Chapter 23
Planning in the Game of Bridge

Dana S. Nau
University of Maryland

5:34 PM January 24, 2012
Computer Programs for Games of Strategy

Connect Four: solved
Go-Moku: solved
Qubic: solved
Nine Men’s Morris: solved
Checkers: solved
Othello: better than humans
Backgammon: better than all but about 10 humans
Chess: competitive with the best humans

Bridge: about as good as mid-level humans
Computer Programs for Games of Strategy

Fundamental technique: the minimax algorithm

\[
\text{minimax}(u) = \max \{ \text{minimax}(v) : v \text{ is a child of } u \} \text{ if it’s Max’s move at } u \\
= \min \{ \text{minimax}(v) : v \text{ is a child of } u \} \text{ if it’s Min’s move at } u
\]

- Largely “brute force”
- Can prune off portions of the tree
 - cutoff depth & static evaluation function
 - alpha-beta pruning
 - transposition tables
 - …
- But even then, it still examines thousands of game positions

For bridge, this has some problems …
How Bridge Works

- Four players; 52 playing cards dealt equally among them
- Bidding to determine the trump suit
 - Declarer: whoever makes highest bid
 - Dummy: declarer’s partner
- The basic unit of play is the trick
 - One player leads; the others must follow suit if possible
 - Trick won by highest card of the suit led, unless someone plays a trump
 - Keep playing tricks until all cards have been played
- Scoring based on how many tricks were bid and how many were taken
Bridge is an *imperfect information* game
- Don’t know what cards the others have (except the dummy)
- Many possible card distributions, so many possible moves

If we encode the additional moves as additional branches in the game tree, this increases the branching factor b

Number of nodes is exponential in b
- worst case: about 6×10^{44} leaf nodes
- average case: about 10^{24} leaf nodes

A chess game may take several hours
A bridge game takes about 1.5 minutes

Not enough time to search the game tree
Reducing the Size of the Game Tree

- One approach: HTN planning
 - Bridge is a game of planning
 - The declarer plans how to play the hand
 - The plan combines various strategies (ruffing, finessing, etc.)
 - If a move doesn’t fit into a sensible strategy, it probably doesn’t need to be considered

- Write a planning procedure similar to TFD (see Chapter 11)
 - Modified to generate game trees instead of just paths
 - Describe standard bridge strategies as collections of methods
 - Use HTN decomposition to generate a game tree in which each move corresponds to a different strategy, not a different card

<table>
<thead>
<tr>
<th></th>
<th>Brute-force search</th>
<th>HTN-generated trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst case</td>
<td>(\approx 6 \times 10^{44}) leaf nodes</td>
<td>(\approx 305,000) leaf nodes</td>
</tr>
<tr>
<td>Average case</td>
<td>(\approx 10^{24}) leaf nodes</td>
<td>(\approx 26,000) leaf nodes</td>
</tr>
</tbody>
</table>
Methods for Finessing

- **LeadLow(P₁; S)**
 - **Finesse(P₁; S)**
 - **PlayCard(P₁; S, R₁)**
 - **EasyFinesse(P₂; S)**
 - **StandardFinesse(P₂; S)**
 - **BustedFinesse(P₂; S)**
 - **FinesseTwo(P₂; S)**
 - **StandardFinesseTwo(P₂; S)**
 - **StandardFinesseThree(P₃; S)**
 - **FinesseFour(P₄; S)**
 - **PlayCard(P₂; S, R₂)**
 - **PlayCard(P₃; S, R₃)**
 - **PlayCard(P₄; S, R₄)**
 - **PlayCard(P₄; S, R₄')**

- **1st opponent declarer**
- **2nd opponent dummy**

Tasks, methods, and time ordering are indicated in the diagram.
Instantiating the Methods

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♠KJ74
West: ♠A2
Out: ♠QT98653

Task

Method

Time ordering

Possible moves by 1st opponent

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♠KJ74
West: ♠A2
Out: ♠QT98653

Finesse(P₁; S)

LeadLow(P₁; S)

PlayCard(P₁; S, R₁)

West— ♠2

(North— ♠Q)

StandardFinesseTwo(P₂; S)

FinesseTwo(P₂; S)

EasyFinesse(P₂; S)

StandardFinesse(P₂; S)

BustedFinesse(P₂; S)

FinesseFour(P₄; S)

PlayCard(P₂; S, R₂)

North— ♠3

PlayCard(P₃; S, R₃)

East— ♠J

PlayCard(P₄; S, R₄)

South— ♠5

PlayCard(P₄; S, R₄’)

South— ♠Q

1st opponent
declarer
2nd opponent
dummy
Generating Part of a Game Tree

The red boxes are the leaf nodes

Finesse(P₁; S)

LeadLow(P₁; S)

EasyFinesse(P₂; S)

StandardFinesse(P₂; S)

BustedFinesse(P₂; S)

PlayCard(P₁; S, R₁)

West—♣2

(North—♠Q)

StandardFinesseTwo(P₂; S)

StandardFinesseThree(P₃; S)

FinesseFour(P₄; S)

PlayCard(P₂; S, R₂)

North—♠3

PlayCard(P₃; S, R₃)

East—♣J

PlayCard(P₄; S, R₄)

South—♠5

PlayCard(P₄; S, R₄’)

South—♠Q
Game Tree Generated using the Methods

FINESSE

W—♣2
N—♥Q 0.0078 0.0078 +600
N—♥3 0.9854 0.9854 +630
E—♣J 0.5 0.5 +630
E—♠K +600 +600 +600
S—♠Q +630 +600 +600 +630
S—♠3 +600 +600 +600 +600

CASH OUT

W—♣A
N—♥3
E—♣4
S—♠5
+600 +600 +600 +600

... later stratagems ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Implementation

- Stephen J. Smith, then a PhD student at U. of Maryland
 - Wrote a procedure to plan declarer play
- Incorporated it into *Bridge Baron*, an existing commercial product
 - This significantly improved *Bridge Baron*’s declarer play
 - Won the 1997 world championship of computer bridge
- Since then:
 - Stephen Smith is now Great Game Products’ lead programmer
 - He has made many improvements to *Bridge Baron*
 » Proprietary, I don’t know what they are
 - *Bridge Baron* was a finalist in the 2003 and 2004 computer bridge championships
 » I haven’t kept track since then
Other Approaches

- Monte Carlo simulation:
 - Generate many random hypotheses for how the cards might be distributed
 - Generate and search the game trees
 » Average the results

 - This can divide the size of the game tree by as much as 5.2×10^6
 » $(6 \times 10^{44})/(5.2 \times 10^6) = 1.1 \times 10^{38}$
 • still quite large
 » Thus this method by itself is not enough
Other Approaches (continued)

- AJS hashing - Applegate, Jacobson, and Sleator, 1991
 - Modified version of transposition tables
 » Each hash-table entry represents a set of positions that are considered to be equivalent
 » Example: suppose we have ♠AQ532
 - View the three small cards as equivalent: ♠Aqxxx
 - Before searching, first look for a hash-table entry
 » Reduces the branching factor of the game tree
 » Value calculated for one branch will be stored in the table and used as the value for similar branches

- GIB (1998-99 computer bridge champion) used a combination of Monte Carlo simulation and AJS hashing

- Several current bridge programs do something similar
Top contenders in computer bridge championships, 1997–2004

<table>
<thead>
<tr>
<th>Year</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Bridge Baron</td>
<td>Q-Plus</td>
<td>Micro Bridge</td>
<td>Meadowlark</td>
</tr>
<tr>
<td>1998</td>
<td>GIB</td>
<td>Q-Plus</td>
<td>Micro Bridge</td>
<td>Bridge Baron</td>
</tr>
<tr>
<td>1999</td>
<td>GIB</td>
<td>WBridge5</td>
<td>Micro Bridge</td>
<td>Bridge Buff</td>
</tr>
<tr>
<td>2000</td>
<td>Meadowlark</td>
<td>Q-Plus</td>
<td>Jack</td>
<td>WBridge5</td>
</tr>
<tr>
<td>2001</td>
<td>Jack</td>
<td>Micro Bridge</td>
<td>WBridge5</td>
<td>Q-Plus</td>
</tr>
<tr>
<td>2002</td>
<td>Jack</td>
<td>Wbridge5</td>
<td>Micro Bridge</td>
<td>?</td>
</tr>
<tr>
<td>2003</td>
<td>Jack</td>
<td>Bridge Baron</td>
<td>WBridge5</td>
<td>Micro Bridge</td>
</tr>
<tr>
<td>2004</td>
<td>Jack</td>
<td>Bridge Baron</td>
<td>WBridge5</td>
<td>Micro Bridge</td>
</tr>
</tbody>
</table>

I haven’t kept track since 2004

For more information see http://www.jackbridge.com/ewkprt.htm