MSML 605 - Lecture 9

Computation

Machine Learning Hardware

- CPUs
- GPUs
- FPGAs
- Other accelerators

Machine Learning hardware

 Speed up each block of the pipeline for example, matrix-matrix multiplication, convolution

 Data or memory paths for machine learning work example: caching

Application-specific functional units

Processing

• CPU is good at executing few complex operations.

In ML most of the processing involves matrix multiplication.

• Lots of small calculations.

• GPU is well suited for those kind of computations.

Processing

- GPU utilizes parallel architecture.

It is very good at handling many sets of very simple instructions.

GPU's

CPU vs. GPU

0 2560 cores

18 cores

CPU vs. GPU

	CPU i9 Xseries	GeForce GTX 1080
Cores	18 (36 threads)	2560
Clock Speed (GHz)	4.4	1.6G
Memory	Shared	8GB
Price (\$)	1799	549

GPU programming

- CUDA
 - C-like code that runs on GPU
 - Other APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on CPU's as well
 - usually slower

Frameworks

- Caffe (Berkeley)
- Torch (NYU / Facebook)
- Theano (University of Montreal)

Frameworks

- Caffe (Berkeley)
- Caffe2 (Facebook)
- Torch (NYU / Facebook)
- PyTorch (Facebook)
- Theano (University of Montreal)
- TensorFlow (Google)
- Paddle (Baidu)
- CNTK (Microsoft)
- MXNet (Amazon)

DeepLearning Frameworks

- Computational graphs
- Gradient computation
- Run on GPU seamlessly