is not over-consuming
® {v;, Vv, V., V,} 1S an over-consuming clique, but 1s not minimal

® (v, v/}, {Vy Ve}, and {v;, v,, v, } are minimal critical sets (MCSs) for z

60 /Y2 20

) 20

"'].'50 — —r:
p—k

k
N vgo50 50
> vg: 70 '\—|
v5:50 .,3*'41f7=* .- 50 V4
__ _- . vy

v7:40

40 ., V6

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Finding Every Minimax Critical Set

MCS-expand(p)
for each v; € pending(p) do
add a new node m; successor of p
pending(m;) < {v; € pending(p) | j <t and (v;,v;) € E}
clique(m;) « clique(p) U {v;}
if clique(m;) is over-consuming than MCS «— MCS U clique(m;)
else if pending(m;) # () than MCS-expand(m;)

end
® Assume the set of vertices 1s V' = {v, ..., v }
® Depth-first search; each node p is a pair (clique(p), pending(p))
¢ clique(p) 1s the current clique
¢ pending(p) 1s the set of candidate vertices to add to clique(p)
® Initially, p = (9, V)
® Two kinds of leaf nodes:
¢ clique(p) 1s not over-consuming but pending(p) is empty => dead end
¢ clique(p) 1s over-consuming => found an MCS

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

32

MC>-expand(p) vertices “below” v,
for each v; € pending(p) do that are adjacent to v,

50 60.v2 20v3 add a new node m; successor of p
V1 pending(m;) < {v; € pending(p) | j < ¢ and (v;,v;) € E'}
5o clique(m;) < clique(p) U {v;}
50 vy if clique(m;) is over-consuming than MCS « MCS U clique(m;)
V3 else if pending(m;) # () than MCS-expand(m;)

70 e f
40 vy V6 Initial clique(p) @
and pending(p) :

{v1}
9w
@ & & s
® MCS = f
{{V Vv } {v3, v4}
29V5§
avevsh | <vs‘ ve> Govip
{V29v6} > e {v4, v7}
Vet {v1. vs} {v4, vs} v1,v7} {v3)
’ {v3}
{V39V4’ V7}’ @ {v3, v5} & ¥
{V6,V7}} @ {va,v7} {v3,v7} <{v3, v4, V7§>
<{v3. v4, v5}> 2 % ”

Resolving Resource-Conflict Flaws

Suppose U = {z@)]¢,t,"):q; : i In I} 1s a minimal critical set for z in a chronicle
O=(F,C)
¢ For every pair of assertions r; = z@[#,,t,):q; and r; = z@[¢;,1,"):q; n 1,
let ¢;; be the constraint £,'< ¢, (i.e., ¢; makes 7, precede r)

;i <
Each ¢, 1s a possible resolver of] the resource conflict
¢ If we add ¢, to C it will make [7,,,) and [7,z,) disjoint
=> [/ won’t be a clique any more
¢ Various subsets of U may be cliques
» But none of them 1s overconsuming, since U is a minimal critical set
If U 1s the only MCS in R, then adding ¢;; makes R, non-conflicting

If R, contains several MCSs, add one constraint to C for each MCS in R,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

34

Continuing the Previous Example ...
R, ={ 2@ty t,):50, ,[z‘.z.t.’):60, zQ[ts, r')-20 2@ty t,):50,

zQlts, te):50, 2zQltg, t5):70, 2Q@[t7,15):40}.
(?unnmnsq<5,q<%,5<g,5<Q,g<%,g<@,@<%,g<al

and ¢, <t, for all i N 50 60 "2 20
! ! ‘)2,60 V?.Z() /
k -

"'].'50 - —’:
—<k

\ vg:50 -
Sy V670) TS
\'550 _ P _ - - 50 \,4
® Recall that __ - - V3
1tV 1 = v7:40 ‘
¢ Capacity 1s 0 =100 40 Ve

¢ FEach v, starts at ¢, and ends at ¢,

¢ The MCSs are {{v,,vs}, {V3,v4,Vs}, {VoVehs VsV s 1V3VaVeSs (VesV) S
® For the MCS U = {v,, v,, v,}, there are six possible resolvers:

LSty 4'Sth, 'St 'S, 4/'St, ;<1

¢ 1, <t,is inconsistent with C because C contains ;' < ¢,

¢ 1, <t is over-constraining because it implies #,' <z,
® Thus the only resolvers for U that we need to consider are

* {,/<t, '<t, 5t t;'<t,}

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

More about Over-Constraining Resolvers

® In general, a set of resolvers 7' 1s equivalent to r if both
¢ r'U Centails r
¢ r U C entails 7’
® There 1s a unique minimal set of resolvers 7' that 1s equivalent to
¢ Desirable because it produces a smaller branching factor in the search space

¢ Can be found in time O(|U}?) by removing over-constraining resolvers

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

CPR(®,G, K, M,)
if G = K = M = () then return(7)
perform the three following steps in any order
if G # () then do
select any a € G
if 0(c/®) # () then return(CPR(®, G — {a}, KU 6(a/t), M, 7))
else do
relevant «+ {a | a applicable to ® and has a provider for a}
if relevant = () then return(failure)
nondeterministically choose a € relevant
M’ «— the update of M with respect to ® U (F(a),C(a))
return(CPR(®U (F(a),C(a)), GUF(a), KU{b(a/®)}, M', mU{a}))
if IC # () then do
select any C' € K

threat-resolvers «— {¢ € C' | ¢ consistent with ®} Three main steps:

if threat-resolvers = () then return(failure) * solve open-goal flaws

nondeterministically choose ¢ € threat-resolvers * solve threat flaws

return(CPR(® U ¢, G, K — C, M,)) » solve resource-conflict flaws
if M # () then do

select U € M

resource-resolvers « {¢ resolver of U | ¢ is consistent with ®}

if resource-resolvers = () then return(failure)

nondeterministically choose ¢ € resource-resolvers

M’ «— the update of M with respect to ® U ¢

return(CPR(® U ¢, G, K, M, 7)) 37

