
MSML 605
Python Contd.

■ Create a list t, 1,5,6,7
■ Print t
■ copy t to r list
■ print r
■ Modify second element of r
■ print r
■ print t

■ What do you notice?
■ r = t[:]

Deleting Elements
■ Pop  

■ Pop modifies the list and returns the element that was removed.  
  
 removes the second element

■ del also deletes elements, when you don’t need them 
 

Remove
■ If you know the element you want to remove (but not the

index), use remove: 
 
 

■ The return value from remove is None
■ To remove more than one element, use del 

Strings and Lists
■ A string is a sequence of characters
■ A list is a sequence of values
■ A list of characters is not the same as a string. 
 

Split Method
■ split method 
 

Delimiter
■ A delimiter specifies which characters to use as word

boundaries 
 
 

Join
■ join is the inverse of split.

■ It takes a list of strings and concatenates the elements. 
 

Objects and values

■ a = ‘banana’ 
b = ‘banana’ 

■ a and b both refer to a string, but we don’t know whether
they refer to the same string

■ To determine, we can use, ‘is’ operator 
 

banana

a

b

Objects and values
■ when you create two lists, you get two objects: 
 
 
 
 
 
 
 
 

1 2 3

a

1 2 3

b

List Arguments
■ When you pass a list to a function, the function gets a

reference to the list.
■ If the function modifies a list parameter, the caller sees

the change.
■ Some operations modify lists and other operations create

new lists.
■ append method modifies a list, but the + operator creates

a new list: 

List Arguments

■ The difference is important when you write functions that are
supposed to modify lists. 
 
 
 
 
The slice operator creates a new list and the assignment
makes t refer to it.

■ None of that has any effect on the list passed as an
argument.

List Arguments
■ if we want to slice a list we can return it 
 
 
 
 

■ The list leaves the original list unmodified

 
Tuples

Introduction
■ A tuple is a sequence of values
■ They are indexed and a lot like lists
■ A comma-separated list of values 
 

■ It is common to enclose tuples in parentheses: 

Tuples
■ To create a tuple with a single element, you have to

include a final comma 

■ A single value in parentheses is not a tuple: 
 

■

Tuples - Index Operator
■ If the argument is a sequence (string, list or tuple), the

result is a tuple with the elements of the sequence 

■ Most list operators also work on tuples 
 

Tuples - Slice Operator

■ Slicing  
 
 

■ If you try to modify one of the elements of the tuple: 
 

■ Tuples are immutable

Tuple - Assignment
■ If we want to swap two variables we will need a third

variable, for example 
 

■ With tuples it is more elegant 

Tuple - Assignment
■ The right side can be any kind of sequence (string, list, or

tuple)  
 

Tuples as Return Values

Variable-length argument tuples
■ Functions can take a variable number of arguments.
■ A parameter name that begins with a * gathers arguments

into a tuple, for example 
 

Scatter
■ The complement of gather is scatter.
■ If you have a sequence of values and you want to pass it

to a function as multiple arguments, use * operator 
 

■ What do you notice?

Variable length arguments
■ Many of the built-in functions use variable-length

argument tuples.
■ for example, max and min can take any number of

arguments: 
 
 
 
 

■ sum cannot 

Variable length Tuples
■ Write a function called sumall that takes any number of

arguments and returns their sum. 
 
 

Variable length Tuples
■ Write a function called sumall that takes any number of

arguments and returns their sum. 
 
 

Lambda Functions

■ Lambda is a way to create small anonymous functions

■ They are created where they are needed.

■ Lambda functions are used in combination with the
functions filter(), map(), and reduce().

Lambda Functions
■ Syntax: 
 
lambda <argument list>: <expression>

■ argument list consists of a comma separated list of
arguments

■ Expression is an arithmetic expression using these
arguments.

Example

 
 

Example
 
 

•Advantage of lambda can be seen when it is
used in combination with map 

•map() is a function with two arguments 
 
r = map(func, seq) 
 
- the first argument func is the name of a
function 
- and the second a sequence (e.g., a list) seq.

map Functions

lambda with map

Map
■ map() can be applied to more than one list.

■ The lists have to have the same length.

■ map() will apply its lambda function to the elements of the
argument lists

■ It first applies to the elements of the 0th index, then to the
elements with the 1st index, so on

Maps List

Filtering
• filter function filters out all the elements of
a list, for which function returns True. 
 
filter(<function>, list)

• function, f, is the first argument.
• f returns a Boolean value, i.e. either True or
False

• This function will be applied to every element of
the list.

• Only if f returns True will the element of the
list be included in the result list.

Filtering
data = [1,3,4,8,5,26]
 
odd_numbers = list(filter(lambda x : x%2, data)) 

even_numbers = list(filter(lambda x: x%2==0, data)) 

print(odd_numbers) 

print(even_numbers)

Reduce

■ Function reduce, continually applies function
to the sequence  
reduce (func, seq)

■ if seq = [s1,s2,s3,…,sn], calling  
reduce(func, seq) works like this:

■ at first, func will be applied to s1 and s2

■ next step, func will be applied to result of
step 1 result and s3, so on

Reduce
from functools import reduce 
 
m = reduce(lambda x,y:x+y,[34,43,56,76])  
print(m)

sum = reduce(lambda x,y: x+y , range(1,101)) 
print(sum)

largest = reduce(lambda x,y : x if x > y else y, [3,25,23,12,4,9]) 
print(largest)

Array

■ import array as array 

■ array(data type, list) 
 
a = array('f',[2,4,6,8])  
 
array('f', [2.0, 4.0, 6.0, 8.0])  
 
help(array) 

 
Dictionaries

Introduction
■ A dictionary is like a list.

■ In a list, the indices have to be integers.

■ In a dictionary they can be almost any type.

■ This set of indices are called keys.

■ And dictionary is a mapping between keys and values

■ Each key maps to a value.

Initialization

 
 
 
 

•The ‘in’ operator works on the keys in a dictionary 
 
‘one’ in en2Ks

Values

• To see whether a value exists, use a method called
values 
 

‘in’ operator algorithms

• ‘in’ operator uses different algorithms for lists and
dictionaries.

•For lists, it uses a search algorithm

•For dictionaries Python uses a hashtable  

• In a hashtable, the ‘in’ operator takes about the same
time no matter how many items there are in a dictionary. 

Looping and Dictionaries
■ You can use a ‘for’ loop to traverse the keys of a

dictionary 
 

■ Dictionaries have a method called keys that returns the
keys of the dictionary, in no particular order, as a list

Reverse LookUp
■ Given a dictionary ‘d’ and a key ‘k’
■ We can find the value using  

v = d[k]  
This is called lookup

■ If you have v and you want to find k, you have two
problems:
■ there might be more than one key that maps to the

value v
■ there is no simple syntax for reverse lookup, you

have to search for it. 

Dictionaries and Lists

■ Lists can appear as values in a dictionary
■ Consider a dictionary that maps frequencies

to letters
■ A frequency may be mapped to several

letters.
■ In order to represent such a mapping, the

values (letters) should be a list of letters.

Dictionaries and Lists
■ Can lists be keys? 
 
t = [1,2,3] 
d = dict() 
d[t] = ‘oops’  
 
What do you expect?

Hashing from two arrays

Zip
■ zip is a built-in function that takes two or more

sequences, and 

■ “zips” them into a list of tuples, where

■ each tuple contains one element from each sequence 
 
 

Lists and Tuples

■ Example, 
 

■ The result is a list of tuples, where each tuple contains a
character from the string and the corresponding element
from the list 

Hashing from two arrays

Unzip a list of tuples

Hashing from more than two arrays

Unzip a list of tuples

Hashing from different sized arrays

Sorting in Parallel

MSML 605 
Files

Introduction

■ Most of the programs written so far run for a
short duration.

■ Once the program ends, the data is gone

■ If we want to see the results again we have to
run the program again.

Persistence

■ Some programs run for a long time.
■ They store data permanently
■ The data is available even after the program

ends.
■ for example, operating systems and web

servers
■ One way to read and write data is using files.
■ Another way to store data is using a

database.

Reading a File

■ Using a built-in function ‘open’
■ It takes the name of a file and returns a file

object 
 

Readline

■ It can read one line 
fin = open(‘words.txt’) 
fin.readline()

■ readlines() reads lines into a list 
 
 

End lines

■ fin = open(‘words.txt’) 
fin.readline() 

■ Remove end line character 
 
fin.strip(“\n”)

File Traversal

■ fin = open(‘words.txt’) 
for line in fin: 
 print(line)

Writing

■ To write to a file, you have to open it with
mode ‘w’ as a second parameter  
 
fout = open(‘output.txt’, ‘w’)

■ If the file already exists, opening it in write
mode clears out the old data and starts fresh

Write to a File

■ line1 = “This is a ML class\n” 
fout.write(line1) 
line2 = “We Program in Python language\n” 
fout.write(line2) 
fout.close() 

Format Operator
■ The argument of write has to be a string

■ If we want to put other values in a file, we have to convert
them to strings. 
f = open(‘output.txt’, ‘w’) 
x = 53  
f.write(str(x))  
 

■ An alternative is to use the format operator, %

Format Operator
■ The argument of write is a string.
■ If you want to write a string, you convert it to string first

using  
 
str(<int value>)  
 
for example, str(4) 
 
converts int 4, to string.

Format Sequence
■ for example,  

the format sequence ‘%d’ means that the second
operand should be formatted as an integer  
 
 
 

■ The result is the string ‘42’

More formatting
■ A format sequence can appear anywhere in the string
■ So you can embed a value in a sentence: 

More formatting
■ For more than one format sequence in a string, the

second argument is a tuple.
■ Each format sequence with an element of the tuple, in

order.
■ Format Sequences used to format 

 ‘%d’ an integer  
 ‘%g’ a floating-point number 
 ‘%s’ a string  

Sequence formatting
■ The number of elements in the tuple has to match the

number of format sequences in the string
■ Also, the types of the elements have to match the format

sequences 
 '%d %d %d' % (1,2) 
 
 

 ‘%d’ % ‘dollars'

Filenames and Paths

■ import os 
os module provides functions for working with files
and directories 

 >>> import os
 >>> cwd = os.getcwd()
 >>> print(cwd)
 /Users/nayeem 

■ To find the absolute path to a file, you can use
os.path.abspath 

 >>> os.path.abspath('words')
 '/Users/nayeem/words' 

Filenames and Paths
■ os.path.exists checks whether a file or directory exists: 

 >>> os.path.exists('words.txt')
 False 

■ os.path.isdir checks whether it’s a directory: 

 >>> os.path.isdir('Documents')
 True 

■ os.path.isfile checks whether it’s a file: 

 >>> os.path.isfile('test')
 True 

Filenames and Paths
■ os.listdir returns a list of the files (and other directories) in the given directory: 

 >>> os.listdir(‘/users‘)
 ['.localized', 'Guest', 'nayeem', 'Shared'] 

■ walk through a directory 
 
import os 
 
def walk(dirname): 
 for name in os.listdir(dirname): 
 path = os.path.join(dirname,name) 
 if os.path.isfile(path): 
 print(path) 
 else: 
 walk(path)

train_img_names = [os.path.join(training_path,f) for f in os.listdir(training_path) if f.endswith('.jpg')]

Catching Exceptions
■ If you try to open a file that doesn’t exist it will throw an

error: 
fin = open('our_file')  
FileNotFoundError: [Errno 2] No such file or directory: 'our_file' 

■ If you don’t have permission to access a file: 
fout = open(‘/etc/passwd','w')  
PermissionError: [Errno 13] Permission denied: '/etc/passwd' 
 

■ If you try to open a directory for reading, you get: 
fin = open(‘/home')  
IsADirectoryError: [Errno 21] Is a directory: '/home' 

try and except
■ There is an option using ‘try’ and ‘except’ so that the

program does not halt when there is an error 
 
try: 
 fin = open('bad_file')  
 for line in fin:  
 print(line) 
 fin.close()  
except: 
 print('Something went wrong')

■ Python starts by executing the try clause.
■ If all goes well, it skips the except clause and proceeds
■ If an exception occurs, it jumps out of the try clause

try and except
■ There is an option using ‘try’ and ‘except’ so that the

program does not halt when there is an error 
 
try: 
 fin = open('bad_file')  
 for line in fin:  
 print(line) 
 fin.close()  
except: 
 print('Something went wrong')

■ Python starts by executing the try clause.
■ If all goes well, it skips the except clause and proceeds
■ If an exception occurs, it jumps out of the try clause

Pickling
■ A pickle module is used to store Python objects in a database 
 
import pickle  
t = [1,2,3] 
s = pickle.dump(t) 
print(s)  
t2 = pickle.load(s) 
print(t2)

■ Although the new object has the same value as the old, it is not
the same object: 
print(t==t2) #True  
print(t is t2) # False

