
Show Jupyter Notebook Demo for pickle
and joblib

MSML 605 

Objects and Classes

3

Outline

■ Objects, classes, and object-oriented
programming
❑ relationship between classes and objects
❑ abstraction

■ Anatomy of a class
❑ instance variables
❑ instance methods
❑ constructors

4

Objects and classes
■ object: An entity that combines state and behavior.

❑ object-oriented programming (OOP): Writing programs
that perform most of their behavior as interactions
between objects.

■ class: 1. A program. or, 
 2. A blueprint of an object.
❑ classes you may have used so far:
 str, list, dict, etc

■ We will write classes to define new types of
objects.

5

Abstraction
■ abstraction: A distancing between ideas and details.

❑ Objects in Python provide abstraction: 
We can use them without knowing how they work.

■ You use abstraction every day.
Example: Your smart phone.
❑ You understand its external behavior (home button, screen, etc.)
❑ You don't understand its inner details (and you don't need to).

6

Encapsulation

■ encapsulation: 
Hiding implementation details of an object
from clients.

■ Encapsulation provides abstraction; 
we can use objects without knowing how they
work.
The object has:
❑ an external view (its behavior)
❑ an internal view (the state and methods that

accomplish the behavior)

7

Class = blueprint, Object = instance
Music player blueprint

state: 
current song 
volume  
battery life
behavior: 
power on/off 
change station/song 
change volume 
choose random song

Music player #1
state: 
 song = “Let it snow"  
 volume = 17 
 battery life = 2.5 hrs
behavior: 
 power on/off  
 change station/song 
 change volume  
 choose random song

Music player #2
state: 
 song = ”Galaxy song"  
 volume = 9 
 battery life = 3.41 hrs
behavior: 
 power on/off  
 change station/song 
 change volume  
 choose random song

Music player #3
state: 
 song = "Code Monkey"  
 volume = 24 
 battery life = 1.8 hrs
behavior: 
 power on/off  
 change station/song 
 change volume  
 choose random song

Scope

Class example

Class constructor

Instance variables and behavior (definitions)

Instance variables and behavior (definitions)

How often would you expect to get snake
eyes?

If you’re unsure on how to
compute the probability then
you write a program that
simulates the process

Snake Eyes
class SnakeEyes(): 
 def __init__(self,num_rolls): 
 self.rolls = num_rolls 
 self.count = 0  
 def rollingDie(self):  
 die1 = Die(6)  
 die2 = Die(6)  
 
 for i in range(self.rolls): 
 face1Val = die1.roll() 
 face2Val = die2.roll() 
 # print(face1Val,' ',face2Val) 
 # print("============================") 
 if face1Val == 1 and face2Val == 1:  
 self.count += 1  
 print("Num Snake Eyes: ",self.count) 
 print("Num Rolls: ",self.rolls) 
 print("Snake eyes probability: ", self.count/self.rolls) 
 
 
def main(): 
 s = SnakeEyes(5000)  
 s.rollingDie() 
 
if __name__ == "__main__":  
 main()

Need to write the Die class!

15

Die object

■ State (data) of a Die object:

■ Behavior (methods) of a Die object:

Method name Description
roll() roll the die

Instance variable Description
numFaces the number of faces for a die

16

The Die class

■ The class (blueprint) knows how to create objects.
Die class

state: 
numFaces = 0
faceValue = 0
behavior: 
roll()
getFaceValue()

Die object #1
state: 
numFaces = 6

faceValue = 2

behavior:
roll()
getFaceValue()

Die object #2
state: 
numFaces = 6

faceValue = 5

behavior:
roll()
getFaceValue()

Die object #3
state: 
numFaces = 10

faceValue = 8

behavior:
roll()
getFaceValue()

die1 = Die(5,3)

17

Object state: 
instance variables

18

Die class

■ The following code creates a new class named Die.

class Die(): 
 faceValue = 0  
 def __init__(self,faces): 
 self.numFaces = faces

❑ Save this code into a file named Die.py.
■ Each Die object contains two pieces of data:

❑ numFaces
❑ faceValue

■ No behavior (yet).

declared outside of
any method

dice = Die(5)

19

Instance variables
■ instance variable: A variable inside an object that holds part

of its state.
❑ Each object has its own copy.

■ Declaring an instance variable:
 <name> = <value>

class Die():
 faceValue = 0
 def __init__(self,faces): 

 self.numFaces = faces

Instance variables
 Each Die object maintains its own numFaces and faceValue

variable, and thus its own state

 die1 = Die(5)
 die2 = Die(6)

die1 5numfaces

die2 6numfaces

21

Accessing instance variables

■ Code in other classes can access your object's
instance variables.

❑ Accessing an instance variable: dot operator
 <variable name>.<instance variable>

❑ Modifying an instance variable:
 <variable name>.<instance variable> = <value>

■ Examples:
print(”you rolled “, die.faceValue)
die.faceValue = 20

22

Client code
❑ Die and snakeEyes can have a main …

■ We will almost always do this…. WHY?
■ To test the class before it is used by other classes

❑ or can be used by other programs stored in separate .py files.
❑ client code: Code that uses a class

Roll.py (client code)

def main(): 
 s = SnakeEyes(5000)  
 s.rollingDie() 
 
if __name__ == "__main__":  
 main()

snakeEyes.py

class SnakeEyes(): 
 def __init__(self,num_rolls): 
 self.rolls = num_rolls 
 self.count = 0

23

Object behavior: methods

24

OO Instance methods

■ Classes combine state and behavior.
■ instance variables: define state
■ instance methods:  

define behavior for each object of a class. methods
are the way objects communicate with each other
and with users

■ instance method declaration, general syntax:

 <name> (<parameter(s)>):
 <statement(s)>

Rolling the dice: instance methods
class SnakeEyes(): 
 def __init__(self,num_rolls): 
 self.rolls = num_rolls 
 self.count = 0  
 def rollingDie(self):  
 die1 = Die(6)  
 die2 = Die(6)  
 
 for i in range(self.rolls): 
 face1Val = die1.roll() 
 face2Val = die2.roll() 
 # print(face1Val,' ',face2Val) 
 # print("============================") 
 if face1Val == 1 and face2Val == 1:  
 self.count += 1  
 print("Num Snake Eyes: ",self.count) 
 print("Num Rolls: ",self.rolls) 
 print("Snake eyes probability: ", self.count/self.rolls)

class Die(): 
 faceValue = 0  
 def __init__(self,faces): 
 self.numFaces = faces 
 # self.faceValue = faceVal 
 def roll(self): 
 faceValue = random.randrange(1,self.numFaces + 1)  
 return faceValue

26

Object initialization:
constructors

27

Initializing objects

■ When we create a new object, we can assign
values to all, or some of, its instance variables:

 die1 = Die(6)

Die constructor
class Die(): 
 faceValue = 0  
 def __init__(self,faces): 
 self.numFaces = faces 
 # self.faceValue = faceVal 
 def roll(self): 
 faceValue = random.randrange(1,self.numFaces + 1)  
 return faceValue

die1 = Die(6)

29

Constructors
■ constructor: creates and initializes a new object

 def __init__ (<parameter(s)>):
 <statement(s)>

❑ For a constructor function name is __init__
❑ A constructor runs when the client calls the class.
❑ A constructor implicitly returns the newly created and initialized

object.

❑ You can create an object without calling on a constructor.

30

Multiple Constructors
■ It is not supported by default.

■ To define a class other than using __init__(), we can use
a class method

■ A class method receives the class as the first argument.

■ This class is used within the method to create and return
the final instance.

No Constructor

■ When we want to create an object for a class
without calling the constructor, we should use 
__new__ 
 
class noConstructorCall: 
 def h(self): 
 print("Hello")  
 
t = noConstructorCall.__new__(noConstructorCall) 
t.h()

Magic methods

■ When we want to create an object for a class
without calling the constructor, we should use 
__new__ 
 
class noConstructorCall: 
 def h(self): 
 print("Hello")  
 
t = noConstructorCall.__new__(noConstructorCall) 
t.h()

Magic methods

Magic methods

