MSML. 605
Python Contd.

Create alistt, 1,5,6,7
Print t

copy ttor list

print r

Modify second element of r
printr

print t

What do you notice?
r=1[:]

Deleting Elements

Pop
t=[lal’lbl’lcl]
X = t.pop()

Pop modifies the list and returns the element that was removed.

t.pop(0) removes the second element

del also deletes elements, when you don’t need them

del t[1]

Remove

If you know the element you want to remove (but not the
index), use remove:

t=[lal' lbl’ |Cl]
t.remove('b’)

The return value from remove is None

To remove more than one element, use del

t=[lal' lbl' lcl’ ldl' Iel]
del t[1:5]

Strings and Lists

A string is a sequence of characters
A list is a sequence of values

A list of characters is not the same as a string.

s = 'spam'
t = list(s)
print(t)

Split Method

split method

s = 'This is an ML class'
t = s.split()
print(t)

["This', 'is', 'an', 'ML', 'class']

Delimiter

A delimiter specifies which characters to use as word
boundaries

s = 'spam-spam-spam'’
s.split('-")

['spam’', 'spam', 'spam']

Join
join is the inverse of split.

It takes a list of strings and concatenates the elements.

t = ['This', 'is', 'an', 'ML', 'class']
delimiter = ' '
delimiter.join(t)

Objects and values

banana
a = ‘banana’ 3
b = ‘banana’ b

a and b both refer to a string, but we don’t know whether
they refer to the same string

To determine, we can use, ‘is’ operator

a = 'banana’
b = 'banana'
a is b

‘ Objects and values

* when you create two lists, you get two objects:
a=1[1,2,3]

b=1[1,2,3]

. g 123
a is b

b = a .
b is a 123

b[0] 17 b

a

List Arguments

When you pass a list to a function, the function gets a
reference to the list.

If the function modifies a list parameter, the caller sees
the change.

Some operations modify lists and other operations create
new lists.

append method modifies a list, but the + operator creates
a new list:

tl = [1,2]

tl.append(3)
tl

List Arguments

t3 = t1 + [4]
t3

[1l 2' 3' 4]

The difference is important when you write functions that are

supposed to modify lists.

def bad delete head(t):

t = t[1l:]
tl = [1,2,3]
bad delete head(tl)

tl

The slice operator creates a new list and the assignment

makes t refer to it.

None of that has any effect on the list passed as an

argument.

List Arguments

if we want to slice a list we can return it

def tail(t):
return(t[1l:])

tl = [1,2,3]

t2 = tail(tl)

print(tl)

print (t2)

(1, 2, 3]
[2, 3]

The list leaves the original list unmodified

Tuples

Introduction

A tuple is a sequence of values
They are indexed and a lot like lists

A comma-separated list of values

t=lal'lb|'lcl
t

Tuples

To create a tuple with a single element, you have to
include a final comma

t=|a|'
12
(‘a’,)

A single value in parentheses is not a tuple:

tl = ('a')
t1

|al

Tuples - Index Operator

If the argument is a sequence (string, list or tuple), the
result is a tuple with the elements of the sequence

t = tuple('logic')
print(t)

(lll, lol' lgl' Iil' Icl)

Most list operators also work on tuples

print(t[0])

1

Tuples - Slice Operator

Slicing
t[1l:3]

(‘o', 'g")

If you try to modify one of the elements of the tuple:
t[0] = 'a’

TypeError Traceback (most recent call last)
<ipython-input-146-2de81540b330> in <module
——==> 1 t[0] = 'a'

TypeError: 'tuple' object does not support item assignment

Tuples are immutable

Tuple - Assignment

If we want to swap two variables we will need a third
variable, for example

a = 25

b = 45

temp = a

a=>

b = temp

print(a)

print(b)

45

25

With tuples it is more elegant 5.t (2r2)

print(a,b)
45 25

25 45

Tuple - Assignment

The right side can be any kind of sequence (string, list, or
tuple)

email = 'nayeemf@cs.umd.edu’
uname,domain = email.split('@")
print("Name: ",uname,", Domain: ",domain)

Name: nayeem , Domain: c¢s.umd.edu

Tuples as Return Values

quot, rem = divmod(9,4)
print (quot)
print (rem)

2
1

Variable-length argument tuples

Functions can take a variable number of arguments.

A parameter name that begins with a * gathers arguments
iInto a tuple, for example

def printall(*args):
print(args)
printall(1l,'3.5"',"test")

(1, '3.5', 'test')

Scatter

The complement of gather is scatter.

If you have a sequence of values and you want to pass it
to a function as multiple arguments, use * operator

t = (7,3)
divmod(t)

What do you notice?

Variable length arguments

Many of the built-in functions use variable-length
argument tuples.

for example, max and min can take any number of
arguments: max(3,4,7)

7

min(1l,3,6)
1

sum cannot swa,2,3)

TypeError Traceback (most recent call last)

<ipython-input-167-dd9496db4b54> in
-—-=> 1 sum(1,2,3)

TypeError: sum expected at most 2 arguments, got 3

Variable length Tuples

Write a function called sumall that takes any number of
arguments and returns their sum.

Variable length Tuples

Write a function called sumall that takes any number of
arguments and returns their sum.

def sumall(*args):

s =0
for i in args:
s += 1

return(s)
print(sumall(2,3,4,5))

14

Lambda Functions

Lambda is a way to create small anonymous functions

They are created where they are needed.

Lambda functions are used in combination with the
functions filter(), map(), and reduce().

Lambda Functions

Syntax:

lambda <argumentlist>: <expression>

argument list consists of a comma separated list of
arguments

Expression is an arithmetic expression using these
arguments.

Example

P lambda x,y: Xx*y
p(3,4)

12

def findlarger():
value lambda x,y:
return(value)
output findlarger()
print (type(output))
print (output(3,5))

<class 'function'>
y 1s larger

"x is larger'

def m(x,y):
return(x*y)
m(3,4)

12

" if x > y else "y is larger"

Example

Advantage of lambda can be seen when it 1is
used 1n combination with map

map() is a function with two arguments
r = map(func, seq)
— the first argument func is the name of a

function
— and the second a sequence (e.g., a list) seq.

map Functions

def celsius(T):
return((5/9)*(T-32.))
def fahrenheit(T):
return((9/5)*T + 32)
temperatures = (-10,-20,-30,30,40)
F = map(fahrenheit,temperatures)
temp in fahrenheit = list(F)
print("Temperature in Fahrenheit: ",temp in fahrenheit)

Temperature in Fahrenheit: [14.0, -4.0, -22.0, 86.0, 104.0]

C = map(celsius, temp in fahrenheit)
temp in celsius = 1list(C)
print (temp in celsius)

[-10.0, -20.0, -30.0, 30.0, 40.0]

lambda with map

c=([-10.0,-20.0,-30.0,30.0,40.0}

F = list(map(lambda x: ((9/5)*x + 32),C))
print ("Fahrenheit temp: ",F)

C = list(map(lambda x: ((5/9)*(x - 32)),F))
print("Celsius: ",C)

Fahrenheit temp: [14.0, -4.0, -22.0, 86.0, 104.0]
Celsius: [-10.0, -20.0, -30.0, 30.0, 40.0]

Map
map() can be applied to more than one list.

The lists have to have the same length.

map() will apply its lambda function to the elements of the
argument lists

It first applies to the elements of the Oth index, then to the
elements with the 1st index, so on

¢c=[-10.0,-20.0,-30.0,30.0,40.0]
Maps LlSt F = list(map(lambda x: ((9/5)*x + 32),C))

print ("Fahrenheit temp: ",F)

C = list(map(lambda x: ((5/9)*(x - 32)),F))

print ("Celsius: ",C)

Fahrenheit temp: [14.0, -4.0, -22.0, 86.0, 104.0]
Celsius: [-10.0, -20.0, -30.0, 30.0, 40.0]

a=1[1,2,3,4]

b=117,12,11,10]

c = [-11—41519]

sumAB = list(map(lambda x,y: x+y,a,b))
print (sumAB)

[18, 14, 14, 14]

sumABC = list(map(lambda x,y,z: x+y+z,a,b,c))
print (sumABC)

[17, 10, 19, 23]

expABC = list(map(lambda x,y,z:2.5*x+2*y-z,a,b,c))
print (expABC)

[37.5, 33.0, 24.5, 21.0]

Filtering

filter function filters out all the elements of
a Llist, for which function returns True.

filter(<function>, list)

function, f, 1is the first argument.
f returns a Boolean value, i.e. either True or
False

This function will be applied to every element of
the list.

Only if f returns True will the element of the
list be included in the result list.

Filtering

data = [1,3,4,8,5,26]

odd_numbers = list(filter(lambda x : x%2, data))
even_numbers = list(filter(lambda x: x%2==0, data))
print(odd_numbers)

print(even_numbers)

Reduce

Function reduce, continually applies function
to the sequence

reduce (func, seq)

if seq=[s1,52,53,...,sn], calling
reducecfunc, seq)works like this:

atfirst, funcwill be applied tosiand s>

nextstep, funcwill be applied to result of
stepiresultandss3, soon

Reduce

from functools import reduce

m = reduce(lambda x,y:x+y, [34,43,56,76])
print(m)

sum = reduce(lambda x,y: x+y , range(1,101))
print(sum)

largest = reduce(lambda x,y : x if x > y else y, [3,25,23,12,4,9])
print(largest)

Array
Import array as array
array(data type, list)
a = array('f',[2,4,6,8])
array('f', [2.0, 4.0, 6.0, 8.0])

help(array)

Dictionaries

Introduction
A dictionary is like a list.
In a list, the indices have to be integers.
In a dictionary they can be almost any type.
This set of indices are called keys.
And dictionary is a mapping between keys and values

Each key maps to a value.

Initialization

en2Ks = dict()
en2Ks = {}
en2Ks = {'one':'akh', 'two':'ze', 'three': 'tre'}

one' in en2Ks

True

The ‘in’ operator works on the keys in a dictionary

‘one’ in en2Ks

Values

To see whether a value exists, use a method called
values

ze' in en2Ks.values()

True

‘in” operator algorithms

‘In” operator uses different algorithms for lists and
dictionaries.

For lists, it uses a search algorithm

For dictionaries Python uses a hashtable

In a hashtable, the ‘in" operator takes about the same
time no matter how many items there are in a dictionary.

Looping and Dictionaries

You can use a ‘for’ loop to traverse the keys of a
dictionary

for key in en2Ks:
print(key,en2Ks|[key])

one akh
two ze
three tre

Dictionaries have a method called keys that returns the
keys of the dictionary, in no particular order, as a list

Reverse LookUp

Given a dictionary ‘d’ and a key ‘K’

We can find the value using
v = d[K]
This is called lookup

If you have v and you want to find k, you have two
problems:

there might be more than one key that maps to the
value v

there is no simple syntax for reverse lookup, you
have to search for it.

Dictionaries and L.ists

Lists can appear as values in a dictionary

Consider a dictionary that maps frequencies
to letters

A frequency may be mapped to several
letters.

In order to represent such a mapping, the
values (letters) should be a list of letters.

Dictionaries and L.ists

Can lists be keys?

t=11,2,3]
d = dict()
d[t] = ‘oops’

What do you expect?

Hashing from two arrays

keys = ['x','y','2"]

values = [24,25,26]

d = {k:v for k,v in zip(keys,values)}
d

{'x':s 24, 'y': 25, 'z': 26}

d = zip(keys,values)
list(d)

zip(keys,values)

[('x"', 24), ('y',y 25), ('z', 26)] dZ:list(dl)
list(dl)

[]

/1p

zip is a built-in function that takes two or more
sequences, and

“zips” them into a list of tuples, where

each tuple contains one element from each sequence

Lists and Tuples

Example,

S 'abc'
t =10,1,2]
zip(s,t)

<zip at 0x105eafd88>

The result is a list of tuples, where each tuple contains a
character from the string and the corresponding element

from the list

Hashing from two arrays

sl = {1,3,2}
Sz={lcl'lbl’lal}

s3 = list(zip(sl,s2))
s3

[(1, '¢"), (2, 'B"), (3, "a’)]
Unzip a list of tuples

sl new, s2 new = zip(*s3)
print (sl new)
print(s2_ new)

(1, 2, 3)
(lcl’ lbl’ lal)

Hashing from more than two arrays

11 = [1,2,3,4]
12=[lal’lblllcl,ldI]
13 = [2.0,3.0,4.0,5.0]
14 = zip(1l1,12,13)

1 = list(14)

1

[(x, 'a‘, 2.0), (2, 'b', 3.0), (3, 'c’, 4.0), (4, 'd’, 5.0)]

Unzip a list of tuples */¥sZ = 2ip(*1)
print(x)

print(y)
print(z)

(1, 2, 3, 4)
(lal, lbl, lcl, ldl)
(2.0, 3.0, 4.0, 5.0)

Hashing from different sized arrays

list(zip(range(5),range(50)))

[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

from itertools import zip longest

a=1[1,2,3]
b= [IXI’IYI’IZI]
c = range(5)

d = zip longest(a,b,c,fillvalue="*")
list(d)

[(1I 'x.l o)l (2l 'Y'I 1)’ (3I lZ'I 2)’ ('*'l '*.I 3)’ (|*'I '*'I 4)]

Sorting in Parallel

a=1[1,3,2]
b=7(['c','b','a"]
c = list(zip(a,b))
print (c)

c.sort()

print(c)

[(1, '¢"), (3, 'b"), (2, "a’)]
[(1, '¢"), (2, "a'), (3, 'b")]
d = list(zip(b,a))

print(d)

d.sort()
print(d)

[('c', 1), ('D', 3), ('a', 2)]
[(‘a'y, 2), ('b', 3), ('c¢', 1)]

MSMIL. 605
Files

Introduction

Most of the programs written so far run for a
short duration.

Once the program ends, the data is gone

If we want to see the results again we have to
run the program again.

Persistence

Some programs run for a long time.
They store data permanently

The data is available even after the program
ends.

for example, operating systems and web
servers

One way to read and write data is using files.

Another way to store data is using a
database.

Reading a File

Using a built-in function ‘open’

It takes the name of a file and returns a file
object

fin = open('../Lectures/words.txt')
fin

< io.TextIOWrapper name='../Lectures/words.txt' mode='r' encoding='UTF-8'>

Readline

It can read one line
fin = open(‘'words.txt’)
fin.readline()

fin.readline()

'MSML 605\n'

readlines() reads lines into a list

fin.readlines()

['Course\n', 'Spring 2020']

End lines

fin = open(‘words.txt’)
fin.readline()

Remove end line character

fin.strip("\n")

fin = open('../Lectures/words.txt")
fin.readline().strip('\n")

'"MSML 605"

File Traversal

fin = open(‘words.txt’)
for line in fin:
print(line)
fin = open('../Lectures/words.txt")
for line in fin:

print(line)
fin.close()

MSML 605
Course

Spring 2020

Writing

To write to a file, you have to open it with
mode ‘W’ as a second parameter

fout = open(‘output.txt’, ‘w’)

If the file already exists, opening it in write
mode clears out the old data and starts fresh

Write to a File

line1 = “This is a ML class\n”

fout.write(line1)
line2 = “We Program in Python language\n”

fout.write(line2)
fout.close()

Format Operatot

The argument of write has to be a string

If we want to put other values in a file, we have to convert

them to strings.

f = open(‘output.txt’, ‘w’)
X =253

f.write(str(x))

An alternative is to use the format operator, %

Format Operatot

The argument of write is a string.

If you want to write a string, you convert it to string first
using

str(<int value>)
for example, str(4)

converts int 4, to string.

Format Sequence

for example,
the format sequence “%d’ means that the second

operand should be formatted as an integer

camels = 42
'3d' % camels

|42l

The result is the string ‘42’

More formatting

A format sequence can appear anywhere in the string

So you can embed a value in a sentence:

camels = 42
'I have spotted %d camels.

% camels

'I have spotted 42 camels.'

More formatting

For more than one format sequence in a string, the
second argument is a tuple.

Each format sequence with an element of the tuple, in
order.

Format Sequences used to format
‘%d’ an integer
‘%g’ a floating-point number

‘%s’ a string
'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'"In 3 years I have spotted 0.1 camels.'

Sequence formatting

The number of elements in the tuple has to match the
number of format sequences in the string

Also, the types of the elements have to match the format

sequences
'%d %d %d' % (1,2)

'%d %d %d' % (1,2)

TypeError Traceback (most recent call last)
<ipython-input-191-0acela2a959a> in
——==>1 '%d %d %d' % (1,2)

TypeError: not enough arguments for format string

'¢d' % 'dollars'

‘%d’ % ‘dollars'

TypeError Traceback (most recent call last)
<ipython-input-192-f60b471c8eff> in
-——->1 '8%d' % 'dollars'

TypeError: %d format: a number is required, not str

Filenames and Paths

Import os
os module provides functions for working with files
and directories

>>> import os
>>> cwd = os.getcwd()
>>> print(cwd)
/Users/nayeem

To find the absolute path to a file, you can use
os.path.abspath

>>> 0S.path.abspath('words"')
'/Users/nayeem/words’

Filenames and Paths

os.path.exists checks whether a file or directory exists:

>>> 0s.path.exists('words.txt")
False

os.path.isdir checks whether it's a directory:

>>> 0S.path.isdir('Documents’)
True

os.path.isfile checks whether it's a file:

>>> 0s.path.isfile('test"')
True

Filenames and Paths

os.listdir returns a list of the files (and other directories) in the given directory:

>>> 0s.listdir(‘/users"’)
['.localized', 'Guest', 'nayeem', 'Shared']

walk through a directory
import os

def walk(dirname):
for name in os.listdir(dirname):
path = os.path.join(dirname,name)
if os.path.isfile(path):
print(path)
else:
walk(path)

train_img_names = [o0s.path.join(training_path,f) for f in os.listdir(training_path) if f.endswith('.jpg’)]

Catching Exceptions

If you try to open a file that doesn't exist it will throw an
error.

fin = open(‘our_file")

FileNotFoundError: [Errno 2] No such file or directory: 'our_file'

If you don’t have permission to access a file:

fout = open(‘/etc/passwd’,'w')
PermissionError: [Errno 13] Permission denied: ‘/etc/passwd'

If you try to open a directory for reading, you get:
fin = open('/home’")
IsADirectoryError: [Errno 21] Is a directory: '/home’

try and except

There is an option using ‘try’ and ‘except’ so that the
program does not halt when there is an error

try:
fin = open(‘bad_file")
for line in fin:
print(line)
fin.close()
except:

print("Something went wrong')
Python starts by executing the try clause.
If all goes well, it skips the except clause and proceeds
If an exception occurs, it jumps out of the try clause

try and except

There is an option using ‘try’ and ‘except’ so that the
program does not halt when there is an error

try:
fin = open(‘bad_file")
for line in fin:
print(line)
fin.close()
except:
print('Something went wrong')

Python starts by executing the try clause.
If all goes well, it skips the except clause and proceeds
If an exception occurs, it jumps out of the try clause

Pickling
A pickle module is used to store Python objects in a database

import pickle
t=11,2,3]

s = pickle.dump(t)
print(s)

t2 = pickle.load(s)
print(t2)

Although the new object has the same value as the old, it is not
the same object:

print(t==t2) #True

print(t is t2) # False

