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Abstract

Sixty-five percent of mobile apps require user accounts for offering full-

fledged functionality. Account information includes private data, e.g., address,
phone number, credit card. Our concern is “leftover” account data kept on the
server after account deletion, which can be a significant privacy violation.
Specifically, we analyzed 1,435 popular apps from Google Play (and 771
associated websites), of which 678 have their own sign-up process, to answer
questions such as: Can accounts be deleted at all? Following account deletion,
will user data remain on the app’s servers? If so, for how long? Do apps
keep their promise to remove data?
Answering these questions, and more generally, understanding and tackling
the leftover account problem, is challenging. A fundamental obstacle is
that leftover data is manipulated and retained in a private space, on the
app’s backend servers; we devised a novel, reverse-engineering approach
to infer leftover data from app—server communication. Another obstacle is
the distributed nature of this data: program analysis as well as information
retrieval are required on both the app and its website. We have developed
an end-to-end solution (static analysis, dynamic analysis, natural language
processing) to the leftover account problem. First, our toolchain checks
whether an app, or its website, support account deletion; next, it checks
whether the app/website have a data retention policy, and whether the account
is left on servers after deletion, or after the specified retention period; finally,
it automatically cleans up leftover accounts. We found that 64.45% of apps
do not offer any means for users to delete accounts; 2.5% of apps still keep
account data on app servers even after accounts are deleted by users. Only
5% of apps specify a retention period; some of these apps violate their own
policy by still retaining data months after the period has ended. Experiments
show that our approach is effective, with an F-measure > 88%, and efficient,
with a typical analysis time of 279 seconds per app/website.

1. Introduction

A substantial percentage of mobile apps (65%, according
to our findings) require user accounts. When creating a mo-
bile app account, users have to provide private information,
e.g., email address, phone number, billing address, or even
SSN. Unfortunately, once this information has been gathered,
only 35.55% of apps offer users the option to “forget” the
information, e.g., offering a Delete Account option in app
or on the website. Some companies deliberately make this
process harder, e.g., users have to go to the company’s website
to delete a mobile-created account. Finally, some companies
retain information even after users have asked for the account
and associated data to be removed.

We denote LAl — Leftover Account Information — the
account information retained on servers after account deletion.
As server data is not (readily) accessible, our insight is
to derive LAI from app-server interaction. We study how
LAI is handled, from the perspective of user control: what
information is required at account creation time; can users
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request account deletion; what information is retained after the
user requests deletion, and for how long. LAI is problematic
for two main reasons. First, LAI poses a security risk because
leftover private information can be leaked after users have
deleted their accounts. Second, LAI violates users’ trust; users
reasonably assume that account information is deleted when
an account is deleted [37].

In Figure 1 we present several LAI examples. Figure 1(a)
shows the PiniOn mobile app requiring name, password, birth-
day, email and gender at account creation time; Figure 1(b)
shows the “account will be erased” warning shown when
users request account deletion; Figure 1(c) shows that the
app actually still keeps (at least some) account details on the
backend servers after account deletion.

Less than a quarter of our examined apps (22.71%) provide
users with means to delete their accounts, e.g., via an in-app
‘Delete Account’ button. Other apps (12.83%) do not provide
this in-app option — instead they ask users to go to their
corresponding websites and delete the accounts from there.
Whether the company actually removes users’ information af-
ter account deletion is a different story. For example, Figure 1
(d) shows how an account (anonymized) is still retained on
eBay’s servers after account deletion and even after the 30 day-
retention period claimed by the app; in Section 9.2.1 we show
other examples of popular apps that breach their promise to
delete account data at the end of the retention period, keeping
it for months after. In fact only 5% of apps specify a retention
period (for how long data will be kept after account deletion):
from 30 minutes to 5 years, typically 30 days. Finally, 437
apps (384 of which have more than 1M installs) do not provide
any account deletion functionality, either in the app or on the
website.

We performed a pilot study on 188 popular broad-ranging
apps' from Google Play. Of these, 154 had a corresponding
website; 135 ask for sensitive user information to create
accounts. We manually installed each app, created an account,
then explored the app and the website to check whether
account deletion was supported. We deleted the account and
uninstalled the app. We then re-installed the app and attempted
to use the previous sign-up information upon account creation.

Table 1 shows the study results. We found that 34.81% of

1. Spanning 28 categories; involving free and paid apps; with app popularity
ranging from 1M to 1B installs.
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Fig. 1: Leftover Account Information: (a) Personal information required during PiniOn’s sign-up; (b) App claiming the account
will be “irreversibly” erased; (c) The key field of the account still retained on the server; (d) An user account (anonymized)
still on eBay’s servers even after the 30-day post-deletion retention period has expired.

the apps leave LAI on servers after app uninstallation, and
2.96% keep LAI after account deletion. A majority (57.04%)
of apps do not offer a ‘Delete Account’ option, either in-app
or on the website. Finally, for 23 apps, the account deletion
process is convoluted (users must contact customer support,
undergo phone-based verification, etc.). Hence there is an
impetus for an in-depth, systematic study of LAI

Challenges and approach. To our knowledge, there has
been no effort so far to study and address LAI. A fundamental
challenge is that data is stored privately, on the server, thus
inaccessible to outsiders; we devised a novel approach based
on reverse engineering to infer leftover data from app-server
communication. Another challenge is the extensive scope of
the analysis, even for one app: account management can be
distributed across an app and its website, which requires both
app and website analysis. Functionality described in natural
language, in the app or website resources, e.g., XML or
even images, has to be connected to account management
actions in app code or website code. Deletion and retention
policies might be deliberately “buried”; their precise retrieval
and understanding is a challenging NLP task. We address
these challenges via a four-tool chain — LeftoverAccountAnalyzer,
AccountDeletionAnalyzer, LeftoverAccountCleaner (for uninstalled
apps), RetentionPeriodAnalyzer — described in Sections 4 to 7. We
made the tool implementations, datasets, and analysis results
available on GitHub.?

We evaluate our approach, and perform an LAI study, in
Section 9. We started from 1,435 Android apps and 771 cor-
responding websites; while 938 apps (65.4%) require account
sign-up, 260 apps use third-party sign-in, hence the focus of
the study was on the 678 “own sign-in” apps.

The study shows that our toolchain is effective. For example,
LeftoverAccountAnalyzer found that 254 apps (37.46%) leave

2. https://github.com/LeftoverAccountInformation/LAI

TABLE 1: Pilot Study Results (135 Apps).

App Info Count Percentage
LAI remains on servers
after uninstallation 47 34.81%
after account deletion 4 2.96%
Account deletion function. (ADF)
app & website 13 9.63%
in-app only, not on website 16 11.85%
on website only, not in-app 29 21.48%
no ADF 77 57.04%

LAI after app uninstallation, and 17 apps (2.5%) leave LAI
after account deletion, including government-issued IDs, or
banking information (Table 7). Moreover, three apps with more
than 50M installs keep LAI months after they were supposed
to delete it (Table 9). We were able to confirm the LAI
problem by contacting customer service, e.g., Enterprise Rent-
A-Car. Finally, LeftoverAccountCleaner could successfully clean
up accounts in 214 out of 245 uninstalled apps (87.34%). The
study also shows that our toolchain is efficient: the median
per-app analysis time for LeftoverAccountAnalyzer, AccountDeletio-
nAnalyzer, RetentionPeriodAnalyzer and LeftoverAccountCleaner was
163 seconds, 276 seconds, 259 seconds and 231 seconds,
respectively.
Contributions. We make the following contributions:

o An exposition and study of the LAI problem.

« A novel, reverse engineering-based approach named Left-
overAccountAnalyzer to infer the account information re-
maining on servers after account deletion.

e An AccountDeletionAnalyzer tool to determine whether an
app has account deletion functionality.

« A RetentionPeriodAnalyzer tool to automatically extract app
retention period.



e A LeftoverAccountCleaner tool, to automatically clean up
leftover accounts for a given Google user.

o An evaluation of the aforementioned tools on popular
apps from Google Play.

2. Leftover Accounts: Problem Definition

The lifecycle of an account is shown in Figure 2. After
an app is installed, the user signs-up (creates an account?)
usually on the phone, or less frequently, on the app’s website.
The user’s personal information is sent to the server and stored
into the account database. When users decide not to use the
app anymore, their options are to delete the account, uninstall
the app, or both.

We believe that users should reasonably expect:

o Account deletion functionality, offered in the app or on
the website.

« A retention policy that specifies for how long account
data will be retained after account deletion.

o Account information to be removed from the server after
account deletion; either immediately or after the policy-
specified retention period.

Our pilot study shows that apps routinely violate these
assumptions, leading to four categories of leftover accounts
issues (in Sections 2.1 to 2.4 we define these categories from
highest to lowest severity level).

LAI as security and privacy risk. LAI is a serious
violation of user privacy [6] [1] [7]. Leftover accounts could
get hacked, and the data in those accounts could be stolen
or exposed. A server breach, e.g., years later, could expose
information that users forgot they ever even shared.

2.1. No Account Deletion Functionality

Definition. An app does not provide users a means to delete
their account; thus the user has no control over the private
information that remains on the server side.

Example. Wattpad (wp.wattpad) is a popular app (100M+
installs) for reading or writing stories. However, neither the
app nor the website provide users a ‘Delete Account’ option.

2.2. Leftover Accounts after Deletion

Definition. An app retains account information on the server
side even after the user deletes the account.

Example. Discord (com.discord) is a popular (SOM+ installs)
communication app. First, we signed up for a Discord account
via username/password. Next, we attempted to delete the
account, by clicking the ‘Delete Account’ button. However,
even months after this operation, we could confirm that LAI
still remained on Discord servers.

2.3. Leftover Accounts after Uninstallation

Developers have the technical means to detect when their
app is uninstalled: the uninstall event is available via the

3. Some apps allow third-party sign-in (e.g., Google, Facebook); those apps
are outside the scope of this paper.
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Fig. 2: Account Lifecycle.

Google Firebase* app_remove event [24] or third-party li-
braries [12]. User expectations regarding account deletion
upon app uninstall differ, depending on the type of the app. For
“multi-platform services”, such as Netflix or Hulu, delivered
via either the browser or mobile app, users may assume that
the account will persist upon app uninstallation. However, for
“mobile-only services”, i.e., services provided exclusively via
the app, a vast majority of users assume that app uninstallation
means the app is abandoned and thus the account is no
longer needed [8] [21]. Note that mobile app retention rate
is low: 75% of installed apps are abandoned within 90 days,
and eventually uninstalled without being revisited [8] [21],
which leaves users’ information on servers (accounts becom-
ing “zombie accounts”). If the servers are compromised, users’
personal information will be exposed to hackers. Our toolchain
determines whether an app actually deletes the user account
upon app uninstall.

Definition. An app retains account data on the server after
app uninstallation. If the app does not specify a data retention
period, the data could potentially remain on the server for
unlimited time. In our investigation, while certain apps have
a post-account-deletion retention policy (how long data will
be kept after account deletion), there were no apps with a
post-app-uninstallation retention policy.

2.4. No Account Retention Period

Definition. An app does not specify for how long the ac-
count (or account data) will be retained on the backend server
after users request account deletion. For example Discord
(com.discord)’s policy specifies that the account will be deleted
“soon” but no firm period is provided [5].

3. Architecture

To detect and address LAI issues, we designed the toolchain
shown in Figure 3. The toolchain performs a suite of static,
dynamic, and NLP analyses on APK files, web pages, and

4. Firebase is used by 99% of apps that employ a back-end [14] and 83%
of apps overall — 2.5M out of 3M Google Play apps, as of October 2020 [13],
[17], [22].
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account history. The AccountDeletionAnalyzer statically analyzes
APKs and web pages to determine whether the app (or its
corresponding website) offers account deletion functionality.
The LeftoverAccountAnalyzer uses dynamic analysis to detect
and verify LAI after account deletion or app uninstall. The
RetentionPeriodAnalyzer uses NLP on APKs and web pages
to extract retention periods. The LeftoverAccountCleaner deletes
accounts left after app uninstall.

4. Account Deletion Analyzer

This analyzer determines whether the app provides account
deletion functionality (either in the app or on the website), e.g.,
via a button or link. Two challenges need to be addressed:
(1) analyzing both the app binary (APK) and the app’s
corresponding website to find the GUI button or website link
for account deletion; and (2) mapping the button/link to actual
code, which requires an elaborate static analysis — note that
GUI buttons are defined in the app’s XML resources, whereas
the actual code is defined in the app’s Smali bytecode.

According to our observations: (1) the ‘Delete Account’,
or similar, button/link has text whose semantics is account
deletion and is bound with an action listener that performs
the actual delete operation; and (2) the GUI layout hierarchy
contains text to explain the consequences or steps of the
account deletion process. We provide two examples of how
websites encode Account Deletion (AD) buttons; a static
HTML button on the left, and JavaScript code on the right:

HTML

<!—— www.curiosity.com ——>
<div class="btn btn—danger”>

<button class=

”js —delete—account”>
Delete Account

</button>

</div>

JavaScript
<!—— www.bodbot.com ——>
<div class="input_holder">
<a onclick=
"deleteAccountDialog()”>
delete my account
</a>
</div>

To account for these aspects, AD analysis consists of
four steps: finding account deletion strings, mapping strings
to screens, finding action listeners, and determining account
deletion functionality (ADF); each step is discussed next.

4.1. Finding Account Deletion Strings

Account deletion semantics — a precise approach for finding
text whose semantics is “Delete Account” — is a major
challenge due to three main reasons.

First, a context-free grammar is required to recognize AD
strings. A less sophisticated approach, such as regular ex-
pressions, would not work. For example, suppose we use the
regular expression “disable.* account” for AD string detection,
and we analyze the string “sorry, online ordering services have
been disabled for this account due to suspicious behavior”.
This string will match the regex, hence the phrase would
incorrectly be deemed an AD string (it is not). Second,
strings are scattered in hundreds of files across an app and its
corresponding website, e.g., .xml resources, .smali (for code),
or .html. Third, some strings are embedded in images, which
requires converting the images to text before string analysis.
We first perform keyword search to find candidate strings,
which can dramatically reduce the number of strings to be han-
dled by the natural language processing algorithm. Example
patterns include “.*delete.*account.*”, “.*close.*account.*”,

“*cancel.*account.*”, etc.

For strings that match the patterns, we developed a novel,
natural language-based analysis approach to check whether
the strings mean “delete account”; we name such strings AD
strings. The grammar is defined as follows:

ADstring == Verbphrase Nounphrase
Verbphrase == “delete” | “destroy” |
“close” | “terminate” | “shutof f” |
“shutdown” | “disable” | ...
Nounphrase ::= Det Noun | Ppr Noun | Noun
Det = “the” | “this”
Noun n= “account” | “registration information”
Ppr “your” | “my”

We use phrase structure trees, generated by NLTK [2], to
reconstruct the semantic structure [10] of a sentence. For
example (trees shown in the Appendix, Section 13.2), Fitbit’s
“please provide your password in order to delete this account”
is in the language induced by the grammar hence an AD string
(AD verb, Nounphrase subtree whose Noun is an AD noun),
whereas Zomato’s ‘“‘sorry, online ordering services have been
disabled for this account due to suspicious behavior” does not
conform to the grammar hence is not an AD string (succeeding
subtree of the Verbphrase is a propositional phrase tree as
opposed to Nounphrase).

Tables 2 and 3 show AD strings vs. non-AD strings dis-
cerned by our grammar, which illustrates the difficulties and
subtlety of the task, along with our approach’s effectiveness.

4.2. Mapping Strings to Screens
There is a disconnect between strings’ definition (location)
and use (where exactly, in the GUI, the strings are actually



TABLE 2: AD String Examples.

Package Name Phrases

adidas Delete account

com.foap.android We are sorry you want to close your account.

com.airbnb.android  Cancel your account?

com.azarlive.android Are you sure you want to delete your ac-
count?

com.bearpty.talklife Do you want to delete your account?

com.clue.android How do I delete my account?

TABLE 3: Non-AD String Examples.

Package Name Phrases

To see the Microsoft Certification data that’s
linked to this account, and your friends list
will all be deleted.

microsoftword

com.bt.mdd You are required to be logged in to delete a

book from your account

com.feverup.fever  Clicking below will delete all the payment

methods linked to your Fever account

com.goldstar By tapping confirm, your tickets will be
canceled, and your Goldstar account will be

credited the amount above

com.huawei.health Cancel logging in with this account?

com.penzu.android This entry will be deleted from your device
and anywhere else you use to access your
Penzu account

shown to the user). For example, AD strings can be embedded
in app resources (XML files or images), which cannot be
directly connected to a screen; here by “screen” we mean
app activities (pages), or web pages on the app website. We
address this disconnect challenge via a novel, static analysis-
based approach. We use static analysis as it has several
advantages over dynamic analysis for this setting: since we
do not have to run the app, the analysis is efficient, scalable,
and sound. However, static mapping is challenging, because
we cannot directly map an AD string to a screen, as there are
multiple intermediate mapping steps. Typically, intermediate
steps include mapping strings to name attributes, then UI
controls, then layouts, then top-level layouts, then fragments,
and finally, activities. Different intermediate steps involve
different objects, which requires tracking via static analysis.

All potential intermediate mapping steps and objects of an
app form a directed object graph: nodes represents objects
(i.e., strings, name attributes, UI controls, images, layouts, top-
level layouts, fragments, activities, and HTML files), while
edges represent intermediate mapping steps. We thus reduce
the problem of mapping an AD string to a screen to finding
a path from the string to the screen in the graph. As there
are thousands of objects in a decompiled app and millions
of potential intermediate mapping steps among these objects,
finding a path from a string to a screen in this graph is
inefficient. To reduce intermediate mapping steps and improve

Algorithm 1 Mapping AD String to Screen
Input: ADString
1: procedure MAPPINGSTRINGTOSCREEN(adString)

2: objType « Str

3: screenSet < DEPTHFIRSTMAP(adString, objType)
4: return screenSet

5: end procedure

6:

7. procedure DEPTHFIRSTMAP(0bj;, type;)

8: objTypeSet + GETMAPPINGOBJECTTYPES(type;)
9: for each type; in objTypeSet do

10: objSet <~ FINDMAPPINGOBJECTS(0bj;, type;)
11: for each obj; in objSet do

12: if obj; is activity or HTML file then

13: screenSet +— screenSet + obj;

14: else

15: screenSet < DEPTHFIRSTMAP(0bj;, type;)
16: end if

17: end for

18: end for

19: return screenSet

20: end procedure

performance, we instead enumerate legal/feasible intermediate
mapping steps:

Strings 4 (UIControls | NameAttributes | Images

| HtmlFiles)
NameAttributes 4 (UIControls | Layouts | Fragments
| Activities)

UIControls 4 Layouts

Layouts - TopLevel Layouts

TopLevel Layouts 4 (Fragments | Activities)

Fragments - Activities

Images 4 (UIControls | HtmlF'iles)

Activities = ¢

HtmlFiles 4 ¢

There are 15 types of possible intermediate mapping steps
(i.e., containing relationships), denoted as ‘—’. For example,
“Strings - UlControls” indicates that strings can be contained
by UlControls. Activities and HTML files are screens and
thus not contained by any objects. With these 15 possible
intermediate mapping steps, we design a depth-first algorithm
to map an AD string to screens (Algorithm 1). The function
GETMAPPINGOBJECTTYPES uses the mapping table above
to determine the object types that can contain the given object
type. This can avoid searching a large volume of objects with
other object types, thus improving performance. The function
FINDMAPPINGOBJECTS gathers all objects that contain the
given object. Once the mapping procedure reaches a screen,
i.e., activity or HTML file, we have determined that the screen
contains the string.

Figure 4 uses the Line app as a complete example to
illustrate the intermediate mapping steps from AD strings to
screens. The app has 3 AD strings (Adstr) on the top of
the graph. These AD strings are mapped to their respective
string name attributes (Nattr). The attributes are used in two
layouts (Lay), contained in one top-level layout (Toplay). The
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Fig. 4: String-screen Mapping Graph for Line App.

top-level layout is used by a fragment (Frag). Finally, the
fragment is used by an activity (Act). Hence we successfully
mapped the AD string “If you delete your LINE account...” to
Android activity SettingsBaseFragmentActivity.

4.3. Finding Account Deletion Listeners

We reconstruct the link from AD code to AD GUI elements
via def-use-chain analysis: specifically, we connect AD strings
shown on a screen with GUI actions the user can perform on
that screen. Def-use-chain analysis has so far been applied to
program code, to connect variable definitions with variable
uses. In Android apps, however, many definitions are in
configuration files, e.g., strings, or GUI element IDs, which
are outside the purview of traditional def-use-chain analysis.
We now discuss our approach for performing this analysis
across program code and configuration files.

In Android, GUI actions such as button clicks are passed
to app code via listeners, e.g., onClickListener(). To associate
a button with the action, the app needs to bind the listener
with the button when the activity is created. This is done
by calling set:Listener-style functions, e.g., setOnClickListener,
setOnKeyListener, setOnTouchListener. If the action listener can be
traced, via def-use-chain analysis, to one of the AD component
id numbers, we conclude that Account Deletion Functionality
(ADF) has been found. The following code snippet is from
EyeEm, a popular photo app.

1 const v1, 0x7f090322

2 invoke—static {p2, v1, v0}, Lbutterknife/internal/ Utils ;—
findRequiredView(Landroid/view/View;lLjava/lang/String;)

3 move—result—object vO

4 .

5 invoke—virtual {v0, v1}, Landroid/view/View;—
setOnClickListener(Landroid/view/View$OnClickListener;)

On line 5, setOnClickListener is invoked on v0. We use
def-use chains to walk backwards to its definition: vO is
defined on line 3, and assigned the value returned by
findRequiredView. We continue to use def-use chains to find
the definition of findRequiredView’s second parameter, i.e.,
0x7f090322. The parameter value is defined as the id of
settings_delete_account_confirm in the layout (public.xml).

1 <public type="id” name="settings_delete_account_confirm” id="0
x7f090322” />
Hence we conclude that AD button settings_delete_
account_confirm is linked to AD code onClickListener. Note
that, as the button id definition resides in the public.xml
configuration file, extending the def-use chain analysis beyond
bytecode was a key enabler for our approach.

4.4. Determining ADF

ADF is determined by two conditions: (1) a layout as-
sociated with an action listener shows text with account
deletion semantics; and (2) on the same screen, there are
other GUI components containing text with account deletion
semantics. These components help users understand the action,
or consequences respectively, of deleting the account.

Condition 1 satisfied

EyeEm app [linearLayout] (Associated with
ID: 0x7f0c0076 | Callback Function)
| |
[TextView] [TextView]
[TextView] ||All your photos & | Once you delete (Button]
data will be your account, [LinearLayout] Delet
Delete Account irreversibly there's no way to elete
deleted restore your photos
1D:0x7f11037f 1D:0x7f110007 || ID:0x7f110006 || ID:0x7f090321 | ID:0x7f090322
| [ |

. . extView,
Condition 2 satisfied [Checkbox] [TDeIete :
(Text for Deleting Account

Account) [1D:0x7f090320] [ID:0x711037f]

Fig. 5: An Example for Determining ADF.

Figure 5 shows an example of an account-deletion top-
level layout from the EyeEm app. In the figure, fragment
frag_settings_delete_account.xml is represented as a hierarchy,
with a [LinearLayout] root node, ID 0x7f0c0076. There are
three descendant [TextView] nodes; the interesting one is ID
0x7f11037f, showing the text ‘Delete Account’. This satisfies
condition (2). Also, in the figure, ID 0x7f090322 is mapped to
node [Button] with text ‘Delete’. We showed that this Button
has a listener from Section 4.3, which satisfies condition (1).
Hence the layout is an ADF layout.

5. Retention Period Analyzer

Some apps have a well-defined retention policy: account
information will be retained on the server for a specified period
of time (e.g., 30 days) after users request account deletion.
We constructed an analyzer that checks for, and extracts, this
retention period. In our evaluation (Section 9.1), to confirm
whether the account information was indeed removed after the
retention period had passed, we waited for the end of retention

period, then checked for LAI
To automatically extract the retention period, RetentionPe-
riodAnalyzer finds text that meets two conditions. First, the



TABLE 4: Retention Period String Examples.

Package Name Phrases

com.snapchat.android After 30 days, your account will be deleted

com.opera.browser  Your account will be deleted in 7 days

com.azure.authentic. This account becomes unrecoverable 60 days

after you close the account

com.intsig.camscan. The account will be deleted in 14 days after

we receive your email

com.ebay.mobile We have started the process to close your

account. The process may take up to 30 days

45 days after creating a request, your account
will be deleted forever

net.wargaming.wot.b.

text must contains strings with Account Deletion or Account
Restoring semantics (similar to AD semantics in Section 4).
Second, the text must contains a time period string, consisting
of a number and a time unit; for example, “1 month”, “3 days”,
or “30 minutes”. This time period is the retention period. The
grammar is defined as follows:

RetentionPeriodString := In Nounphrase |
Nounphrase In |

To NounPhrase

In n= “after” | “in” | “within”

Nounphrase 2= CdNns|CdJj Nns

Cd == Integer

Nns “minutes” | “hours” | “days”
| “weeks” | “months”

To = “to”

Jj n=  Adjective

Table 4 shows six examples of retention period strings
identified by the grammar, which illustrates that our grammar
is effective for recognizing retention periods.

6. Leftover Account Analyzer

To find whether an app leaves leftover account data we
use an automated approach enabled by Appium. For LAI
after account deletion, LeftoverAccountAnalyzer performs several
steps, as described shortly: sign-up (account creation), account
deletion (where offered), sign-up/create account again with
the same credentials, and LAI verification. LAI after app
uninstallation follows the same steps, except the account
deletion step is replaced with app uninstall and app reinstall.
We now describe each step.

Initial sign-up. LeftoverAccountAnalyzer automatically installs
the app, finds the ‘Sign-up’ screen, creates a new account by
supplying the required user information, potentially navigating
through multiple screens via ‘Next’ or similar, until successful
sign-up is confirmed. In the process, LeftoverAccountAnalyzer
logs the {GUI element—text input} mappings, which are key
to LAI detection.

Note that automating this process was far from trivial, due to
the aforementioned issues (text embedded in images, sign-ups

over multiple pages) and additional technical challenges, as
described next. To ensure correct processing, we used a hybrid
process (automated, but with human oversight), as follows.
We manually collected the word sets used in the 135-app pi-
lot study to mark Sign-up — Next — [Done | Error] stage
transitions. Then, we used those sets to seed the automated
approach and monitored LeftoverAccountAnalyzer’s workflow on
each app. Apps that deviated from the expected workflow (e.g.,
used anti-automation techniques, as explained shortly) were
routed for manual analysis; there were 39 such apps.
Specifically, we use three word sets as “anchors”: sign-
up, next, and done. The sign-up word set contains keywords
such that users can click on their respective widgets to
start the account sign-up (e.g., “sign up”, “register”, “create
account”, “get started”, “join”, “continue with email”, “register
with email”, “log in”, “register”’, etc.). The next word set
contains keywords that help identify next-screen or next-page
transitions; users can click on the associated widgets to move
to the next screen (e.g., “next”, “ok”, “continue”, “advance”,
“move forward”, “click”, “skip”, etc.). Finally, the done word
set is associated with widgets used to finish the account sign-
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up (e.g., “finish”, “done”,
up”, “verify phone number”, *
“sign in”, “log in”, etc.).

Manual intervention was needed in three scenarios: when
apps used CAPTCHAs; to verify the phone number or email
address; and for confirmation prompts ( privacy policy, up-
grading membership, enabling location, etc).

Automated account deletion. LeftoverAccountAnalyzer in-
vokes AccountDeletionAnalyzer to determine whether an app
has an AD button; if so, LeftoverAccountAnalyzer will note the
name of the corresponding screen and perform the follow-
ing workflow to automatically delete the leftover accounts,
created by the app. The workflow consists of three stages,
Login — Finding ADF — Deleting the Account, which are
navigated and exercised automatically.

Login. The log-in screens are anchored by word sets shown
on clickable widgets such as “log in”, “signin”, “log in with
email”, “sign in via email”, “login or register”, “existing
user”, “I already have an account”, “get started”, etc. The
LeftoverAccountAnalyzer fills in the login information using the
sign-up information retained from Step 1.

Finding ADF. The analyzer navigates to the screen contain-
ing ADF widgets (e.g., Delete Account buttons) by using a
word set which includes “more options”, “profile”, “account
settings”, “edit profile”, “my account”, etc. If the current
screen matches the screen name found by the AccountDeletion-
Analyzer, it moves to the next stage.

Deleting the Account. The analyzer completes the deletion
process by finding and clicking the deletion widget (“delete
account”, “close my account”, etc.).

Repeating the sign-up. LeftoverAccountAnalyzer attempts to
repeat the sign-up: installs the app, extracts the GUI layout,
and injects the same, Step 1, input values into the GUIL. Apps
are categorized into apps that allow a second sign-up, and apps
that display error messages, e.g., “account cannot be created
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complete”,
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create account”, “'set

verify email address”, “sign up”,



User App/Website Backend User

Create User Account Create User Account

App/Website

createUser()

Backend User App/Website Backend

Create User Account

createUser() createUser()

Get/Update User Account Get/Update User Account

getUser()/updateUser()

getUser()/updateUser()

Get/Update User Account

getUser()/updateUser()

Delete User Account Delete User Account

deleteUser()

(a) No LAl

(b) LAI, all fields

Delete User Account

deleteUserAge()

deleteUoncation()

(c) LAI, some fields

de%User()

Fig. 6: Message sequence chart for No LAI (left) vs. LAI-all fields (center) vs. LAl-some fields (right).

because it already exists in the system.” We can thus check
whether the account is retained on the server, automatically
and at scale. Next, we show how we identify the precise
extent, i.e., fields, left on the server.

Verifying LAIL All fields entered when signing-up are
potentially retained on the server (hence constitute LAI).
Confirming this retention by examining sever-side information
is infeasible, as we do not have access to apps’ (backend)
servers. Hence we developed an approach to infer retained
fields, as explained next.

At high level, our approach detects the three scenarios
shown in Figure 6. In each scenario, we show the interaction
between user, app/website, and backend, for account creation,
account update, and account deletion. The actual deletion
happens in the communication between the app/website and
the backend. On the left, we have the message sequence that
ensures account deletion: a request to delete the account is
reflected in a deleteUser() being sent to the backend. In the
middle, there is no such API call, hence all fields are LAIL. On
the right, we have an API call to delete the user’s age, i.e.,
deleteUserAge() but no API call to deleteUserLocation(), meaning
the user’s location will be left on the server. Next, we show
our approach for inferring such LAIL

6.1. Reverse Engineering-based LAI Inference
We reverse-engineer the app-backend server communica-

tion to infer LAI by tracing and analyzing the AM (Account
Manipulation) operations; these operations are initiated in the
app but ultimately create, delete, or change user accounts in
the backend database.

There are four types of AM operations (two coarse-grained
and two fine-grained): account creation and deletion that
manipulate the whole account, as well as field creation and
deletion that manipulate a specific field of an account. These
AM operations are implemented via API functions provided
by backend software development kits (SDK) or via requests
to a database.

To trace AM operations, we decompile apps’ APK files into
Smali code; identify account creation/deletion/manipulation
methods; extract AM API calls in these methods and their
call graphs’ transitive closure; and intercept AM calls to log
their in/out parameters at runtime. An alternative approach
to reverse-engineering AM calls would be to intercept traffic,
e.g., via mitmproxy [16]; however, messages would still ulti-
mately be “put on the wire” via the AM API calls, hence

our approach (AM API call interception) would reveal those
messages.

Table 5 lists the AM API functions we logged and the
corresponding AM operations. To comprehensively cover AM
operations, we analyze both remote and local AM operations.
We focused on the Firebase (including CloudFirestore and
FirebaseDatabase) and Parse backends due to their popu-
larity, e.g., 99% of apps that employ backend SDKs use
Firebase [14].

Local operations involve an additional step: rather than com-
municating with Firebase/Parse directly, local AM operations
write into Android’s SharedPreferences or Bundle; data is sent
from local stores to the backend when necessary. Table 5 omits
these operations for brevity.

User account data can be stored into two separate locations
on the backend server. The primary location is controlled
by (hardcoded into) the backend SDK, but it only supports
five fields per account, which makes it unsuitable for most
applications. A custom location stores extra information of
an account at a location not controlled by the backend SDK.
For example, a custom location can be a separate node under
/users, inside the server database itself.

We run the app (with AM calls intercepted) to create and
delete an account. From AM logs we determine the fields
retained on the backend servers as follows:

Fr:(Fap+Fac)_(de+ch)

where F,., Fop, Fue, Fgp and Fy. represent fields retained,
added in the primary location, added in the custom location,
deleted in the primary location and deleted in the custom
location, respectively.

As a first example, the app Rent-A-Car stores the user’s first
name, last name, email, password and phone number in its
primary location; and street address in its custom location.
Therefore F,, = {first name, last name, email, password,
phone number}, F,. = {street address}. The app does not
delete any fields when deleting an account, hence Fy, =
Fy4. = 0 and F, = {first name, last name, email, password,
phone number, street address}.

As a second example, consider the PiniOn app (which
helps brands and businesses understand their market and
consumers). The app’s code for creating a new user account
is shown in the following code snippet; hence F,, = {name,
email, password}.



TABLE 5: APIs for AM Operations.

AM Operations Account Creation

Account Deletion

Field Creation/Deletion

Firebase createUser, createUserAsync, cre-  delete, deleteUser updateUser, updateEmail, updatePass-
ateUserWithEmail AndPassword word, updatePhoneNumber, updateProfile
CloudFirestore add delete set, update, delete
FirebaseDatabase  setValue remove Value updateChildren, setValue
Parse signUp, signUpInBackground delete, deleteInBack-  setUsername, setEmail, setPassword, put

ground, deleteEventually

.param p1, "name” # Ljava/lang/String;

.param p2, "email”  # Ljava/lang/String;

.param p3, "password” # Ljava/lang/String;
.param p4, "handler” # LFirebase$ResultHandler;

QA AW N~

invoke—virtual {v0, p1, p2, p3, p4}, Lcom/firebase/client/
authentication/AuthenticationManager;— createUser(
Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;
Lcom/firebase/client/Firebase$ResultHandler;)V

The app adds two extra fields in the following two code
snippets. Therefore, F,,. = {birthday, gender}.

1 const—string v3, "birthday”

2

3 invoke—interface {v1, v3, v4}, Landroid/content/
SharedPreferences$Editor;— putString(Ljava/lang/
String;Ljava/lang/String;)Landroid/content/
SharedPreferences$Editor;

1 const—string v3, "gender”
2
3 invoke—interface {v1, v3, v4}, Landroid/content/

SharedPreferences$Editor;— putString(Ljava/lang/
String;Ljava/lang/String;)Landroid/content/
SharedPreferences$Editor;

As there is no AM delete operation, Fy, = Fy. = (). Finally,
the LAl is: F, = (Fup + Fac) — (Fap + Fac) = {name, email,
password, birthday, gender}.

7. Leftover Account Cleaner

Account cleanup is a substantial user burden if it has to be
performed on dozens of uninstalled apps. To study the feasi-
bility of “automatic cleaning” we built LeftoverAccountCleaner,
a tool that helps Android users automatically delete leftover
accounts after app uninstall. LeftoverAccountCleaner runs on a
laptop, connected to the phone via adb.

The approach has three steps. First, LeftoverAccountCleaner
finds uninstalled apps as the set difference between the apps
in the account history on Google Play Store and the apps
currently installed on the phone (the account history records
all apps downloaded by the user, including the apps that have
been uninstalled). Second, LeftoverAccountCleaner re-installs the
uninstalled app by downloading it from Google Play.> Third,
LeftoverAccountCleaner deletes the leftover account incurred by
the formerly-installed apps by logging-in, finding ADF, and

5. In our experiments, the same version of an uninstalled app was available
on Google Play. If an uninstalled app is an older version compared to the
current version on Google Play, retrieving and installing the older version
does not pose a substantial challenge, as in that case the older app version is
available on app mirroring sites, e.g., https://www.apkmirror.com/.

finally deleting the account, leveraging some LeftoverAccount-
Analyzer modules (Section 6).

8. Implementation

Our toolchain is implemented in Python, Java, and shell
script — about 6,000 LOC in total. The toolchain relies on
several “enabler” tools and libraries. To decode and rebuild
APK files, we employ apktool [3], a tool for reverse engi-
neering third-party, closed-source Android apps. As important
strings can be stored in images, we use Tesseract OCR [11]
to convert all images embedded in app screens and web pages
into strings. We use Screaming Frog [9] to crawl both static
and dynamic web content. We leverage the Appium mobile
automator [4] for Ul and user interaction automation. We
employ NLTK [2] to support natural language processing. To
enable static data flow analysis (i.e., def-use chain analysis),
we have modified Flowdroid [19]. To intercept and log AM
calls we built an LAI Monitor (described in Section 13.1) that
leverages the Xposed Framework [15] to “hook™ Android API
functions.

9. Evaluation

We now present the results of a study of LAI issues, as well
as an evaluation of our toolchain. We start by describing the
dataset and test environment. Next, we present the high-level
findings (Section 9.1). Finally, we evaluate our approach along
two dimensions — effectiveness (Section 9.2) and efficiency
(Section 9.3).

Dataset. We started with 1,435 APKs from Google Play
Store and 771 corresponding websites; some apps do not have
websites. We only selected Android apps with a high number
of installs (more than 500K). The set was chosen to cover a
wide range of categories (Sports, Business, Communication,
Health and Fitness, Education, Games, etc.) and includes both
free and paid apps. Among the 1,435 apps, 938 apps require
user information when creating accounts (the other 497 do not
require sign-in); of those 938 apps, 260 use third-party sign-
in. Therefore, we focused on the remaining 678 apps which
use their own accounts and collect user information. The 188
apps used in the pilot study are not included in the 1,435-app
dataset.

Environment. Our testing environment consisted of: an In-
tel Xeon server (36 logical cores@4.3 GHz, 128GB RAM;
Ubuntu 18.04) where we ran the ADF analysis; 2 MacBook



TABLE 6: Statistics on the 678-apps Dataset.

App Info Count Percentage
LAI remains on servers
after uninstallation 254 37.46%
after account deletion 17 2.5%
ADF buttons
app & website 38 5.6%
in-app only, not on website 116 17.11%
on website only, not in-app 87 12.83%
no ADF buttons 437 64.45%
TABLE 7: Account information retained (LAI, middle
columns) or collected (last column).
LAI Category #Apps with  #Apps with #Non-
LAI After LAI After ADF
Uninstallation Account Apps
Deletion
Government 1D 6 0 12
Banking Info. 49 4 94
Password 218 15 418
Last Name 101 7 202
First Name 107 7 210
User Name 66 6 135
Phone 181 11 352
Email 230 16 437
ZIP Code 27 0 48
Location (address 210 15 423
or GPS)
Photo 89 3 189
Gender 80 6 139
Weight 25 3 51
Height 41 3 66
Age 82 9 148
Social Network 180 10 357
Language 73 7 140

Pro laptops (core i5, 8GB RAM) used to configure the Appium
server and to run LAI analysis as well as the LeftoverAccount-
Cleaner; and 2 Android phones (4 ARM cores@1.40 GHz, 2GB
RAM, 16GB storage, Android 6.0).

9.1. High-level Findings

The high-level findings are shown in Table 6: 254 apps
(37.46%) have LAI after app uninstallation; 17 apps (2.5%)
have LAI after account deletion; and 437 apps (64.45%) offer
no ADF functionality at all. We believe that keeping LAI after
deletion, as well as not offering users a ‘Delete Account’
option are substantial reasons for concern. These findings
corroborate our pilot study’s findings (Table 1).

9.2. Effectiveness
This section discusses the effectiveness of, and analysis
results for, each of the four tools in our toolchain.

9.2.1. Leftover Account Analyzer. This analyzer infers the
information left on the servers, i.e., LAL. Table 7 shows the
number of apps that our analysis flags as leaving sensitive
information after app uninstallation; after account deletion;
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and information collected by apps that do not offer ADF
(discussed in Section 9.2.2). Certain LAI categories consist of
related fields grouped together, e.g., ‘Government ID’ (SSN,
driver license number, employee IDs) and ‘Banking Informa-
tion’ (credit card number, CVV number, payment methods,
transaction details, billing information).

LAI after uninstallation. As shown in the second column
of Table 7, a large number of apps have LAI after app uninstal-
lation. While some apps keep LAI in the name of convenience,
e.g., users might want to “re-activate” their account, a clear
retention policy should still be in place to indicate for how
long data is retained. We found that email and password
are the most common types of leftover information (230
apps require email, 218 apps require a password), followed
by location (210), social network profiles (181), and phone
number (180). Government IDs and banking information are
the least common, but the most sensitive LAI: 6 apps require
driver license (or social security numbers) and 49 apps require
banking information (credit card number, payment method,
billing address).

Some notable apps which have LAI after app uninstallation
include: Microsoft Word (email address), Spotify (social network
accounts), WhatsApp (phone numbers), AdobePhotoshop (edited
photos), eHarmony (spoken languages), McDonald’s (GPS loca-
tion), MyFitnessPal (weight and ZIP code).

LAI after account deletion. The third column of Table 7
shows that email, password, (and concerningly) location and
social network profiles, are the most frequent LAI left after
account deletion — more than 10 apps kept this information
post-account deletion. We verified whether apps retained data
in two scenarios. First, for apps without a retention period
(Table 8) we deleted the accounts on 02.01.20, then checked
for LAI on 02.26.20 and again on 07.10.20. Second, for apps
with a retention period (Table 9) we deleted some accounts on
02.01.20, some on 02.20.20, then checked for LAI after the
longest possible retention period had ended: on 04.16.20 and
again on 07.10.20.

As shown in Tables 8 and 9, 17 apps (2.5%) have LAI
even after account deletion. Of the 17 apps, 15 have more
than 1M installs. Apps in Table 8 do not specify a retention
period, but never truly remove account information even after
contacting their customer support, e.g., the OLIO app. Apps
in Table 9 have a specified retention period (7 minutes—30
days). However, when we rechecked the apps after the periods
expired, the accounts were still not deleted, which violates
users’ trust and the app’s own policy.

We contacted the companies whose apps appear in Table 8
and Table 9 by a variety of means: ‘Live chat’, ‘Contact’ form,
and email. Most companies have agreed to remove the leftover
account data. One company (Fitbit) informed us that they would
like to keep a part of the user data. Finally, some companies
have asked us to first submit official identification documents
(passport, driving license) before proceeding to remove data.

9.2.2. Account Deletion Analyzer. Ground Truth was ob-
tained via manual analysis on the 678 apps, which involved



TABLE 8: Apps WITHOUT a Specified Retention Period.

Package Name #Installs  Account Checked  Rechecked Data Retained

Deletion On On (or other LAI Confirmation)
com.bandainamcoent.google.pac SM 02/01/2020  02/26/2020  07/10/2020  email, password
com.olioex.android IM  02/01/2020  02/26/2020  07/10/2020  customer support has not deleted the account
com.discord 50M  02/01/2020  02/26/2020  07/10/2020  still able to restore account
com.bearpty.talklife 500K  02/01/2020  02/26/2020 07/10/2020  email, password
com.myfitnesspal.android 50M  02/01/2020  02/26/2020 07/10/2020  username
com.relayrides.android.relayrides IM  02/01/2020  02/26/2020  07/10/2020  email, first name, last name, password
com.ehi.enterprise.android IM  02/01/2020  02/26/2020  07/10/2020  full name, email, password, address, phone
com.tophatter 10M  02/01/2020  02/26/2020  07/10/2020  email, password, user name
com.etsy.android.soe IM  02/01/2020  02/26/2020 07/10/2020  email address, first name, password
com.magix.android.mmjam 10M  02/01/2020  02/26/2020  07/10/2020  artist name, email, password
com.mercariapp.mercari 10M  02/01/2020  02/26/2020  07/10/2020  email, password, username
br.com.pinion IM  02/01/2020  02/26/2020  07/10/2020  full name, email, passwd., DOB, gender
com.sarahah.com IM  02/01/2020  02/26/2020  07/10/2020  full name, email, password, avatar

TABLE 9: Apps WITH a Specified Retention Period.

Package Name #Installs Account Retention Checked Rechecked Data Retained

Deletion Period On On (or other LAI Confirmation)
com.pinterest 100M  02/01/2020 14 days 04/16/2020 07/10/2020 full name, age, gender, country, email, passwd
com.quora.android 10M 02/01/2020 14 days 04/16/2020 07/10/2020 first name, last name, email, password
com.fitbit.fitbitmobile 50M  01/20/2020 7 days 04/16/2020 07/10/2020 email, password, first name, last name, birth-

day, height, weight, sex
net.wargaming.wot.blitz 50M 01/20/2020 45 days 04/16/2020 07/10/2020 account can still be restored
TABLE 10: ADF Analysis Results.

FP FN Precision Recall F-measure
23 86.7%  90.1% 88.4%

True
Apps (678) 209 32

2 raters and 100% agreement. We checked both the app
and its corresponding website. An app was labeled as ADF
if it offered an account deletion button or link, either in
app or on the website. The first two authors, PhD students,
performed several tasks independently: unpacked the apps and
analyzed their binaries, ran the tools, checked the app-server
communication, etc. Next, they met to cross-check the findings
— the findings were in agreement for all apps.

We confirmed 209 apps with ADF. AccountDeletionAnalyzer
reported 241 ADF apps, over-reporting 32 apps (false pos-
itives) and under-reporting 23 apps (false negatives); the
reasons for false positives and false negatives will be discussed
shortly. Table 10 shows that the precision is 86.7%, while the
recall is 90.1%; hence the F-measure is 88.4%.

These results allow us to conclude that AccountDeletionAna-
lyzer is effective.

For false positives, we identified two major reasons.
First, an app could provide deletion functionality for ac-
counts other than the user account. An example is Busi-
ness Calendar (com.appgenix.bizcal, SM+ installs). The app
supports deleting birthday accounts, which does not delete
the user account. Second, the app might set the dele-
tion button as invisible. For example, Bleacher Report Live
(com.bleacherreport.android.teamstream, 1M+ installs) contains an
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AD string, button, and listener, but its setupUl() method calls
this .mDeleteButton. setVisibility (8) where setVisibility (8) renders
the AD button invisible.

For false negatives, we identified three reasons. First, pre-
NLP pattern matching might fail to find potential AD strings.
For example, our analysis could not find the AD strings in the
Goodreads book reviewing app (com.goodreads, 10M+ installs).
Second, image conversion might fail to convert image AD
text into plain text. For example, Guides by Lonely Planet
(com.lonelyplanet.guides, 1M+ installs) has ADF but our tool
failed to convert its AD string images into text. Third, if
the underlying static analyzer misses intra- or inter-procedural
flows, e.g., due to reflection, our interprocedural analysis in
turn will miss action listeners.

Among the 437 non-ADF (i.e., true negative) apps, 384 have
more than 1M installs, which again is a source of concern.
Table 11 shows those 16 non-ADF apps with more than 10M
installs. Neither the apps nor their websites offer account
deletion, hence users cannot remove their account from the
backend server. The Bleacher Report Live app provides an
unusual option, to allow the app to sell user’s personal
information; the option is ON by default. However, the app
does not allow the user to delete the account.

The column “#Non-ADF apps” in Table 7 shows the number
of non-ADF apps in each LAI category. Email, password,
location and phone number are the most frequent information
collected by non-ADF apps — virtually all non-ADF apps
collect such information.



TABLE 11: Non-ADF Apps with more than 10M Installs.

Package Name #Ins- Leftover Account
talls Information

wp.wattpad 100M Email, password, username,
DOB, gender, location

com.zynga.words 50M Email

com.xiaomi.hm.health 50M Country, email, password

com.verizon.messaging.v  50M  Phone, country, email

com.neuralprisma 50M Email, password

com.dataviz.docstogo 50M First&last name, email

com.bleacherreport.andr. 10M  First&last name, username,
phone, email

com.my.mail 10M  email, password, first&last name

com.period.tracker.lite 10M  Email, password

com.wsl.noom 10M Email, password, unique pro-
gram ID, gender, first name, age,
height, weight, biograph

com.zynga.wwf.free 10M  Email

ru.yandex.mail 10M  Email, password

com.ryanair.cheapflts. 10M Email, password, first&last
name, DOB, nationality,
country code, phone

com.delta.mobile.andr. 10M First&last name, DOB, gen-
der, username, password, email,
phone, address, security ques-
tions 1&2, answers

com.cuvora.carinfo 10M  Phone#

com.br.netshoes 10M  Email, first&last name, DOB,

CPF, ZIP, street, number, neigh-
borhood, state, city, phone#,
password

TABLE 12: Retention Period Analysis Results.

True FP FN Precision Recall F-measure
34 3 3 91.9% 91.9% 91.9%

Apps (209)

9.2.3. Retention Period Analyzer. Ground Truth was ob-
tained via manual analysis on the 209 apps with ADF. We
confirmed 34 apps with retention period. RetentionPeriodAna-
lyzer over-reported 3 apps and under-reported 3 apps, hence
(Table 12) precision was 91.9%, recall was 91.9%, and the
F-measure was 91.9%. The major reason for false negatives
is that the account deletion button and retention period string
appear in separate locations: one on the app website, the other
in the APK file. The major reason for false positives was that
the retention period strings did appear in XML files but were
not displayed on app screens, e.g., the app Fever.

Retention period statistics and clusters. Table 13 shows
that the maximum, minimum, average and median retention
periods were 5 years, 30 minutes, 117.85 days, and 30 days
respectively. The retention periods naturally fell into clusters
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TABLE 13: Retention Period Statistics.

Time (days)
max average

1,825  117.85

median

30

min

0.02

TABLE 14: Retention Period Intervals.

Retention Period Clusters (days)
<7 7-30 30-90 >90

5 13 10 6

#Apps

(intervals), shown in Table 14. The most popular intervals were
7-30 days and 30-90 days.

9.2.4. Leftover Account Cleaner. To study LeftoverAccount-
Cleaner effectiveness, we created 10 test accounts on Google
Play Store with varying numbers of uninstalled apps, then in-
voked the LeftoverAccountCleaner to perform automatic cleaning.
An app is considered as cleaned up successfully if LeftoverAc-
countCleaner can automatically find and click the app’s ADF
button (or link) to delete the user account.

Table 15 shows our experimental results for the 10 users.
The test users have uninstalled between 5 and 49 apps; these
uninstalled apps are associated with leftover accounts which
need to be cleaned up. We report the number of apps cleaned
up successfully and unsuccessfully per each user. The experi-
ment results show that LeftoverAccountCleaner failed to cleanup
12.65% of apps. Cleanup failed due to random advertising
and CAPTCHA pop-ups. For example, during the screen auto-
navigation stage, app Life360 (com.life360.android.safetymapd)
shows a promotion ad pop-up; the ad asks users to upgrade
to premium features. App com.discord has a CAPTCHA screen
pop-up.

Note that, in the absence of LeftoverAccountCleaner, users
would have to manually perform account cleanup, e.g., by
reinstalling the app or going to the app’s website for up to 49
apps, which is a substantial effort.

9.3. Efficiency

We now discuss the efficiency results for each tool. Statistics
are shown in Table 16.

LeftoverAccountAnalyzer. The analyzer’s median time was
162.68 seconds. The most time-consuming phase was the
reinstall phase, which can take 30-60 seconds per app.

AccountDeletionAnalyzer. The median analysis time was
275.79 seconds per app and 3.03 seconds per website, re-
spectively. The maximum time (16,407 seconds) was due to a
lengthy Tesseract image-to-text conversion.

RetentionPeriodAnalyzer. The median analysis time was
259.03 seconds per mobile app and 2.96 seconds per website,
respectively. The maximum time (10,311.26 seconds) was due
to a lengthy Tesseract image-to-text conversion.

LeftoverAccountCleaner. The cleaning process’ duration de-
pends on (1) how many screens each app requires to navigate
before reaching the account deletion button, and (2) how



TABLE 15: LAC Experimental Results.

Play Store Usernames Uninstal- Cleaned Accounts
(Anonymized) led Apps Success Failed
Userl 9 8 1
User2 25 20 5
User3 43 37 6
User4 11 8 3
User5 27 26 1
User6 36 32 4
User7 5 5 0
User8 49 42 7
User9 21 19 2
User10 19 17 2
TABLE 16: Efficiency Results.
Analyzer/ Time (seconds)
Dataset min max average median
LeftoverAccountAnalyzer
Mobile 30.44 1,185.96 189.78 162.68
AccountDeletionAnalyzer
Mobile 0.57 16,407.67 369.44 275.78
Website 0.02 93.28 9.10 3.03
RetentionPeriodAnalyzer
Mobile 0.80 10,311.26  345.92 259.03
Website 0.02 92.98 9.05 2.96
LeftoverAccountCleaner
Account 10.53 1,104.22  266.51 231.29

many fields have to be filled-in on each screen. As shown
in Table 16, cleaning up one app can take from 10.53 seconds
to 1,104.22 seconds (median: 231.29 seconds).

To summarize, these results indicate that each tool in the
chain is efficient, as is the overall approach.

10. Limitations

Our toolchain has four limitations. First, it cannot directly
remove LAI from the backend database since the database is
controlled by app developers/the app company. Second, the
LeftoverAccountAnalyzer is not fully automated as some apps
employ anti-automation mechanisms, e.g., CAPTCHA. Third,
our NLP analyses can only handle English text. Fourth, the
AccountDeletionAnalyzer cannot detect invisible buttons. All but
the first limitation can be addressed with more engineering
effort.

11. Related Work

There is a rich literature on privacy issues in mobile apps.
However, we were not able to find any approach that focused
on leftover accounts.

User control of personal data. The European Union’s
General Data Protection Regulation (GDPR) gives control of
personal data back to the owners. Truong et al. [31] designed a
GDPR-compliant personal data management platform. Vescovi
et al. [32] developed a tool enabling people to control and
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share their personal data on mobile phones. Mun et al. [29]
introduced a privacy architecture in which individuals retain
ownership of their data.

Longitudinal privacy. Kroger et al. [25] performed a study
on longitudinal privacy on mobile apps to examine how app
vendors have complied with subject access requests over four
years. Ayalon et al. [20] investigated the relation between
information aging and its sharing preferences on Facebook.
Mondal et al. [28] presented a study on understanding how
users control the longitudinal exposure of their publicly shared
social data.

Privacy leaks. Li et al. [26] proposed a static taint analyzer
to detect privacy leaks among Android app components. Yang
et al. [35] proposed an analysis framework to detect if sensitive
user data is being transmitted out of an Android phone,
whether users intend it or not. Gibler et al. [23] introduced
a static analysis framework for automatically finding potential
leaks of sensitive information in Android apps. Lin et al. [27]
analyzed user mental models of mobile app privacy through
crowdsourcing. Zuo et al. [37] investigated privacy leaks of
Android apps, but in the Cloud. Zhang et al. [34] revealed
that data persists on phones even after apps are uninstalled.
Zimmeck et al. conducted an extensive privacy survey of
Android apps [36]. Mylonas et al. proposed an approach for
assessing the privacy risk of Android users based on the
presence of specific permission combinations [30]. Wang et
al. detected privacy leaks of user-entered data for an app and
determined whether such leakage violate the app’s privacy
policy claims [33].

12. Conclusions

We expose and study the Leftover Account Information
problem — information retained on app servers after an app is
no longer used — which violates users’ privacy. Our approach
has four thrusts: leftover accounts after uninstalling apps,
leftover accounts after deleting accounts, no account deletion
functionality, and lack of retention period. Detecting such
issues is complicated by several factors: lack of direct backend
access requires LAI inference; both apps and their websites
have to be analyzed; sophisticated NLP is required to extract
and discern account deletion actions or retention policies; non-
executable resources have to be connected to corresponding
actions in executable bytecode. We address these challenges
and develop four tools to detect LAI problems in Android
apps. We ran the tools on a substantial corpus of popular
Google Play apps, and revealed issues in hundreds of apps. Our
study and tools can improve Android users’ privacy by helping
end-users, developers, and app marketplaces understand and
mitigate the LAI problem.
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13. Appendix

13.1. Tool Chain Architecture

Figure 7 shows the components of our tool chain (in the
center), the third-party frameworks and tools we leveraged,
and the flow diagram between these components.

We leverage (or build on top of) various kinds of tools,
for static analysis, dynamic analysis, automatic testing and
website crawling, NLP and OCR.

Our static analyses are built on top of Soot/Flowdroid. We
extended Soot/Flowdroid to permit a finer data-flow/def-use-
chains analysis (between arbitrary pairs of statements, rather
than just between predefined sources and sinks).

Dynamic analysis tools include the third-party Appium (for
automated testing) and our own LAI Monitor (for intercepting
and logging AM operations). We developed the LAI Mon-
itor on top of the Xposed framework. Our LAI Monitor
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Fig. 7: Tool Chain Architecture.

is configurable to intercept various API calls, including the
Android, Firebase, or Java APIs. Note that when the user
creates or deletes an account, Android/Java/Firebase APIs will
be called; our LAI Monitor logs the AM operation before the
messages are sent to the backend server. The LAI Monitor
implementation and manual are available on GitHub.5

For NLP we leverage the NLTK library to identify AD
strings and retention period strings. For OCR, Tesseract is used
to extract text from image assets, e.g., figures embedded with
the app or on the website. For web crawling, Screaming Frog
is used to automatically download APK files and crawl web

pages.
13.2. Trees for AD String Detection

To illustrate the grammar, we use phrase structure trees [2]
to show the semantic structure [10] of a sentence. Each node in
the tree (including the words) is called a constituent. Figure 8
shows two example apps’ phrase structure trees.

In Figure 8-top, the Fitoit app’s tree has a Verbphrase
subtree whose verb is an AD verb. The subtree contains a
Nounphrase subtree whose Noun is an AD noun. As this
string is in the language induced by the grammar, we deem it
an AD string.

In contrast, for the Zomato app (Figure 8-bottom) the phrase
structure tree contains AD verbs and AD nouns, but it does
not conform to the grammar and is labeled as a non-AD
string because the succeeding subtree of the Verbphrase is a
propositional phrase tree (as opposed to Nounphrase).

6. https://github.com/LeftoverAccountInformation/LAl/tree/master/
LeftoverAccountAnalyzer/LaiMonitor
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Fitbit: AD

SQ+FRAG
|
ADJP |
\ |
| S+VP |
| | |
[ VP | | |
| | | | |
| | NP | | |
| | | | | |
| | | PP | VP |
| | | | | | |
| | NP | NP | | NP |
| | | \ | | | | |
JJ VB PRPS NN IN NN TO VB DT NN .
| | | | \ | | | | | |
please provide your password in order to delete this account
Zomato: Not AD
SQ+FRAG
I
ADJP
\ \
ADJP | | I
| \ \ \
| SBAR+S | | |
\ I \ \ \
\ | VP \ \ I
\ I \ \ \ \
\ | I \ | PP [ PP |
\ I I \ \ I P \ I D I
\ NP I \ \ \ NP \ \ NP I
\ | I \ \ \ \ [ \ I I
JJ o, JJ VBG NNS VBP VBN VBN IN DT NN JJ TO JJ NN .
\ \ I \ I I \ \ \ I I \ \ \ I I
sorry , online ordering services have Dbeen disabled for this account due to suspicious behaviour

Fig. 8: Phrase Structure Trees Discerning AD from Not AD. Abbreviations: S(Simple declarative clause), SQ+FRAG(Sentence
Fragment), ADJP(Adjective Phrase), SBAR(Clause introduced by a subordinating conjunction), VP(Verb Phrase), NP(Noun
Phrase), PP(Prepositional Phrase), JJ(Adjective), VB(Verb, base form), PRP$(Possessive pronoun), NN(Noun), NNS(Noun, plural),
IN(Preposition or subordinating conjunction), TO(to), DT(Determiner), VBG(Verb, gerund or present participle), VBN(Verb, past
participle), VBP(Verb, non-3rd person singular present)
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