This page may make more sense to you if you're a math geek :-)

My academic genealogy, according to the Mathematics Genealogy Project:

                     Jacob Bernoulli      Nikolaus Eglinger
                                  ↘          ↙
                                 Johann BernoulliLeonhard EulerJoseph-Louis Lagrange   Pierre-Simon Laplace
                                          ↙       ↘         ↙
Carl Friedrich Gauss            Joseph Fourier   Siméon Poisson
         ↓                                ↘       ↙         ↘
 Christian Gerling   Martin Ohm   P. G. Lejeune Dirichlet   Michel Chasles
            ↘               ↘          ↙                     ↙
       Julius Plücker     Rudolf Lipschitz              H. A. Newton
                  ↘        ↙                            ↙
                   Felix Klein                     E. H. Moore
                         ↘                         ↙
                    Maxime Bôcher    George David Birkhoff
                             ↘           ↙
                             Joseph L. WalshJoseph DoobDavid BlackwellAram ThomasianArthur GillAlan W. BiermannDana S. NauMy students

My Erdös number is 3, through at least two different paths:

  1. D.S. Nau, M.O. Ball, J. Baras, A. Chowdhury, E. Lin, J. Meyer, R. Rajamani, J. Splain, and V. Trichur (2000). Generating and evaluating designs and plans for microwave modules. Artificial Intelligence for Engineering Design and Manufacturing 14, 289–304.
  2. A. Ramesh, M.O. Ball, and Charles Colbourn (1987). Bounds for all-terminal reliability in planar networks. Annals of Discrete Mathematics 33, 261-273.
  3. B.N. Clark, Charles Colbourn, and P. Erdös (1985). A Conjecture on Dominating Cycles. Proc. of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 189-198.
  1. D.S. Nau, G. Markowsky, M. A. Woodbury, and D. B. Amos (1978). A mathematical analysis of human leukocyte antigen serology. Mathematical Biosciences 40:243–270.
  2. Daniel Kleitman and G. Markowsky (1975). On Dedekind's problem: the number of isotone Boolean functions. II. Transactions of the American Mathematical Society 213: 373–390.
  3. P. Erdös and D. Kleitman (1968). On coloring graphs to maximize the proportion of multicolored k-edges. Journal of Combinatorial Theory 5(2).