
MSML 605 - Lecture 10 

Parallel Processing

Process
■ A unit of work, for example, Jupyter notebook

■ An OS can run multiple processes at the same time.

■ By default Python interpreter executes instructions serially.

■ The size of the datasets has in increased.

■ The algorithms are more complex and need to process
more, hence the need for multi-processing

Parallel processing
■ To speed up a process we want to split it to

distribute across many CPUs

■ Faster or/and efficiently

■ Many tasks are suited for parallel processing, for
example matrix multiplication

■ A process can have multiple threads.

Parallel processing
■ It can be achieved in two ways: Multiprocessing and

Threading

■ Process: An instance of a program  
Uses its own memory space  

■ Threads: components of a process, which can run in
parallel

■ Multiple threads

■ Share parent process memory space

Processes and Threads
■ Threads live in the same  

memory space

■ Processes have their separate  
memory space

■ Spawning processes is slower  
than spawning threads.

■ Sharing objects between  
threads is easier.

■ Inter-process communication between processes.

Source

https://upload.wikimedia.org/wikipedia/commons/a/a5/Multithreaded_process.svg

Cons of parallel processing
■ Race Condition:

■ For threads same memory and access to variables.

■ To avoid, use mutex (mutual exclusion) lock around
code.

■ Starvation: A thread is denied access to a resource for a
long duration.

■ Deadlock: Mutex overuse can cause deadlocks. A
thread has to wait for another thread to release a lock.

■ Livelock: threads keep running in a loop but don’t make
any progress.

Threading
■ Use threading if network bound and multiprocessing

if it’s CPU bound.

■ threading is perfect

■ for I/O operations such as web scraping

■ GUI programs, for example one for text editing,
another for recording and a third one to do spell-
checking.

■ Tensorflow uses thread pool to transform data in
parallel.

Multiprocessing
■ Useful when the program is CPU intensive and not

dependent on IO or user interaction.

■ For example, processing numbers

■ Pytorch Dataloaded loads data into GPU

