
MSML 605
Introduction

Administration

■ Course webpage
■ Get homework assignments 

 http://www.cs.umd.edu/~nayeem/courses/MSML605/
■ Syllabus
■ Other documents

■ Piazza
■ Ask questions

■ Do not post solutions
■ Do not ask if your answer or approach is correct

■ Discuss issues
■ Public versus Private

■ ELMS
■ Submit homework / assignments
■ See grades.

mhttp://www.cs.umd.edu/~nayeem/courses/MSML605/

Administration (contd.)

■ References
■ There is no specific textbook for this class.
■ We will be posting links to any references covered in

class.
■ Homework / Assignments
■ Regular homework and programming assignment.
■ Late date: 20% off your actual grade. (one get-out-of-

jail-free card).

Components of the course

■ Quizzes:
 “are you with us?” not worth many points but useful finger

on the pulse (for you and me)

■ Tests :
 “what have you learned?” Important checkpoints!!

■ Programming assignments :
 “can you implement it?”

Administration (contd.)

■ Exams
■ One midterm : April 9 in lecture.
■ Final exam: May 14 in lecture.

■ Grading
■ Quiz: 1% for each quiz
■ Midterm: 20%
■ Assignments: 30%
■ Final: 30-35%

■ Academic integrity

Topics (tentative)

■ Introduction
■ Python programming
■ Numpy, Scipy
■ Matplotlib
■ Pandas
■ Stats library
■ Github
■ Database connectivity
■ Tensorflow
■ Hardware for Machine learning

Introduction to Machine Learning

source: https://xkcd.com/1838/

Introduction

■ Machine Learning is a branch of AI whose primary goal is
to build algorithms that can learn from experience without
human intervention.

■ This learning starts with finding patterns in data.

■ These patterns must be meaningful

source: http://bigdata.black/wp-content/uploads/2016/05/whatis-machine-learning-0-696x392.jpg

Data Generated Every Minute

ht
tp

s:
//w

w
w.

do
m

o.
co

m
/le

ar
n/

da
ta

-n
ev

er
-s

le
ep

s-
5?

ai
d=

og
sm

07
25

17
_1

&s
f1

00
87

12
81

=1

Data Generated

 
 
 
 
 
 
 
 
 
 
2.5 quintillions of data is generated per day 
 
1 quintillion = 1,000,000,000,000 Million 
 = 1 Billion Billion

Scenarios

■ Banks are building up pictures of how people spend
their money,

■ hospitals are recording what treatment patients are
on for which ailments and how they respond.

■ Engine monitoring systems are recording
information about the engine. 
 
The challenge is to do something useful with this data

Scenarios

■ Enormous amount of biological data is available today, such
as gene expression, protein transcription data and
phylogenetic trees relating species to each other, etc.

■ Around terabyte of data is collected every night in the form of
Data collected from telescopes around the world.

■ Medical science stores outcomes of medical tests from
measurements such as MRI scans and simple blood tests. 
 
The explosion of stored data is well known; the challenge is to do
something useful with it.

Machine Learning Scenarios

■ If the bank’s computers can learn about spending
patterns, can they detect credit card fraud quickly?

■ If hospitals share data, then can treatments that
don’t work as well as expected be identified
quickly?

■ Can an intelligent car give you early warnings of
problems, so that you don’t end up stranded?

ML Interaction

ML Interaction

■ You have already interacted with machine learning
algorithms at some time.

■ Spam filters
■ Voice recognition
■ Computer games
■ Automatic license plate recognition on toll roads
■ Recommendations by Amazon and Netflix

Different ML Algorithms

■ Supervised Learning: Learning from exemplars

■ Unsupervised Learning: labels are not
provided

■ Reinforcement Learning:Somewhere between
supervised and unsupervised learning.

Supervised Learning - Classification
cat
cat
cat

cat

.

.

dog
dog
dog

dog

.

.

?

Training Data

Test Image

House Prices - Regression

yi

1400
1.5
3x(i)

1850

2.5

3

x test y ?

Price (in 1000$)

220
180
350
…
….
500

Area(sq. ft.)

1600
1400
2100

…
….

2400

Bathrooms # Bedrooms

2.5
1.5
3.5
…
…
4

3
3
4
…
…
5

Unsupervised Learning
Training Data

Test Document

Reinforcement Learning

from state s, action a

get reward R, state snew

Agent
Environment

ML Approach

■ Collect data

ML Approach

■ Clean that data - 
prepare it for
analysis

ML Approach

■ Visualize / 
 analyze  
data

Training & Testing

Training Data

Learn  
Model

Learning algorithm

  
 Model

 Apply 
 Model

Test Data

ML Approach

■ The steps involved in the development of a
machine learning application involves:
■ Collect data
■ Prepare the input data
■ Analyze the input data
■ Train the algorithm
■ Test the algorithm
■ Predict

Datasets

https://www.data.gov/
• US-centric agriculture, climate, education, energy, finance, health,

manufacturing data, …
https://cloud.google.com/bigquery/public-data/
• BigQuery (Google Cloud) public datasets (bikeshare, GitHub, Hacker News,

Form 990 non-profits, NOAA, …)
https://www.kaggle.com/datasets
• Microsoft-owned, various (Billboard Top 100 lyrics, credit card fraud, crime

in Chicago, global terrorism, world happiness, …)
https://aws.amazon.com/public-datasets/
• AWS-hosted, various (NASA, a bunch of genome stuff, Google Books n-

grams, Multimedia Commons, …)

https://www.data.gov/
https://cloud.google.com/bigquery/public-data/
https://www.kaggle.com/datasets
https://aws.amazon.com/public-datasets/

27

Some Technologies
we will use

Data - Example

Sparse Data
■ Most of the attributes have a value of 0 for most of the

instances.

■ For example, items purchased in a store is zero for most of
the items.

■ The data matrix with rows as customers and columns as
items, is sparse.

Sparse Data

TID Items

1 Bread, milk

2 chips

3 Milk, Eggs

4 chips, salsa

5 Bread,Eggs,Coke

ID Item

0 Bread

1 Milk

2 chips

3 salsa

4 Eggs

5 Coke

Items
Transactions

Data:
{a, b, 0,0,0,0}T1: T2: {0,0,c,0,0,0} T3: {0,d,0,0,e,0} T4: {0,0,f,g,0,0} T5: ….

{(0,a),(1,b)} {(2,c)} {(1,d),(4,e)} {(2,f),(3,g)} {(0,h),(4,i),(5,j)}

Missing Values
■ Missing values are frequently indicated by out-of-range

entries, for example, 
 
- negative numbers that is normally only positive  
 
- a 0 in a numeric field that can never be normally 0 
 
- missing values may also be indicated by blanks and
dashes.

Normalization
■ Attributes are often normalized to lie in a fixed range -

usually from 0 to 1, for example

■ dividing all the values by the maximum value encountered,  
 
or

■ by subtracting the minimum value and dividing by the range
between the maximum and minimum values.

Normalization
■ Another normalization technique is to: 
 
- calculate the statistical mean and the standard deviation of
the attribute values,  
 
- then subtract the mean from each value, and, 
 
- divide the result by the standard deviation. 

■ This process is called standardizing a statistical variable.

■ It results into a set of values whose mean is 0 and the
standard deviation is 1.

K-Nearest Neighbor Classification

Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.
• Interpreted: instructions executed without being compiled into

(virtual) machine instructions*
• Dynamically-typed: verifies type safety at runtime
• High-level: abstracted away from the raw metal and kernel
• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming
Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!

35*you can compile Python source, but it’s not required

BUT FIRST, SNAKES!

THE ZEN OF PYTHON
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.

36Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:
• the source code;
• text explanation of the code; and
• the end result of running the code.
Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering
• Necessary for data science!
• Many choices made need textual explanation, ditto results.
Stuff you’ll be using in Project 1 (and beyond)!

37

Interpreter

■ Reads a program line and executes it 
 

 
Source
Code

 
Interpreter

 
Output

Compiler

■ Reads a program completely, translates it into
executable code and then executes 

 
Source
Code

Compiler Object
code Executor Output

Program

■ A sequence of instructions in a particular language.

■ The details will be different in different languages.

■ In every program, there is an input, an output

■ In between there are some mathematical operations, or
conditional execution and also repetition.

Debugging

■ There will always be bugs.

■ Process of tracking down the bugs is called debugging.

■ There are three types of errors:
■ Syntax errors
■ Runtime errors, also called exceptions
■ Semantic errors - the meaning of the program is wrong

(for example using % instead of / for floating point
division)

 
Variables, Expressions and Statements

Values

■ A basic unit of a program
■ Types:
■ integers
■ strings
■ float
■ complex

Variables

■ A powerful feature of a programming
language.

■ A variable refers to a value.
■ An assignment operator creates a new

variable and assigns a value

x
5

y

67

4509828488

4509828488

4454993376

4454993376

Variable Names and Keywords

■ Variable names can be both letters and
numbers.

■ They have to begin with a letter though.
■ Uppercase letters are allowed, generally we

use lowercase variable names.
■ Underscore character, _ , can also appear in a

name.
■ An illegal name results in a syntax error.

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” ! print(“function”)
• 1/2 = 0 ! 1/2 = 0.5 and 1//2 = 0
• ASCII str default ! default Unicode
Namespace ambiguity fixed:

i = 1
[i for i in range(5)]
print(i) # ????????

47

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in

Python 2 (e.g., with statements)
• _future_ module incrementally brings 3 functionality into 2
• https://docs.python.org/2/library/__future__.html
 
from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

48

Operators and operands
■ Operators represent computations like

addition, multiplication, division etc. 
 
*, -, +, / and **

■ The values the operator is applied to are called
operands.

Expressions and Statements
■ An expression is a combination of values, variables,

and operators.
■ A value all by itself is also an expression
■ Variable is also an expression 

for e.g., 
21  
x 
x + 21

■ A statement is a unit of code that a Python
interpreter can execute. e.g., print, and assignment

Order of Operations
■ When more than one operator appears in an expression,

the order of evaluation depends on the rules of
precedence.

■ The acronym of precedence is PEMDAS
■ Parentheses (1+1)**(5-3)
■ Exponentiation, 2**1+1
■ Multiplication and Division have the same precedence,
■ Addition and subtraction have the same precedence
■ Operators with the same precedence are evaluated from

left to right (except exponentiation) for e.g., 2/5*3.

String Operations
■ You can’t perform mathematical operations on

strings. 
‘2’ - ‘1’ ‘eggs’/‘dozens’

■ The ‘+’ operator works with strings and
performs concatenation. 
first = “hello” 
second = “Class” 
print(first + second)

■ The output is “helloclass”

String Operations
■ The ‘*’ operator works with strings and

performs repetition. 
‘Spam’*3 is ‘SpamSpamSpam’

■ If one of the operands is a string, the other has
to be an integer.

Comments
■ As programs get bigger and more complicated,

they get more difficult to read.
■ It is a good idea to add notes to your

programs.
■ The comments start with # symbol

Functions

Function as a Black Box

 
 foo

var1

var2
output1

function

Arguments

return value

def foo(a,b):
 c = a+b
 return c

m= foo(d,e)

encapsulation- information hiding

Functions

■ A named sequence of statements that perform
a certain computation.

■ Later on, you can call the function by name
■ for example, type(34)

Why Functions?

■ A group of statements gets a name

■ Modular code

■ Easier Debugging

■ Code Reuse

Type Conversion Functions

■ There are built-in functions in Python that
convert from one type to another.

■ The int function takes any value and converts
it to an integer.

■ int function takes any value and converts it to
an integer, if it can.

■ int can convert floating-point values to
integers, but it doesn’t round off. It chops off
the fraction part.

Type Conversion

■ float converts integers and strings to floating-
point numbers

■ str converts its arguments to string  

Math Functions

■ Python has a math module that provides
mathematical functions.

■ Before we can use the module, we have to
import it: 
import math

■ This module contains the functions and
variables defined in the module.

■ To access one of the functions, you have to
specify the name of the module and the name
of the function.

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

 

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

62

https://docs.python.org/3/library/functions.html

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable
 

filter: returns a list of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

63

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

User defined Functions

■ Use keyword def  
 
def message(): 
 print(“Hello Class”)

Flow of Execution

■ The program flow
■ Follow the flow of execution.

Parameters and Arguments

■ Some built-in functions require arguments.

■ for example , math functions

■ Inside the function, arguments are assigned to
variables called parameters.

■ An expression can also be used as an
argument.

Variables and parameters
■ A variable created inside a function is local.

■ Parameters are also local

■ Some functions return a value and others are
void which return nothing.

Import

■ Python provides two ways to import modules
■ We have already seen import math
■ We can also import functions using from

Code

def summation(x,y): 
 sum = x + y 
 print(sum) 
 
 
summation(2,4)  

x = 2
y = 4

def summation(x,y): 
 z = x + y 
 return(z) 
 
 
print(summation(2,4))

def summation(x,y): 
 z = x + y 
 return(z) 
 
 
m = summation(2,4)  
print(m)
 

 
Conditionals

Import

■ Python provides two ways to import modules
■ We have already seen import math
■ We can also import functions using from

Modulus Operator

■ Modulus operator works on integers.
■ It yields a remainder when the first operator is

divided by the second.
■ Modulus operator is a percent sign (%)
■ quotient = 7 // 3
■ remainder = 7%3

Modulus Operator

■ Usefulness of modulus operator? 
 

Modulus Operator

■ Usefulness of modulus operator? 
 
 
If I ask you to find the last digit of a number or
more. 
 

Boolean Expressions
■ A boolean expression is an expression that is

either true or false.
■ It uses the operator ‘==’, which compares the

operands to the left and the right of this
operator

■ It produces either True or False 
 
for example, 5==5 will return True 
and 5==6 will return False

■ True and False are of type bool

Other relational Operators

■ x != y # x is not equal to y
■ x > y # x is greater than y
■ x < y # x is less than y
■ x >= y # x is greater than or equal to y
■ x <= y # x is less than or equal to y

x = y

Logical Operators

■ Three logical operators: and, or, and not  
for example,
■ x > 0 and x < 10  

This is true only if x is greater than 0 and less than
10

■ n%2 == 0 or n%3 == 0 is true if either of the
conditions is true, that is, if the number is divisible
by 2 or 3.

■ The not operator negates a boolean expression,
so not(x>y) is true if x > y is false, that is, if x is
less than or equal to y.

Conditional Execution

■ We need to check conditions and change the behavior of
the program

■ The simplest conditional statement is if, for example 
 

■ The boolean expression after ‘if’ is called the condition.

def decide(x,y): 
 if x=='green' and y=='Red':  
 print("You can go!")  
 
 
 
 
y = 'Red' 
y = 'green' 
y = 'green' 
 
z = 'Red' 
 
 
decide(z,y)

y

green

z

Red

x

y

if condition

■ If statements have the same structure as function
definitions: a header followed by an indented body.

■ Statements like these are called compound statements.

■ There is no limit on the number of statements that can
appear in the body, but there has to be at least one.

if condition

■ Sometimes it is useful to have a body with no statements,
usually as a place holder

■ In that case use the pass statement, which does nothing 
 
if x < 0: 
 pass # need to handle negative values

Alternative execution

■ When there are two possibilities and the condition
determines which one gets executed 
 
if x%2 == 0: 
 print(‘x is even’) 
else: 
 print(‘x is odd’)

■ The alternatives are called branches, because they are
branches in the flow of execution.

Chained Conditionals

■ Sometimes there are more than two possibilities and we
need more than two branches.

■ One way to express a computation like that is a chained
conditional: 
 
 
 
 
 
 
elif is an abbreviation of “else if”

Chained Conditionals

■ There is no limit to the number of elif statements.
■ If there is an else clause, it has to be at the end.
■ We don’t need an else statement 
 

■ Each condition is checked in order. If the first one is false,
the next is checked, and so on.

 
Iterations

Iterations

■ It involves repetition.

■ A statement or a group of statements that need to be
repeated.

■ Help in automation of repetitive tasks.

for statement

■ A ‘for’ statement requires an iterator and starts
with the keyword ‘for’ 
 

■ This iteration will start with a 0 and the last
number is not included

range from 0 to 10

for statement with a range

■ ‘for’ statement can be used to display a specific range of
numbers 
 
 
 

■ This iteration will start with 40 and the last number is not
included

range from 40 to 49

for statement with a range and steps

■ ‘for’ statement can be used to display a specific range of
numbers in different steps 
 

■ This iteration will start with 40 and the last number is not
included

numbers from 40 to 49 in steps of 2

while statement

■ It requires a condition, for e.g; 
 

■ In the definition there is no starting iterator.

■ We need to use a condition inside while

while statement with a condition

■ It requires a condition, for e.g; 
 

■ At the start of each iteration the condition is
checked.

flow of execution for a while statement

■ Evaluate the condition, yielding True or False.

■ If the condition is false, exit the while statement and
continue execution at the next statement

■ if the condition is true, execute the body and then go to
the condition again.

■ The body of the loop will change the value of one or more
variables so that condition eventually becomes false and
the loop terminates.

break statement

■ Sometimes we want to break out of a loop if
some value is seen 
 

 
Strings

String

■ A sequence of characters. 
 
course = “MSML 605”

■ You can access the characters one at a time with the
bracket operator: 
 
second_character = course[1]

■ index has to be an integer.

strings

■ len returns the number of characters in a string 
 

■ last index using length

strings

■ Using negative indices 
 
course[-1]

Traversal

■ Processing one character at a time: 
 

■ Displays each character on a separate line

Traversal

■ A more Pythonic way to traverse a string using
for: 

String Operations

String Concatenation

■ Two strings can be concatenated using a ‘+’
operator 
 

String Slices

■ A segment of a string is a slice
■ Selecting a slice is similar to selecting a character 
 

■ The operator [n:m] returns the part of the string
from the “n-eth” character to the “m-eth” character.

■ It includes the first but excludes the last.

String Slices

■ If the first index before the colon is omitted, the slice
starts at the beginning of the string.

■ If you omit the second index, the slice goes to the end of
the string  
 

■ If the first index >= second index, the result is an empty
string.

Strings are immutable

■ What happens if [] operators are used on the left side of
the assignment operator? 
 
 

■ You can create a new string 
new_greeting = 'J' + greeting[1:]

■ It does not change the original string

String Search

■ What does the following function do? 
 

String Search
■ What does the following function do? 
 
 
 
 
 
 

■ find is the opposite of the [] operator.
■ Instead of taking an index and extracting the corresponding

character, it takes a character and finds an index

Looping and Counting

■ The following program counts the number of
times the letter ‘a’ appears in a string: 
 
 

String Methods

■ A method is similar to a function - it takes arguments and
returns a value.

■ The syntax is different, for example 
 
 
 

■ A method call is called an invocation
■ We are invoking upper on the word.

String Methods

■ There is a string method named ‘find’  
 
word = ‘banana’  
index = word.find(‘a’)  
print(index)

■ We invoke find on word.
■ find can also find substrings not just characters  
 
word.find(‘na’)

String Methods

■ It can take as a second argument the index where it
should start: 
 
word.find(‘na’,3)

■ As a third argument the index where it should stop: 
 
name = ‘bob’ 
name.find(‘b’,1,2)

in Operator

■ The word ‘in’ is a boolean operator that takes two strings
and returns True if the first appears as a substring in the
second  
 
‘a’ in ‘banana’ 
 
‘seed’ in ‘banana’

String Comparison

■ Relational operators work on strings
■ Equality operator ‘==’
■ Other relational operations are useful for putting words in

alphabetical order: 
 
if word < 'banana': 
 print('Your word, '+word+', comes before banana.')  
elif word > 'banana': 
 print('Your word,' + word + ', comes after banana.')  
else: 
 print('All right, bananas.’)

■ Uppercase letters come before all the lowercase letters.

 
Lists

List

■ A list is a sequence

■ A sequence of values

■ These values can be of any type.

■ Values in a list are called items or elements.

Lists

■ The simplest way to create a list is to enclose
elements in square brackets ([and]) 
 
[10, 12, 14, 15]  
[‘Tom cat’, ‘Jerry mouse’] 
[‘spam’, 21, ‘a’, 34.5]

■ You can assign list values to variables 
data = [10, 12, 14, 15] 

■ Even an empty list, arr = []

Lists are mutable

■ The syntax for accessing elements is the same
as for accessing string characters.

■ The expression inside brackets specifies the
index. 
 
numbers = [7, 34, 56] 
numbers[1] = 36 
print(numbers)

Mapping

■ You can think of a list as a relationship
between indices and elements.

■ This relationship is called mapping
■ Each index “maps to” one of the elements. 
 
num = [2, 34, 56] 

List Indices

■ List indices work the same way as string
indices:
■ Any integer expression can be used as an

index
■ if you try to eat or write an element that does

not exist, you get an IndexError
■ If an index has a negative value, it counts

backward from the end of the list.

‘in’ operator

■ The ‘in’ operator also works on lists. 
 
cheeses = [‘Cheddar’, ‘Mozzarella’, ‘Blue’] 
‘Blue’ in cheeses 
‘Brie’ in cheeses

Traversing a list

■ The most common way is with a ‘for’ loop
■ Syntax is the same as for strings 
 
cheeses = [‘Cheddar’, ‘Mozzarella’, ‘Blue’] 
for cheese in cheeses: 
 print(cheese) 

■ This works well if you only need to read the
elements.

Traversing a list

■ If you want to write or update the elements,
you need the indices.

■ Common way is to combine functions ‘range’
and ‘len' 
 
for i in range(len(numbers)): 
 numbers[i] = numbers[i] * 2

■ This loop traverses the list and updates each
element.

Nested lists

■ A list can contain another list 
 
[‘spam’, 1, [‘Brie’, 5, 3.2],2,[2,5,6]] 

■ Each internal list still counts as a single
element.

List Operations
■ ‘+’ operator concatenates lists 

>>> a = [1, 2, 3]  
>>> b = [4, 5, 6]  
>>> c = a + b  
print(c)  
 
[1, 2, 3, 4, 5, 6]

■ ‘*’ operator repeats a list given number of times 
>>> [0] * 4  
[0, 0, 0, 0]  
>>> [1, 2, 3] * 3  
[1, 2, 3, 1, 2, 3, 1, 2, 3]

List Slices
■ Slice operator also works on lists: 
>>> t = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’]  
>>> t[1:3]  
[‘b’, ‘c’]  
>>> t[:4]  
[‘a’, ‘b’, ‘c’, ‘d’]  
>>> t[3:]  
[‘d’, ‘e’, ‘f’]

■ If you omit the first index, the slice starts at the beginning
■ If you omit the second, the slice goes to the end.
■ If you omit both, the slice is a copy of the whole list 

>>> t[:] 
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’] 

List Methods

■ Python provides methods that operate on lists
■ append adds a new element to the end of a list 
>>> t = [‘a’, ‘b’, ‘c’]  
>>> t.append(‘d’)  
>>> print(t)  
[‘a’, ‘b’, ‘c’, ‘d’]

List Methods

■ extend takes a list as an argument and
appends all of the elements: 
>>> t1 = [‘a’, ‘b’, ‘c’]  
>>> t2 = [‘d’, ‘e’]  
>>> t1.extend(t2)  
>>> print(t1)  
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

■ t2 is unmodified

List Methods

■ sort arranges the elements of the list from low
to high:  
>>> t = [‘d’, ‘b’, ‘c’, ‘a’, ‘e’]  
>>> t.sort()  
>>> print(t)  
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

■ List methods are all void; they
modify the list and return None

List Methods

■ sort arranges the elements of the list from low
to high:  
>>> t = [‘d’, ‘b’, ‘c’, ‘a’, ‘e’]  
>>> t.sort()  
>>> print(t)  
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

■ List methods are all void; they
modify the list and return None

