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Abstract
Recording and replaying the execution of smartphone apps
is useful in a variety of contexts, from reproducing bugs
to profiling and testing. Achieving effective record-and-
replay is a balancing act between accuracy and overhead.
On smartphones, the act is particularly complicated, be-
cause smartphone apps receive a high-bandwidth stream
of input (e.g., network, GPS, camera, microphone, touch-
screen) and concurrency events, but the stream has to be
recorded and replayed with minimal overhead, to avoid in-
terfering with app execution. Prior record-and-replay ap-
proaches have focused on replaying machine instructions or
system calls, which is not a good fit on smartphones. We pro-
pose a novel, stream-oriented record-and-replay approach
which achieves high-accuracy and low-overhead by aiming
at a sweet spot: recording and replaying sensor and net-
work input, event schedules, and inter-app communication
via intents. To demonstrate the versatility of our approach,
we have constructed a tool named VALERA that supports
record-and-replay on the Android platform. VALERA works
with apps running directly on the phone, and does not re-
quire access to the app source code. Through an evaluation
on 50 popular Android apps, we show that: VALERA’s replay
fidelity far exceeds current record-and-replay approaches for
Android; VALERA’s precise timing control and low overhead
(about 1% for either record or replay) allows it to replay
high-throughput, timing-sensitive apps such as video/audio
capture and recognition; and VALERA’s support for event
schedule replay enables the construction of useful analyses,
such as reproducing event-driven race bugs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-

dation; D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms Reliability, Verification

Keywords Mobile applications, Record-and-replay, Google
Android, App testing, Event-based races

1. Introduction
The ability to record and replay the execution of a smart-
phone app is useful in many contexts: reproducing bugs to
support debugging [19], recording a user’s interaction and
replaying it for profiling and measuring [28], generating in-
puts to support dynamic analysis and testing [27]. While use-
ful, this task has proven difficult: smartphone apps revolve
around concurrent streams of events that have to recorded
and replayed with precise timing. To keep overhead low,
prior record-and-replay approaches for smartphones only
capture GUI input [1–3, 11, 13, 17, 19] which hurts accu-
racy as they cannot replay input from the network or sen-
sors, e.g., GPS, camera, and microphone, which are used fre-
quently by popular apps; or events, to reproduce event-based
races [15, 21]. Prior work on record-and-replay for desk-
top and server platforms [10, 12, 22, 29, 30] has relied on
techniques such as hardware changes, VM logging, or sys-
tem call interception; using such techniques on Android is
problematic, due to high overhead and wrong granularity—
their word- or object-level granularity can be used for small,
timing-insensitive programs, but not for Android apps.

In desktop/server programs input comes from the file sys-
tem, network, mouse or keyboard; with the exception of
drags and double-clicks, large changes to input timing be-
tween the record and replay executions are gracefully tol-
erated by the program. In contrast, on smartphones, input
can come concurrently from the network, GPS, camera, mi-
crophone, touchscreen, accelerometer, compass, and other
apps via IPC. Moreover, the timing of delivering these in-
put events during replay must be extremely accurate, as even
small time perturbations will cause record or replay to fail.

To address these challenges, we introduce a novel, sensor-
and event-stream driven approach to record-and-replay; by
focusing on sensors and event streams, rather than system
calls or the instruction stream, our approach is effective
yet lightweight. We have implemented our approach in a
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tool called VALERA (VersAtile yet Lightweight rEcord and
Replay for Android)1 that records and replays smartphone
apps, by intercepting and recording input streams and events
with minimal overhead and replaying them with exact tim-
ing. VALERA works for Android, the dominant smartphone
and tablet platform [7, 8].

Stream-driven replay hits a “sweet spot” on the accu-
racy vs. overhead curve: replaying sensor inputs and events
with precise timing allows VALERA to be lightweight yet
achieve high accuracy. For example, we can replay apps
such as Barcode Scanner, Amazon Mobile or Google Goggles,
which perform high-throughput video recording and analy-
sis; apps such as GO SMS Pro or Shazam, which perform
sound capture and music recognition; apps such as Waze,
GasBuddy, TripAdvisor, and Yelp which perform GPS-based
navigation and proximity search; IPC-intensive apps such
as Twitter and Instagram; finally, we can reproduce event-
driven race bugs in apps such as NPR News, Tomdroid Notes,
and Google’s My Tracks. At the same time, we keep the per-
formance overhead low, on average 1.01% for record and
1.02% for replay.

To show the importance of controlling overhead and tim-
ing as well as ensuring schedule determinism, in Section 2
we present three examples of popular apps—Shazam, QR

Droid, and Barcode Scanner, where failing to control these as-
pects during record or replay leads to divergence. We achieve
replay fidelity by eliminating sensor input nondeterminism,
network nondeterminism, and event schedule nondetermin-
ism. We verify the fidelity by checking the equivalence of
externally-observable app states at corresponding points in
the record vs. replay execution (Section 3).

Note, however, that VALERA does not record all system
state: it does not record memory accesses or the VM instruc-
tion stream (as other approaches do, albeit not on smart-
phones [10, 22, 29]) as this state is not externally visible.
We made these design choices for two main reasons. First, to
keep the approach widely applicable, we avoided hardware
modifications. Second, the overhead of recording all mem-
ory accesses or the VM instruction stream is too prohibitive:
our experience with PinPlay for Android (a whole-system
record-and-replay approach) shows that its high overhead
perturbs the execution significantly so apps stop being in-
teractive (Section 2.2).

Section 4 describes our implementation. We employ API
interceptors to intercept the communication between the app
and the system to eliminate nondeterminism due to network
and sensor inputs, as well as inter-app communication via in-
tents. Second, we introduce ScheduleReplayer, an approach
for recording and replaying event schedules to eliminate
event schedule nondeterminism and allow hard-to-reproduce
bugs, such as event-driven races, to be deterministically re-
played and reproduced (Section 5).

1 Available at http://spruce.cs.ucr.edu/valera/

(a) Shazam correct (b) Shazam divergent

(c) QR Droid correct (d) QR Droid divergent

Figure 1: Screenshots of correct execution (left) and diver-
gent execution due to imprecise timing (right).

In Section 6 we evaluate VALERA’s effectiveness and effi-
ciency. First, we show that VALERA allows versatile record-
and-replay; we illustrate this for 50 widely-popular Android
apps (most of these apps have in excess of 10 million in-
stalls) that use a variety of sensors, and show that VALERA

can successfully replay them. Second, experiments show
that VALERA is efficient: it imposes just 1.01% time over-
head for record, 1.02% time overhead for replay, 208 KB/s
space overhead, on average, and can sustain event rates ex-
ceeding 1,000 events/second. Third, VALERA’s support for
deterministic replay of asynchronous events allows us to
reproduce event-driven races in several popular apps, that
would be very difficult to reproduce manually.

The evaluation has revealed several interesting traits of
replaying Android apps: apps that capture video and audio
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streams have stringent timing constraints; apps that use the
camera impose the highest space overhead; apps using the
network intensively impose the highest performance over-
head; and scheduler events far surpass any other events (e.g.,
from sensors) in terms of event quantity and event rate.

In summary, our main contributions are:
1. A new, stream-oriented approach for recording-and-

replaying Android apps.
2. VALERA, a high-accuracy low-overhead record and re-

play tool for Android apps running on real phones and
without requiring access to the app source code.

3. An evaluation of VALERA on 50 popular Android apps.

2. Motivation
We now illustrate how low overhead, accurate timing, and
schedule determinism are critical for successful record and
replay of popular Android apps.

2.1 Accurate Timing and Low Overhead
Consider two popular apps, Shazam and QR Droid, that use
sensor stream inputs. For each app, we first perform a record
with VALERA; thanks to VALERA’s low overhead, the sup-
port for record has no impact on the execution. Next, we
replay the app with VALERA normally, i.e., with precise
timing (we call this the “correct” execution as there is no
visible difference between the recorded and replayed execu-
tions). Then, we replay the app with VALERA again, but al-
ter timing during the sensor replay phase, i.e., deliver events
slightly earlier or later than originally recorded. The effect
is divergence (the app exhibits different behavior), hence we
call this the “divergent” execution. In Figure 2(a) we show
a screenshot of the Shazam music recognition app replayed
with VALERA with exact audio stream timing, and correctly
recognizing a song; Figure 2(b) shows what happens—
Shazam fails to recognize the song, per the message on
top “Sorry we couldn’t find a match”—when we deliber-
ately speed up the audio stream timing by 40%. Figure 2(c)
contains a screenshot of the QR Droid barcode scanner app
replayed with VALERA with exact frame buffer timing, cor-
rectly recognizing a book barcode (97881173660351); Fig-
ure 2(d) shows that QR Droid fails to recognize the barcode,
per the message on the left side “Place the barcode inside
the viewfinder rectangle to scan it”, when we deliberately
introduce a 200 millisecond delay between frames.

The importance of overhead during record and replay.
The previous examples illustrate how the execution of mo-
bile apps is sensitive to input stream timing, and how timing
deviations lead to record or replay errors. We now discuss
two more classes of timing errors in Android apps.

First, Android No Response (ANR) error: Android will
raise an ANR and kill the app if the UI thread cannot handle
an event within 5 seconds or if an IPC event gets no response
for 10 seconds. Thus, if recording overhead is high (e.g.,

recording every memory access), then the system is likely
to raise an ANR error, terminating record or replay.

Second, the semantics of UI gestures may change [19].
When the user touches the screen, the hardware generates
a series of motion events, starting with ACTION DOWN
and ending with ACTION UP. The time between AC-
TION DOWN and ACTION UP is crucial for deciding
whether the user input is a tap, a click, or a long click. High-
overhead recording affects input timing hence the semantic
of the gesture changes, e.g., a click becomes a long click.

This overhead issue affects the usability of PinPlay [23],
a record-and-replay system that has been recently ported to
Android. When using PinPlay to record app executions, the
overhead is prohibitively high because PinPlay instruments
the screen device driver in the OS, the OS code that dis-
patches the input events, and finally the Android Java code
that dispatches events. We have observed that, when per-
forming a touchscreen gesture, apps respond very slowly,
showing the ANR error; eventually the OS kills the app. For
example, when attempting to use PinPlay to record the Ama-

zon Mobile app, sending multiple clicks triggered time outs
and eventually the OS killed the test app after 90 seconds. In
contrast, VALERA can handle Amazon Mobile essentially in
real-time (1.7% overhead for record and 2.34% overhead for
replay).

2.2 Schedule Replay
Consider the popular Barcode Scanner app that can recognize
various types of barcodes. Figure 2a illustrates the work-
ing model of Barcode Scanner. When the user starts the
app, the UI thread will load the CaptureActivity screen. In
the onResume() method, the UI thread forks a new thread,
DecodeThread, that performs heavy-weight computation—
decoding the barcode—thus relieving the burden of the UI
thread and ensuring the app is responsive. After initializa-
tion, it waits to receive events from the UI thread.

In the onResume() method, the UI thread also opens the
camera and registers PreviewFrameCallback as a handle for
callbacks from the camera; this handler invoked by the hard-
ware periodically. If a frame, say frame1, arrives from the
hardware, onPreviewFrame in the UI thread handles this call-
back by sending a message with the “start decoding” flag to-
gether with the frame buffer data to the decode thread. The
decode thread starts to use various complex algorithms to
decode this frame. The UI thread continues to handle other
events. Suppose a second frame, frame2 arrives, but the de-
code thread has not finished yet. The handler in the UI thread
knows that the decoding thread is still working, so it discards
frame2.

Suppose the decode thread finishes decoding and fails to
recognize the barcode from the given frame. This is a normal
case, due to various reasons such as the frame does not con-
tain any barcode, or the frame taken by the camera is blurred.
When the UI thread receives the “decode failure” message,
it marks the decode thread to be ready for decoding and con-
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(a) Barcode Scanner correct
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(b) Barcode Scanner divergent

Figure 2: Schedule of correct execution (left) and divergent execution due to imprecise schedule replay (right).

tinues to receive new frames from camera. Say frame3 comes
next, and this frame can be successfully decoded; a frame4

would be skipped for the same reason as frame 2. When the
UI thread receives a “decode success” message, it updates
the UI element to show the barcode result.

To successfully replay Barcode Scanner, the key is to
enforce the same event order executed in the looper as in
the record phase. Otherwise, the replay may diverge, as
showed in Figure 2b and explained next. Suppose that in
the recorded four frames, only frame3 can be successfully
decoded. Since the Android camera does not guarantee a
constant frame rate, the “decode failure” message due to
frame1 could arrive after frame3 has been delivered to the
UI thread, in which case frame4 will be sent to the decode
thread, instead of frame 3. But frame4 could be a poor-quality
frame that cannot be recognized; now the replay diverges as
the app cannot successfully decode any of the four frames—
this situation can happen in RERAN but not in VALERA.
When using VALERA the “decode failure” message will be
delivered after frame 2 not frame 3 since we enforce schedule
determinism (Section 5) hence avoiding divergence.

This example illustrates the importance of ensuring event
order determinism in the replay of Android apps, as Android
apps are mainly event-driven. In fact, as our study in Sec-
tion 6.2.2 shows, the event stream is far more demanding
than other streams, with typical burst rates in excess of 1,000
events/second, whereas the second-most demanding stream,
the network, has typical burst rates of 207 events/second.

Table 1: Network and sensor API usage in top-11 apps in
each of the 25 categories on Google Play.

Network Location Audio Camera
percentage 95% 60% 34% 34%

2.3 Network and Sensors
Supporting network and sensors is essential: the success of
the smartphone platform is due, in no small part, to on-the-
go network connectivity and the sensor-based context-aware
capabilities offered by apps. To quantify the need to replay
network and high-level sensors, in Table 1 we show their
use frequency in top-11 most popular apps across all 25 app
categories on Google Play: 95% of the apps use the network,
location is used by 60% of the apps, etc. Thus we argue
that supporting network and sensor input is necessary for
successfully recording-and-replaying Android apps.

3. Overview
We believe that, to be practical, a record-and-replay system
for Android should meet several key desiderata:

1. Support I/O (sensors, network) and record system in-
formation required to achieve high accuracy and replay
popular, full-featured apps.

2. Accept APKs as input—this is how apps are distributed
on Google Play—rather than requiring access to the app
source code.

3. Work with apps running directly on the phone, rather
than on the Android emulator which has limited support
for only a subset of sensors.
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Figure 3: Overview of the VALERA runtime.

4. Low overhead to avoid perturbing the app’s execution.
5. Require no hardware, kernel, or VM changes.

We have designed VALERA specifically to meet these
desiderata. Current approaches [2, 3, 11, 19] do not meet
one or more of these desiderata (especially #1, which we
believe is critical). We now turn to presenting overviews of
the Android platform and our approach, then state VALERA’s
replay accuracy guarantees.

Android overview. The Android software stack consists of
apps using the services of the Android Framework (“AF”).
Each app runs in its own copy of the Dalvik Virtual Machine
(VM)2 which in turn runs on top of a custom, smartphone
version of the Linux kernel. Android apps are typically writ-
ten in Java and compiled to Dalvik bytecode that runs in the
VM. Apps are distributed as APK files, which contain the
compressed Dalvik bytecode of the app (.dex) along with
app resources and a manifest file.

VALERA overview. VALERA consists of a runtime compo-
nent and an API interception component. We first discuss
the runtime component, shown in Figure 3 (the grey area on
the right)—the interception component will be discussed in
Section 4.2. The instrumented app runs on top of the instru-
mented AF, which in turn runs on top of unmodified versions
of the VM and the kernel. App instrumentation, achieved
via bytecode rewriting, is used to intercept the communica-
tion between the app and the AF to produce log files (val-
ues and timestamps) associated with network and high-level
sensor input, such as GPS, microphone, and camera; intents
are also intercepted at this point. AF instrumentation (which
we performed manually) is used to log and replay the event

2 This applies to Android versions prior to 5.0, since VALERA was con-
structed and evaluated on Android version 4.3.0. In Android version 5.0 and
later, Android uses a runtime system (ART) and ahead-of-time compilation
(AOT).

schedule—see the ScheduleReplayer vertical box inside the
AF. As the arrow directions indicate, during record the val-
ue/timestamp stream flows from left to right (toward the log
files), and during replay from right to left (from the log files
to the app/AF). To sum up, the VALERA runtime consists of
record and replay code and the log files; this code runs in-
line in the app and AF, with no extra processes or threads
needed. Other apps that execute concurrently run in their
own address space, on their own VM copies; we omit them
for clarity.

Note that, since VALERA uses bytecode rewriting and an
instrumented AF, its operation is not affected by either the
JIT compiler used in Android versions prior to 5.0 or the
runtime/compiler combination (ART/AOT) used in Android
versions 5.0 and beyond.

Replay accuracy. We define Externally Visible State as the
subset of app state that might be accessed, or viewed, by
the user; currently the EVS includes GUI objects (views,
images) and Shared Preferences (a key-value store where
apps can save private or public data [4]).

We validated VALERA’s replay fidelity via snapshot dif-
ferencing, as follows: (1) during record, upon entering or
leaving each activity (screen) A, we snapshot the EVS into
EVSrecA; (2) likewise, we snapshot the EVS during replay,
into EVSrepA; and (3) compare EVSrecA and EVSrepA to
find differences—a faithful replay should show no differ-
ence, that is, the user cannot tell the difference between the
record and replay executions. Note that record vs. replay dif-
ferences might still exist in hidden state, e.g., memory con-
tents or the VM stream, but these differences are not our
focus. Nevertheless, our fidelity guarantee is stronger than
techniques used in prior approaches to compare app execu-
tions (which just compared screen contents [14]). The next
sections show how we effectively implement record and re-
play in VALERA to achieve these accuracy guarantees.

4. API Interception and Replay
We now present our API interception approach. The infras-
tructure for interception, record, and replay, is generated au-
tomatically through app rewriting, based on an interceptor
specification. While VALERA has a predefined set of inter-
ceptors, VALERA users can easily change or extend this spec-
ification, e.g., to add interceptors for new sensors or API
calls, while still guaranteeing input determinism.

4.1 Example: Intercepting the Location Services
We first illustrate our technique by showing how we inter-
cept, record and replay the GPS location. The location API
provides functionality for finding the current GPS location,
as well as receiving notifications when the location changes,
e.g., when the smartphone is in motion.

Figure 4 shows an excerpt from a simple app that uses
the location services to display the current location on the
GUI and update the display whenever the location changes.
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1 //class LocationActivity extends Activity
2 protected void onStart() {
3 location =mLocMgr.getLastKnownLocation(provider);
4 updateUILocation(location) ;
5 mLocMgr.requestLocationUpdates(provider,
6 TEN SECONDS, TEN METERS, listener);
7 }
8

9 protected void onStop() {
10 mLocMgr.removeUpdates(listener);
11 };
12

13 private LocationListener listener = new
LocationListener() {

14 @Override
15 public void onLocationChanged(Location location) {
16 updateUILocation(location) ;
17 };};

Figure 4: Location API example.

When the app starts (method onStart()) it asks the manager
for the last known location (getLastKnownLocation on line 3),
updates the current location in the GUI (line 4) and directs
the manager to provide location updates every 10 seconds
or when the location has changed by 10 meters (lines 5–6).
The location updates are provided via a callback mechanism:
note how, on line 6, a listener is passed as an argument
to requestLocationUpdates. This location listener, initialized
on line 13, has a method onLocationChanged() which is the
callback that will be invoked whenever the location manager
needs to inform the app about a location update—when that
happens, the app updates the location on the GUI (line 16).

The getLastKnownLocation method returns a location ob-
ject containing the last known location obtained from the
given provider. We name such API calls downcalls: they are
initiated by the app and go downwards (i.e., into the AF),
run synchronously with the calling thread and return the re-
sult. Another kind of API calls are upcalls: in this case the
lower levels of the system software (i.e., the AF) invoke an
app-defined callback hence the direction of the call is up-
ward. The onLocationChanged method is an upcall since after
registering the callback, the AF periodically sends back the
updated location by invoking onLocationChanged. By over-
riding this method, the app receives notifications whenever
the user’s location changes.

VALERA takes API annotations (e.g., upcalls, downcalls)
as input and generates the support for interception, record,
and replay automatically. In our location example, VALERA

records the values exchanged in location API upcalls and
downcalls and upon replaying, feeds the app the recorded
values—this way we can “trick” the app into believing that
the phone’s geographical location (or sequence of locations,
if in motion), is the same as during the record phase, even
though the phone’s location could have changed since then.
For example, when a developer in New York wants to replay
and debug a location-related crash that happened on the
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Figure 5: Overview of VALERA’s automatic interception.

phone of a user based in San Francisco, VALERA injects the
record-time GPS sequence (the San Francisco coordinates)
into the app.

4.2 Automatic Interception through App Rewriting
Figure 5 presents the VALERA interception component,
which performs automatic interception via app bytecode
rewriting. While the rewriting is currently performed on
a desktop or laptop, VALERA’s record-and-replay (runtime
component) runs on the phone with no outside system nec-
essary.

We use the bytecode rewriting capabilities of Redexer
(an off-the-shelf Dalvik bytecode rewriting tool [18]) along
with interceptor specifications to transform an off-the-shelf
app into an app with intercept/record/replay capabilities, as
explained next.

The Scanner takes as input the original app (APK file)
along with an Interceptor specification and finds all the
callsites in the bytecode that match the specification and
should be intercepted. The specification consists of a list
of API methods along with simple annotations on how the
methods and their parameters should be treated from the
point of view of intercept/record/replay (explained in Sec-
tion 4.3). We have a predefined library of such calls for
instrumenting commonly-used APIs (Section 4.4); users can
expand the library with their own specifications. The Scan-
ner first extracts the Dalvik bytecode file from the APK, then
finds matching method invocations (callsites). The Intercep-
tor generator produces two parts: a dynamic intercepting
module and a stub. The intercepting module is a plug-in
for the Redexer that executes on each method that needs
to be intercepted (i.e., the Redexer rewrites the call to go
to the stub). Finally, the dynamic intercepting modules and
stubs are passed on to the Redexer that performs the byte-
code rewriting to effect the interception, and repackages the
bytecode into an instrumented APK that now has intercep-
tion/playback support.
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[downcall]
public Location getLastKnownLocation(String provider );

[ upcall ]
public abstract void onLocationChanged (Location location);

Figure 6: Location interceptor example.

[ upcall ]
public abstract void onPictureTaken (

[ xpointer ] byte [] data,
Camera camera);

[ upcall ]
public abstract void onPreviewFrame (

[ xpointer ] byte [] data,
Camera camera);

Figure 7: Camera interceptor example.

4.3 Interceptor Specification
The interceptors specify what to intercept and how to han-
dle the intercepted values upon replay. VALERA supports
three simple annotation keywords to describe Android API
methods. We borrow this idea from R2, an application-level
record/replay framework that allows users to choose the
functions to be recorded and replayed [12].

Examples. We first provide examples of how users can
easily specify interceptors to achieve record-and-replay,
and then discuss the general framework. In the examples,
for clarity, we leave out full package names and module
annotations—these have to be specified before passing the
specification to VALERA but they are straightforward.

Figure 6 shows a specification snippet from our in-
terceptors for the Location API. First, we specify that
getLastKnown Location is a downcall and that the provider

argument cannot be modified during replay (i.e., it is not
subject to record and replay). However, the return value
of getLastKnownLocation is subject to record and replay,
hence will be recorded and during replay, VALERA will re-
turn to the app the location values that were saved during
record, rather than the current location. The specification
also mentions that onLocationChanged is an upcall, and that
the location argument will be filled with the recorded value
rather than the value provided by the framework.

We did not find it necessary to support in or out anno-
tations on method parameters, because the stub implementa-
tions in our predefined stub library implement the appropri-
ate in or out semantics for each API call anyway.

Figure 7 shows a snippet from our interceptor specifica-
tion for the Camera API: first, we specify that onPictureTaken

and onPreviewFrame are both upcalls, and the camera argu-
ment is not subject to record and replay. The annotation on
data is more interesting: it is an array whose size varies be-

Table 2: Annotation keywords.

Annotation Scope Description
xpointer parameter pointer to reference
downcall function synchronous API call
upcall function asynchronous callback

tween record and replay, hence the xpointer annotation (we
will provide details shortly).

General annotation framework. Table 2 lists the annota-
tions VALERA provides for constructing interceptors. There
are two categories of keywords: parameter and function. Pa-
rameter keywords describe whether the value can change in
size from record to replay. Function keywords label each
method as downcall or upcall.

Xpointer is necessary when objects vary in size from
record to replay. For example, in the previously-mentioned
camera interceptor, onPictureTaken and onPreviewFrame take
a byte [] data argument. Let us assume that during the record
phase the user takes a 1 MB picture. However during re-
play, the camera may take a 500 KB picture (while the image
width and height do not change between record and replay,
the camera captures different images in the two different
executions hence due to differences in pixel colors and the
use of compression, the image sizes will likely be different).
Since attempting to copy the 1 MB data from the log into a
500 KB byte array would cause buffer overflow, VALERA of-
fers an xpointer annotation to deal with such cases. Instead
of directly accessing the byte [] data reference, xpointer
wraps the reference and provides get and set methods. Dur-
ing replay, the stub updates the xpointer reference to point
to the recorded stream data.

Downcall denotes a synchronous API method call. In
Figure 6, getLastKnownLocation is annotated as a downcall
method since the caller waits until it returns.

Upcall denotes an asynchronous callback. Android apps
rely heavily on callbacks to improve system efficiency. For
example, onLocationChanged, onPictureTaken, onPreviewFrame

in Figures 6 and 7 are callback methods, thus they are
marked with upcall.

4.4 Intercepting Events and Eliminating
Nondeterminism

We now describe how VALERA intercepts sensor events and
eliminates various sources of nondeterminism.

Motion and Key Events. Motion (i.e., touch screen) and
Key events are the main sources of events that drive app exe-
cution. Prior manual replay tools such as Robotium [11] and
Monkey Runner [3] provide programming scripts that allow
the user to specify which GUI objects to interact with. How-
ever, they only support basic GUI operations such as click or
long click, whereas most mobile apps provide rich gestures
such as zoom, pinch, and swipe. Our previous record-and-
replay system, RERAN, supports these complex gestures by
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recording the event streams at the OS driver level and re-
playing them back with precise timing. However, the draw-
back of RERAN is that it has no knowledge about the app’s
events order. For example, in the Barcode Scanner example in
Figure 2a, suppose that during recording, four frames were
recorded but during replay, due to the unexpected nature of
the external events, the camera may invoke callbacks at a
slower rate and only replay three frames. If the fourth frame
is the successful frame, then replay will fail (diverge).

To address these issues, VALERA records motion and key
events on the app’s side instead. Whenever the Windows
Manager Service dispatches the event to the app, VALERA

intercepts the dispatchInputEvent method recording the event
data and the time since app start. In addition, VALERA

records the current window ID of the app because Android
dispatches motion and key event to each window and one
app may have multiple windows (e.g., Activity and Dialog).

Sensor Events. Mobile devices provide a richer set of sen-
sors than desktop/server machines. They can be classified
into two categories: low-level sensors and high-level sen-
sors. Low-level sensors, e.g., accelerometer, gravity, gyro-
scope, etc., provide streams of events and invoke the app
via the SensorManager API. VALERA records and replays the
event and its associated data.

High-level sensors such as GPS, Camera, and Audio, are
richer, as they provide principled APIs for device access via
upcalls and downcalls; we illustrate these using the Location
API.

The Location API offers the getLastKnownLocation()

downcall—the app waits until the system returns the last
known location data. The location API also provides an up-
call, onLocationChanged(): when the physical location has
changed, the hardware GPS sensor invokes this upcall on
the UI thread’s Looper as an event. VALERA records and
replays both downcalls and upcalls.

Camera. Android apps can use the camera to take pic-
tures in three ways. First, apps can use the preinstalled Cam-

era app as a proxy by sending it an intent. The Camera app
takes the picture and returns it via the intent mechanism.
The intent recording mechanism, which we will describe
shortly, ensures that pictures taken via intents will be re-
played. The second way is to use the frame buffer, i.e., con-
tinuously read from the camera’s sensor, similar to using a
camera’s preview feature. A typical example of such use is
in barcode scanning apps, e.g., Barcode Scanner or RedLaser

Barcode. These apps read from the frame buffer using the
onPreviewFrame upcall, scan the frame for a barcode picture,
and direct the user on how to properly expose the barcode so
the app can get a good reading. The third way is to take a sin-
gle picture, e.g., via the onPictureTaken() upcall. VALERA in-
tercepts all necessary camera downcalls/upcalls and intents,
hence the input data from the camera can be recorded and
replayed.

Audio. Android provides audio services through two
main API components: MediaRecorder and AudioRecord.
MediaRecorder is high-level, supports audio compression,
and automatically saves the audio data to files. AudioRecord

is more low-level because it captures raw audio data into
a memory buffer and allows processing that data on-the-
fly (akin to the camera’s frame buffer described previously).
Different apps use different methods for audio manipulation:
if the app just needs to record the audio, using MediaRecorder

is easier, but for apps that require high quality audio infor-
mation and runtime processing, e.g., for audio recognition,
AudioRecord is a better option. VALERA intercepts all neces-
sary methods in the MediaRecorder and AudioRecord API.

Network non-determinism. Previous systems recorded
and replayed network activity at the system call level, e.g.,
send() and recv(). However, in our experience, recording
at the system call level is not appropriate on Android be-
cause the OS uses a socket pool: which socket is assigned to
connect() is not deterministic. Our insight is that, instead, we
need to record the network connections and the data trans-
ferred. Our implementation intercepts the HTTP/HTTPS
protocol APIs3 as follows. For each HTTP/HTTPS connec-
tion, VALERA records the data sent and received, the timing
of the network API calls, as well as any exception encoun-
tered. During replay, VALERA feeds the app data (as well
as error values or exceptions) from the log instead of send-
ing/receiving real network data. Note that reading from a log
file is faster than reading from the network. Thus VALERA

needs to sleep an appropriate amount of time, according to
the network connection log, to preserve precise replay tim-
ing.

Another advantage of eliminating network nondetermin-
ism is enabling replay for apps that use dynamic layout (i.e.,
the GUI layout is determined by the server) which has posed
problems in RERAN since RERAN assumes the same GUI
layout between record and replay [19].

Random number nondeterminism. The Random number
API is another possible source of non-determinism. An-
droid provides two sets of Random API: java . util .Random

and java . security .SecureRandom. The former is pseudo-
random: VALERA just intercepts the seed, hence subse-
quent random number calls are deterministic. The latter is
a stronger random number API, hence VALERA intercepts
all the generated random numbers to ensure accurate replay.
If an app implements its own random number library, the
corresponding API has to be marked so VALERA replays it;
however, we did not find any app, among our 50 examined
apps, that defines a custom random number library.

3 HTTP/HTTPS is the most widely used protocol for Android apps;
VALERA can be easily extended to intercept other protocols.
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4.5 Intercepting Intents
In Android, sensitive resources and devices are protected
by permissions. Apps that want to use a resource directly
must obtain an install-time permission, e.g., an app needs
the ACCESS FINE LOCATION permission to access the GPS
or the CAMERA permission to access the camera directly.

Android also allows apps to use devices via a proxy app,
in which case no permission is required, as we described in
the Camera app example. This is realized by Android’s Intent
mechanism, as follows. App A constructs an intent object
with the ACTION IMAGE CAPTURE action. Then A invokes
the Camera app by calling startActivityForResult () with the
intent object as parameter. After the picture is taken, the re-
sult will come back through the onActivityResult () method.
We intercept such methods to log the Intent object data (in
this case, the picture) and use this data in the replay phase.
Thus, to replay intent-based sensor input carried through
proxy apps, we must intercept the Intent API, even though
intents are not sensors per se.

4.6 Recording and Replaying
We now describe how record-and-replay is effectively achieved
via auto-generated stubs, and how we control the timing and
delivery of values and exceptions.

Stubs. API call interception is realized by redirecting the
original API call to go to a stub. By default, VALERA auto-
generates stubs that implement the record-and-replay func-
tionality, as follows: during record, a stub saves parameters
and return data in a log file and then passes them through
to the original callee; during replay, the stub code feeds the
app recorded data from the log file instead of the “fresh”
data coming from the sensors. More concretely, for upcalls,
the dynamic intercepting module will add pre-function stub
code that executes before the intercepted method, and post-
function stub code that executes after the intercepted method
completes. For downcalls, the invocation instruction will be
replaced to redirect to the stub code.

Timing. In addition to logging values associated with API
calls, VALERA records the timestamp of each intercepted
method, so the method is replayed at the appropriate time.
We realized that precise timing control is crucial, because
feeding the recorded values too early or too late will cause
the replay execution to diverge from the record execu-
tion; this is especially true for apps using audio and image
streams, as shown in Section 1. During replay, it takes much
less time to just read (and feed to the app) the recorded
sensor data from the log file, hence during replay VALERA

sleeps for a calculated amount of time in the stub function to
replicate the precise timing from the record mode.

Exceptions. VALERA has to record and replay any runtime
exceptions. If an exception is logged during record, we have
to re-throw it during replay.

1 class SyncMessageHandler extends Handler {
2 Activity activity ;
3

4 void onSynchronizationStarted () {
5 Animation pulse = loadAnimation();
6 View dot = activity .findViewById(R.id . sync dot) ;
7 dot. startAnimation(pulse) ;
8 }
9 void onSynchronizationDone() {

10 View dot = activity .findViewById(R.id . sync dot) ;
11 Animation pulse = dot.getAnimation();
12 pulse .setRepeatCount(0);
13 }
14 public void handleMessage(Message msg) {
15 if (msg.what == SYNC START) {
16 onSynchronizationStarted () ;
17 else if (msg.what == SYNC DONE)
18 onSynchronizationDone();
19 }}

Figure 8: Source code of race bug in Tomdroid.

Limitations. VALERA cannot handle nondeterminism in
apps that perform customized rendering, e.g., games that do
not use the Android UI toolkit; while VALERA will record
and replay the app, it does not guarantee that the nondeter-
minism in the customized rendering part will be eliminated.

5. Event Schedule Replay
In the previous section, we have shown how VALERA elim-
inates network and sensor nondeterminism. This, however,
is not enough, as in Android, another important source of
non-determinism is the event schedule. We now describe
our approach for eliminating event schedule nondetermin-
ism. We first motivate the need for replaying event schedules
with a real-world event-driven race bug in the Tomdroid app.
Next we provide an overview of Android’s event model, then
we describe how events are recorded and then replayed in
VALERA.

5.1 Example: Tomdroid’s Event-driven Race Bug
Tomdroid is an open source note-taking app; it allows notes
to be saved on, and synchronized with, a remote server.
When the user clicks a ‘Sync’ button to synchronize notes,
a new background worker thread (“sync task”) is forked
to perform this task. Periodically, the sync task sends back
the progress status to the main thread. These status mes-
sages are handled by a SyncMessageHandler; each activity
(“activity” means a separate GUI screen in Android par-
lance) has an associated SyncMessagehandler. If the received
message is SYNC START, the main thread invokes the
onSynchronization Started method which plays an animation
to show that Tomdroid is now syncing data. When the main
thread receives a SYNC DONE, it calls onSynchronizationDone

to stop the animation.
Tomdroid has a race condition which can lead to a crash.

Suppose the user enters the ViewNote activity and clicks
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1 // Schedule of clicking ‘Back’ after sync is done
2 ...
3 Lifecycle event: launch Main activity .
4 UI event: click ListView to show one note.
5 Lifecycle event: pause Main activity .
6 Lifecycle event: launch ViewNote activity .
7 Lifecycle event: stop Main activity .
8 UI event: click sync button to sync notes .
9 Async event: SyncMessageHandler SYNC START

10 Async event: SyncMessageHandler SYNC PROGRESS
11 Async event: SyncMessageHandler SYNC PROGRESS
12 Async event: SyncMessageHandler SYNC DONE
13 UI event: click back button.
14 Lifecycle event: pause ViewNote activity .
15 Lifecycle event: resume Main activity .
16 ...

1 // Schedule of clicking ‘Back’ before sync is done
2 ...
3 Lifecycle event: launch Main activity .
4 UI event: click ListView to show one note.
5 Lifecycle event: pause Main activity .
6 Lifecycle event: launch ViewNote activity .
7 Lifecycle event: stop Main activity .
8 UI event: click sync button to sync notes .
9 Async event: SyncMessageHandler SYNC START

10 Async event: SyncMessageHandler SYNC PROGRESS
11 UI event: click back button.
12 Lifecycle event: pause ViewNote activity .
13 Lifecycle event: resume Main activity .
14 Async event: SyncMessageHandler SYNC PROGRESS
15 Async event: SyncMessageHandler SYNC DONE
16 CRASH: Null pointer exception

Figure 9: Event schedule of main thread in Tomdroid: normal execution (left) and race leading to crash (right).

the ‘Sync’ button, waiting until the sync operation is done,
then clicks ‘Back’ to go back to the main activity. The sync
operation usually completes quickly, thus in most cases the
user clicks ‘Back’ after the sync has already completed. The
left side of Figure 9 shows the event schedule from the main
thread in this scenario.

However, in case the sync is slow, the user could click
‘Back’ before the sync is done. Then the ‘Back’ opera-
tion will trigger a switch from the ViewNote activity to
the Main activity. When the SYNC DONE message is pro-
cessed in the Main activity’s handler, the main thread invokes
onSynchronizationDone; in that method, dot.getAnimation()

returns null because the animation object is created and reg-
istered in ViewNote activity’s handler. This will cause a null
pointer exception that crashes the app; the event schedule
is shown on the right side of Figure 9. Note that to faith-
fully reproduce this bug, the SYNC DONE must be delivered
after the activity transfer events are handled. In the next sec-
tion, we show how we achieve this by replaying the event
schedule.

5.2 Event Handling in Android
The Android platform is event-driven, with the AF orches-
trating app control flow by invoking user-provided callbacks
in response to user and system events. The AF provides sup-
port for events, threads, and synchronization. In Android,
threads can communicate with each other in two ways: via
shared memory or messages. The former is the same as in
traditional Java applications, while the latter is more preva-
lent. In Android’s concurrency model, every application pro-
cess has a main thread (also called “UI thread”); only the
main thread can access the GUI objects, to prevent non-
responsive threads from blocking the GUI. To update the
GUI, other (non-main) threads can send messages to the
main thread. The main thread runs in a loop waiting for in-
coming messages, and processing them as they come.

Thread kinds. Android provides a Looper class that clients
can use to attach message dispatching capabilities to threads.

Each thread can attach at most one Looper object. The main
thread has one Looper by default when the app launches.
Inside the Looper object, there is a MessageQueue. If there is
no message in the queue, the thread will block. Otherwise,
the Looper removes the message at the front of the queue and
processes it. Once the thread begins to process one message
event, no other message processing routine can be started
until the current one finishes. Hence event handling within
each thread is atomic [15]. We will refer to any thread that
has an attached Looper as a looper thread.

In addition to looper threads, Android supports two other
kinds of threads: binder threads, created as thread pools
when an app is launched and for inter-process; and back-
ground threads, which are the result of a regular thread
fork ().

Messages and Handlers. Android also provides a Handler

class that allows threads to send and process messages, as
well as runnable actions. Each Handler instance is associ-
ated with a single thread and that thread’s Message Queue.
There are two main uses for a Handler: (1) to schedule mes-
sages and runnables to be executed at some point in the
future; and (2) to enqueue an action to be performed by
a thread. After retrieving it from the message queue, the
Looper dispatches the message to the corresponding Handler,
which will either handle the message or run the messages’s
runnable action. Messages can be posted in a variety of
ways: AtTime(time), i.e., post a message/action at a spe-
cific time, Delayed(delay), i.e., post a message/action after
a specific time, or AtFrontOfQueue, i.e., post a message/ac-
tion at the front of message queue. There are two kinds of
messages: a post version, which allows Runnable objects
to be enqueued and invoked by the message queue; and
a sendMessage version which allows Message objects, con-
taining data bundles (what, arg1, arg2 and Object) to be en-
queued.

Event posting. Event posting is at the core of the Android
programming model. Android events can be divided into two
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Figure 10: Event posting patterns in Android.

categories: internal events (messages or callbacks sent to
a looper thread) and external events (caused by hardware
interrupts). We have identified six different event posting
types (Figure 10 illustrates them). We first describe each type
then discuss how VALERA handles them.

Type 1: an external event posting a message to the same
looper. For example, when the user touches a view wid-
get on screen, the touchscreen generates a series of hard-
ware interrupts (motion events). If the motion events are
located in a View object that has a listener, the UI thread
will post a listener callback to itself.

Type 2: an internal event posting a message to the same
looper, i.e., looper posting to itself. One use of this sce-
nario is for implementing timeouts. For example, if a
looper wants to limit the time for processing a task, it
can use an internal event to post a timeout message to the
same looper—when the timeout message is due for pro-
cessing, the task has reached its time processing limit.

Type 3: background worker thread posting a message to a
looper thread. Since Android only allows the main thread
to update the UI elements, it is common that background
threads post messages or runnable callbacks to update the
UI.

Type 4: cross-looper posting of internal events, e.g., when
looper thread 1 posts a message to looper thread 2. Type
4 posting is very similar to Type 2, the difference being
that in Type 4 the message is posted to another looper.
Figure 2 (the Barcode Scanner app) contains one such
event posting type: the main thread sends a message with
the camera’s frame data to the decoder thread.

Type 5: cross looper posting of external events, e.g., looper
thread 1 posts a message to looper thread 2. This is
similar to Type 4, but the event is external. As we show
later (Table 4) this type of posting is rare—only 2 out of
50 examined apps use this posting type.

Type 6: binder thread posting a message to a looper thread.
Android apps frequently communicate with background

services such as the Activity Manager Service (AMS).
For example, when the AMS decides to start an app’s
activity, it sends a “launch activity” IPC call to the binder
of that app and the binder posts an internal event message
to the main thread looper. In this scenario, the activity’s
onCreate lifecycle callback will be invoked.

During replay, the external events no longer come from
the hardware, but rather from the replay log. Thus for Types
1 and 5, VALERA programmatically creates the external
events based on the logged events and posts them to the
looper as internal events. For internal event posting, i.e.,
Types 2, 3, and 4, each event is assigned a logical order
based on which the scheduler will execute each event. (Al-
gorithm 1 and Section 5.4 explain the details). Type 6 is a
special case: since VALERA only controls the specific app
instead of the whole system, other processes may send IPC
events during record but not during replay or vice versa; we
call these “missing” and “unrecorded” events, respectively,
and in Section 5.4 we discuss how VALERA handles such
cases.

In Section 6.2.2 we show the prevalence (number of
events and event rate) for each app and each event type: in
essence, Types 1 and 2 (self-posting) are the most prevalent,
Types 3, 4, and 6 are less common, while Type 5 is rare.

Event-driven races. Since only the main thread is privi-
leged to update the GUI, other threads send messages to the
main thread to request GUI updates. The way these mes-
sages are handled can be non-deterministic. Although these
messages will be put into the main thread’s Looper message
queue, their order of execution is not guaranteed and can re-
sult in violations of the happens-before relationship. This is
the cause of event-driven races [15, 21]. We devised an algo-
rithm, explained shortly, that can replay the event schedule
in a deterministic manner, allowing us to reproduce and re-
play event-driven races.
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Algorithm 1 Deterministic Event Order Replay
Input: Total Order of ScheduleList ScheduleList

1: procedure LOOPER.LOOP
2: while Looper not exit do
3: executable← true
4: msg ← CHECKPENDINGEVENT()
5: if msg is null then
6: msg ← MESSAGEQUEUE.NEXT()
7: executable← CHECKEXECUTABLE(msg)
8: end if
9: execute msg if executable is true

10: end while
11: end procedure
12: procedure CHECKPENDINGEVENT
13: msg ← PENDINGQUEUE.PEEK()
14: if No msg from PendingQueue then
15: return null
16: end if
17: if msg times out then . msg considered as missing
18: Scheduler.turn++
19: PENDINGQUEUE.REMOVE()
20: return null
21: end if
22: if Scheduler.turn == event.order then
23: Scheduler.turn++
24: PENDINGQUEUE.REMOVE()
25: return event.msg
26: else . must wait its turn
27: return null
28: end if
29: end procedure
30: procedure CHECKEXECUTABLE(msg)
31: for all Si in ScheduleList do
32: if Si match msg then
33: if Scheduler.turn == Si.order then
34: Scheduler.turn++
35: return true
36: else
37: Add Si to pending queue
38: return false
39: end if
40: end if
41: end for
42: return true . let unrecorded event execute
43: end procedure

5.3 Recording the Event Schedule
VALERA records the event schedule by logging each mes-
sage send and message processing operation into a trace file.
Every time a thread sends a message, we record this oper-
ation as a <etype, eid , pid , tid , type, looper , caller > tu-
ple. Here the etype indicates whether this is an internal or
external event, eid denotes the unique event identifier, pid is

the process id, tid is the thread id, type shows whether this
event is a handler or a runnable action, looper is the target
Looper object, and caller records the caller method that has
created this event message. When the Looper begins to ex-
ecute an event or finishes an event, VALERA also saves this
information into the event schedule.

We found that certain types of events, e.g., Android’s
FrameHandler background events, do not affect the correct-
ness of our event replay hence they are not included in the
schedule. However, most events are relevant and are in-
cluded, e.g., Activity’s lifecycle events (Activity launch/stop/re-
sume/etc.), user interaction events (e.g., touch or click a but-
ton), UI update events (e.g., resize/hide a view object) and
the app’s own messages.

5.4 Replaying the Event Schedule
We now present our algorithm for deterministically replay-
ing events; in Figure 3 the algorithm is implemented in the
ScheduleReplayer. We illustrate event replay on the Looper,
though VALERA tracks and delivers other events as well.

Each event, either internal or external, is assigned a Lam-
port timestamp (logic order number [20]) in the schedule.
At app startup time, we load the schedule into ScheduleRe-
player’s linked list. Loopers run an infinite loop waiting for
events and dispatching them to the target handler. In the in-
finite loop, the looper checks with the ScheduleReplayer to
see if there is any recorded event whose Lamport timestamp
indicates it is next; if there is such an event, it is replayed,
and the current (replay) logic order number is increased; oth-
erwise it is saved in a pending queue, waiting for its turn to
be executed. If the current event has not been recorded be-
fore, the ScheduleReplayer simply dispatches it.

The pseudocode is shown in Algorithm 1. The input is a
schedule file indicating the execution order of the recorded
events on this looper. Each event is assigned a logic order
number. Every time the looper tries to fetch a new event, it
first checks whether there is any event in the pending queue
(line 4). An event is added to the pending queue if it matches
the event in the schedule, but its turn to execute has not come
yet. If there is no event in the pending queue, the looper
fetches the event from its message queue as usual (line 6),
then checks whether this event is executable or not.

In the CHECKPENDINGEVENT procedure, ScheduleRe-
player first checks whether there is any event in the pend-
ing queue; if there is no event in this queue, the Looper
will check its message queue. Otherwise, if an event ex-
ists, ScheduleReplayer checks the event’s logic order num-
ber with the scheduler’s current turn number. If they match
(i.e., it is the pending event’s turn to execute), the event is
popped from the pending queue and returned (line 25). The
scheduler’s global turn number is increased to indicate next
available executable event.

In the CHECKEXECUTABLE procedure, the input param-
eter is the message event from the looper. ScheduleReplayer
iterates through the schedule list and matches the given
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event. An event is matched with the recorded schedule if the
tuple described in Section 5.3 matches. If the event matches
a schedule and the global turn matches its logic order, then
the procedure returns true indicating that this event can ex-
ecute. Otherwise, the event is added to the pending queue
(line 37). Note that if the event does not match any recorded
schedule, ScheduleReplayer returns true to allow this event
to run (line 42).

Handling external event replay. During replay, external
events are delivered from the recorded log, instead of the
underlying hardware; VALERA implements a controller for
this purpose. The controller is a background thread which
continuously sends internal events to the looper. The internal
event wraps the logged external event data with a what field
indicating its type (e.g., touchscreen, sensor, GPS or camera
event). The ScheduleReplayer knows the logic order number
of every external event and executes it in its turn. This
way, event non-determinism such as the example showed in
Figure 2 is eliminated. After the current event is consumed,
the controller will fire next.

Handling missing and unrecorded events. While VALERA

records and replays the events coming into or going out of
the subject app, it cannot control the behavior of other apps
(for that, a system-wide approach would be needed). That
might pose a problem if an external app sends an event dur-
ing record but not during replay (or vice versa). For ex-
ample, the system’s Activity Manager Service (AMS) can
send a TRIM MEMORY event and invoke the app’s
onTrimMemory() callback if the AMS detects that the sys-
tem is low on memory. Since VALERA does not control the
AMS, the AMS might send a TRIM MEMORY event
during record but not during replay. To handle this situation,
VALERA assigns a timeout value for each event in the sched-
ule list. If the waiting time exceed the timeout limit (line
17), VALERA regards the event as missing and removes it
from the schedule list. Conversely, the TRIM MEMORY
event could come during replay without appearing in the
record log. VALERA handles this case by allowing execution
of any unrecorded event (line 42). In both of these cases,
VALERA logs the missing or unrecorded events, and the user
can decide how they should be handled.

6. Evaluation
We now describe our experimental setup, then evaluate the
effectiveness and efficiency of VALERA.

Environment. The smartphone we used for experiments
was a Samsung Galaxy Nexus running Android version
4.3.0, Linux kernel version 3.0.31, on a dual core ARM
Cortex-A9 CPU@1.2 GHz.

Setup. The experimental setup involved three scenarios,
i.e., three different executions for each app: baseline, record,
and replay. To establish a baseline, we first ran each app

without involving VALERA at all, that is a human user ran the
original, uninstrumented app; while the app was running, we
were recording touchscreen events using RERAN (as RERAN
has already been shown to have a low overhead, at most
1.1%). We call this scenario the baseline execution. Next, we
ran the VALERA-instrumented versions of apps, with RERAN
replaying, to inject the same touchscreen inputs as in the
baseline run, while VALERA was recording—we call this
the record execution. Finally, we ran a replay execution in
which VALERA was set to replay mode (of course, no user
interaction was necessary).

The user interacted with each app for about 70 seconds,
since prior research has shown that the average app usage
session lasts 71.56 seconds [6]. The user was exercising the
relevant sensors for each app, e.g., scanning a barcode for the
Barcode Scanner, Amazon Mobile and Walmart apps; playing
a song externally so apps Shazam, Tune Wiki, or SoundCloud

would attempt to recognize it; driving a car to record a nav-
igation route for Waze, GPSNavig.&Maps, NavFreeUSA. To
record intents, in apps Twitter, Instagram, PicsArt, Craigslist

we took pictures by invoking Android’s default Camera app
(invoking the Camera app and returning the resulting picture
is achieved via intents); for Google Translate, eBay, and Dic-

tionary we used speech recognition which is also achieved
via intents.

6.1 Effectiveness
We evaluate the effectiveness of our approach on two di-
mensions: (1) Is VALERA capable of recording and replay-
ing highly popular real-world apps?, (2) Is VALERA ca-
pable of recording and replaying high-throughput stream-
oriented apps?, and (3) Is VALERA useful for reproducing
event-driven races?

Recording and replaying popular apps. To demonstrate
the importance of recording and replaying sensor data, we
ran VALERA on a wide range of popular apps. The apps
were chosen based on the following criteria: (1) the app must
use at least one of the sensor APIs described in Section 4.4,
(2) apps must come from a variety of categories, such as
business, productivity and tools. Note that these apps were
downloaded directly from Google Play, the main Android
app marketplace, which does not provide the app’s source
code.

Table 3 lists the 50 apps that we chose for our evaluation.
To answer questions (1) and (2) above, we chose a mix of
highly-popular apps and high-throughput stream apps.

The first column contains the app name, the second col-
umn indicates the popularity of the app, i.e., number of
downloads (installs), while the “Streams” grouped columns
show the streams used in that app.

For example, Sygic GPS, a popular navigation app with
more than 10 million downloads, could be replayed with
VALERA because VALERA replays GPS and network inputs.
Similarly, popular apps with more than 50 million down-

988



Table 3: VALERA evaluation results: apps, popularity, streams and overhead.

App # Down- Streams Time Space
loads
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nt Baseline Record Replay Log size Log rate
Time Time Overhead Time Overhead

(millions) (sec.) (sec.) (%) (sec.) (%) (KB) (KB/s)
Booking.com 10–50 • • 74.38 75.26 1.18 75.86 1.99 1,246 16.56
GasBuddy∗ 10–50 • • 83.47 84.02 0.65 84.77 1.56 206 2.45
Sygic: GPS N.&M. 10–50 • • 94.11 97.46 3.56 98.03 4.17 6,538 68.08
TripAdvisor 10–50 • • 69.39 71.34 2.81 71.56 3.13 1,328 18.62
Waze Social GPS 10–50 • • 86.30 87.91 1.87 88.12 2.11 4,719 53.68
Yelp∗ 10–50 • • 75.40 76.13 0.97 76.24 1.11 867 11.50
Flixster∗ 10–50 • • 78.31 79.45 1.46 80.01 2.17 1,147 14.65
Hotels.com 5–10 • • 84.50 85.17 0.79 85.66 1.37 1,563 18.35
Priceline 1–5 • • 82.18 83.45 1.55 83.12 1.14 2,313 27.72
Scout GPS Navig. 1–5 • • 66.39 68.11 2.59 68.47 3.13 5,312 77.99
Route 66 Maps 1–5 • • 88.79 89.23 0.5 89.89 1.24 4,108 46.04
Restaurant Finder 1–5 • • 71.46 72.18 1.01 73.45 2.78 918 12.72
GPSNavig.&Maps 0.5–1 • • 72.19 73.58 1.93 73.45 1.75 5,177 71.71
Weather Whiskers 0.5–1 • • 65.43 65.67 0.37 66.01 0.89 31 0.47
NavFreeUSA 0.1–0.5 • • 63.81 64.37 0.88 65.11 2.03 75 1.17
Barcode Scanner 50–100 • • 69.29 71.43 3.01 71.37 3.00 145,271 2,033.75
Google Goggles 10–50 • • 73.10 74.12 1.40 74.87 2.42 106,121 1,451.72
Pudding Camera 10–50 • 61.26 61.38 0.20 61.91 1.06 7,488 121.99
Evernote∗ 10–50 • • 74.12 75.00 1.19 75.19 1.44 2,317 30.89
Amazon Mobile∗ 10–50 • • 85.31 86.77 1.71 87.31 2.34 41,071 473.33
QR Droid 10–50 • • 79.46 81.55 2.63 82.39 3.69 114,812 1,407.87
CamScanner 10–50 • 62.01 62.76 1.21 62.87 1.39 2,612 41.62
CamCard Free 1–5 • 61.49 62.38 1.45 62.82 2.16 4,501 72.15
RedLaser Barcode 1–5 • • 72.47 74.05 2.18 74.87 3.31 91,191 1,231.48
Walmart 1–5 • • 85.65 86.78 1.32 86.86 1.41 157,129 1,810.66
Camera Zoom Fx 1–5 • • 56.37 57.11 1.31 57.32 1.69 6,328 110.80
Horizon 1–5 • • 64.39 65.71 2.05 66.10 2.66 5,413 82.38
Shazam 50–100 • • 91.28 92.73 1.59 92.41 1.24 6,186 66.71
GO SMS Pro 50–100 • • 58.12 59.33 2.08 59.87 3.01 101 1.70
Tune Wiki∗ 10–50 • • 84.10 85.27 1.40 86.31 2.63 7,192 84.34
SoundCloud 10–50 • • 64.38 65.87 2.31 66.12 2.70 1,206 18.31
Ringtone Maker 10–50 • 67.30 68.11 1.20 68.73 2.12 2,490 36.56
musiXmatch 5–10 • • 73.28 74.01 0.99 74.35 1.46 651 8.80
Best Voice Changer 5–10 • 58.45 59.17 1.23 59.83 2.36 108 1.85
Smart Voice Rec. 5–10 • 51.39 53.12 3.37 53.81 4.71 97 1.89
PCM Recorder 1–5 • 46.28 48.12 3.98 48.73 5.23 2,418 52.25
RoboVox Lite 0.05–0.1 • • 68.10 68.95 1.25 69.27 1.72 2,617 37.96
Diktofon 0.01–0.05 • • 62.47 63.71 1.98 64.05 2.53 2,102 32.99
Twitter∗ 100–500 • • 81.19 83.45 2.78 84.57 4.16 835 10.01
Google Translate∗ 100–500 • • 69.36 70.48 1.61 71.02 2.39 49 0.70
Instagram∗ 100–500 • • 55.47 55.98 0.92 56.13 1.19 872 15.58
PicsArt 100–500 • 64.21 64.32 0.17 64.55 0.53 12 0.19
eBay∗ 50–100 • • 96.37 97.24 0.90 97.98 1.67 1,354 14.05
Bible∗ 10–50 • • 73.91 74.63 0.97 75.38 1.99 871 11.67
Craigslist∗ 10–50 • • 65.28 66.33 1.61 66.91 2.50 1,672 25.21
Dictionary∗ 10–50 • • 58.31 59.23 1.58 59.88 2.69 164 2.77
GO SMS Pro Emoji 10–50 • • 54.17 55.67 2.77 55.90 3.19 76 1.37
Weibo 5–10 • • 90.46 91.87 1.56 92.44 2.19 3,182 34.64
1Weather 5–10 • • 45.61 46.00 0.86 46.02 0.90 318 6.91
Weather 5–10 • • 87.31 88.45 1.31 88.19 1.01 673 7.61
Mean 71.36 72.49 1.01 72.92 1.02 15,101 208.32
∗=VALERA can replay network, camera, GPS, microphone, intents, and schedule, while RERAN cannot

loads, such as Barcode Scanner, Shazam, Google Translate, and Twitter could be replayed thanks to VALERA’s support
for replaying camera, microphone, and intent inputs.
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Table 4: VALERA event streams: number of events and burst event rate (events/second); a ‘-’ indicates that the app did not use
that stream during our recording.

App Touchscreen GPS Camera (fbuf.) Camera (pic.) Audio Network Intent Scheduler events (types 1–6)
#Evs. Rate #Evs. Rate #Evs. Rate #Evs. Rate #Evs. Rate #Evs. Rate #Evs. Rate 1 2 3 4 5 6 Rate

Booking.com 356 62 20 62 - - - - - - 162 500 - - 1,224 8,474 147 973 0 427 >1,000
Gasbuddy 606 58 5 58 - - - - - - 256 500 - - 1,943 713 82 17 0 369 >1,000
Sygic: GPS N.&M. 307 47 81 100 - - - - - - 35 333 - - 1,628 523 57 11 0 416 500
TripAdvisor 517 55 13 71 - - - - - - 137 333 - - 982 1,268 168 249 0 344 >1,000
Waze Social GPS 253 41 73 200 - - - - - - 51 200 - - 1,847 202 471 82 0 316 >1,000
Yelp∗ 493 62 11 166 - - - - - - 93 333 - - 1,764 897 763 65 0 311 >1,000
Flixster∗ 390 55 7 166 - - - - - - 123 333 - - 1,571 1,056 354 113 0 276 >1,000
Hotels.com 503 66 15 125 - - - - - - 188 250 - - 1,603 841 504 59 0 384 >1,000
Priceline 652 62 9 142 - - - - - - 138 90 - - 1,357 2,514 93 37 0 405 500
Scout GPS Navig. 207 62 78 90 - - - - - - 36 71 - - 1,438 298 539 0 0 361 >1,000
Route 66 Maps 197 52 94 111 - - - - - - 46 125 - - 1,883 3,617 836 18 0 314 >1,000
Restaurant Finder 468 47 12 100 - - - - - - 127 333 - - 1,695 817 596 47 0 325 >1,000
GPSNavig.&Maps 296 52 42 166 - - - - - - 12 47 - - 1,605 192 758 0 0 413 >1,000
Weather Whiskers 541 58 19 100 - - - - - - 27 166 - - 894 1,056 74 81 0 366 >1,000
NavFreeUSA 303 43 84 58 - - - - - - 8 200 - - 726 207 160 0 0 401 500
Barcode Scanner 64 41 - - 57 5.95 - - - - 5 333 - - 364 189 31 107 19 144 >1,000
Google Goggles 51 166 - - 52 5.95 - - - - 16 166 - - 307 216 15 52 0 158 >1,000
Pudding Camera 103 35 - - - - 5 0.46 - - - - - - 798 341 45 96 0 230 500
Evernote∗ 315 66 - - - - 3 0.23 - - 23 250 - - 1,158 589 130 244 0 363 >1,000
Amazon Mobile∗ 590 58 - - 32 12.50 - - - - 64 500 - - 2,005 775 194 9 0 181 >1,000
QR Droid 83 43 - - 55 6.06 - - - - 6 66 - - 513 115 20 73 0 160 >1,000
CamScanner 119 45 - - - - 2 0.01 - - - - - - 439 312 37 52 0 118 500
CamCard Free 76 55 - - - - 5 0.01 - - - - - - 882 436 50 31 0 126 500
RedLaser Barcode 93 62 - - 41 5.95 - - - - 8 83 - - 375 231 25 66 0 132 >1,000
Walmart 139 62 - - 86 3.68 - - - - 35 200 - - 611 152 55 149 0 155 >1,000
Camera Zoom Fx 86 38 - - - - 3 - - - 5 62 - - 460 287 69 41 0 113 500
Horizon 73 55 - - - - 2 - - - 13 83 - - 512 319 79 53 0 146 >1,000
Shazam 27 71 - - - - - - 560 71 33 333 - - 224 6,617 125 272 0 255 >1,000
GO SMS Pro 18 71 - - - - - - 68 52 14 333 - - 128 117 25 12 0 212 >1,000
Tune Wiki∗ 86 83 - - - - - - 386 66 36 200 - - 386 1,253 267 88 0 172 >1,000
SoundCloud 93 66 - - - - - - 419 90 41 142 - - 513 420 86 77 0 269 500
Ringtone Maker 125 71 - - - - - - 897 83 - - - - 756 138 217 93 0 315 >1,000
musiXmatch 119 62 - - - - - - 288 71 39 250 - - 1,124 683 153 113 0 367 >1,000
Best Voice Changer 65 45 - - - - - - 167 62 - - - - 335 517 80 155 0 381 >1,000
Smart Voice Rec. 35 55 - - - - - - 260 62 - - - - 297 513 85 98 0 285 500
PCM Recorder 26 50 - - - - - - 613 66 - - - - 414 397 52 18 0 415 >1,000
RoboVox Lite 52 55 - - - - - - 302 62 15 166 - - 326 238 47 56 0 248 500
Diktofon 69 62 - - - - - - 286 41 13 90 - - 257 366 38 89 0 325 500
Twitter∗ 417 62 - - - - - - - - 64 250 7 0.20 973 652 318 49 0 405 >1,000
Google Translate∗ 217 66 - - - - - - - - 36 83 8 0.39 549 572 28 110 0 139 >1,000
Instagram∗ 536 71 - - - - - - - - 12 166 12 0.17 1,839 416 150 217 0 315 >1,000
PicsArt 303 45 - - - - - - - - - - 6 0.15 905 531 234 68 0 357 >1,000
eBay∗ 200 58 - - - - - - - - 64 250 11 0.22 1,545 377 59 158 0 306 >1,000
Bible∗ 471 58 - - - - - - - - 15 142 5 0.15 1,560 603 76 333 138 143 >1,000
Craigslist∗ 271 55 - - - - - - - - 48 71 7 0.12 1,147 521 83 267 0 268 >1,000
Dictionary∗ 318 62 - - - - - - - - 41 125 9 0.17 1,468 699 103 251 0 375 >1,000
GO SMS Pro Emoji 102 62 - - - - - - - - 12 66 6 0.25 314 215 34 62 0 236 >1,000
Weibo 486 71 - - - - - - - - 115 200 5 0.15 1,532 748 428 93 0 386 >1,000
1Weather 275 47 - - - - - - - - 18 142 8 0.22 948 817 42 88 0 306 500
Weather 183 45 - - - - - - - - 9 142 7 0.17 829 543 25 46 0 268 500

Several apps, e.g., Amazon Mobile∗, are marked with an
asterisk. For those apps, the most powerful Android record-
and-replay system to date, RERAN, could only replay the
GUI interaction, but not the high-level sensors, network,
or events. For example, Amazon Mobile allows users to
search by scanning a barcode or taking a picture of the item;
RERAN cannot replay either of these actions. We discuss
the rest of the columns in Section 6.2 where we examine
VALERA’s efficiency.

Thus we can conclude that VALERA is effective at recording-
and-replaying widely popular Android apps, which are
drawn from a variety of app categories and use a variety
of sensors.

Reproducing event-driven race bugs. We used VALERA to
reproduce event-driven races in several open source apps.
The races, due to cross-posting of events and co-enabled
events, were discovered by Maiya et al. [21]. Note that
current Android record-and-replay tools cannot reproduce
these races as they cannot preserve event ordering due to
non-deterministic thread scheduling.

NPR News. While loading, this app checks the time
of the last news list update. Concurrently, when new sto-
ries are added, a Runnable thread from NewsListAdapter.

addMoreStories makes a post update call to the main thread
which updates the lastUpdate variable in an asynchronous
manner. These two events are non-deterministic and not or-
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dered by a happens-before relationship. We reproduced the
race by alternating the order and replaying the app in that
specific order.

Anymemo. This app helps users learn new words in differ-
ent languages using flash cards. After the user finishes one
set of cards, the app creates a background thread which cal-
culates the score and updates list of items to be shown on
the UI. Usually the calculation is fast for a small working
set and the updated result will show before the user switches
back to the list view. However, the calculation and update
operation are not ordered by happens-before. Hence if the
user switches back before the calculation is done, the update
operation cannot get the result and will throw a null pointer
exception. In the latest version of this app, the authors have
fixed the race bug by simply ignoring the race with a try-
catch block. Although this fixes the crash, the UI view show
the incorrect result.

My Tracks. This app exhibited a different type of race.
Whenever users try to record their location, the app sends a
bind request to the Binder thread, and the thread eventually
binds it to a recording service. The problem is that when the
service is registered with the request, the field providerUtils

is updated. When the service thread gets destroyed this field
is set to null. But there is no happens-before order between
the field update and the service destruction. If the service is
destroyed before the registration is executed, the recording
process will attempt to dereference a null pointer. This is a
harmful race which can be reproduced and replayed using
VALERA.

Tomdroid. This race, which leads to a null pointer excep-
tion (Section 5.1), was also successfully reproduced.

6.2 Efficiency
To quantify the efficiency of VALERA we measured: (1)
the time and space overhead that VALERA imposes when
recording and replaying our test apps; and (2) the streaming
requirements, in terms of events and event burst rate.

6.2.1 Time and Space Overhead
The “Time” and “Space” columns in Table 3 present the
results of the measurements in the “Baseline”, “Record”,
and “Replay” scenarios; for the record and replay scenarios,
we also show the overhead, in percents, compared to the
baseline. The last row shows geometric means computed
across all 50 apps.

Based on the results in Table 3 we make several observa-
tions. First, note that record overhead is typically 1.01%, and
replay overhead is typically 1.02% compared to the base-
line, uninstrumented app run. This low overhead is critical
for ensuring that sensor input, especially real-time streams,
e.g., video/audio capture or complex touchscreen gestures, is
delivered with precise timing so the recorded and replayed
executions do not diverge. Second, note that several apps,
e.g., Sygic, have overheads of around 4.17%: upon investiga-
tion, we found that the cause is record and replay of heavy

network traffic. We also performed experiments without net-
work replay (we omit the detailed results for brevity) and
found the overhead to be much lower: at most 1.16%, typi-
cally 0.5%–1.0%. VALERA allows users to turn off network
replay, e.g., if users wish to reduce overhead or let the app
interact with “live” severs and services.

The “Space” grouped columns show the space overhead
of our approach: the size of the recorded log (VALERA stores
the log data on the phone’s SD card), and the required log
rate. As the table shows, apps that use the frame buffer
have the largest space overhead, e.g., Barcode Scanner’s log
size is 145 MB, collected during an execution lasting 71.43
seconds. The large log size is due to the frame buffer from
the camera sensor continuously sending back image data (in
this case, it fills the 1.3 MB buffer every 250 milliseconds).
Walmart, RedLaser Barcode, Google Goggles and QR Droid

have large logs for the same reason. For the audio sensor
experiments (e.g., PCM Recorder, Shazam), the log size is
determined by user actions and the duration of the execution.
Similarly, GPS-based apps (e.g., Navfree USA, GasBuddy, or
TripAdvisor) have smaller logs, as saving GPS coordinates
and network traffic takes less space than video or audio
streams. The smallest-footprint logs are observed for intent
replay—unlike GPS and other sensors, intents are small in
size and sparse. We do not expect the logging to be an issue
in practice as long as the log file fits onto the SD card: the log
rate (last column, always less than 1.8 MB/s) is well within
modern SD cards’ throughout capabilities.

6.2.2 Streaming Rate
We now present a quantitative characterization of the streams
that have to be replayed. In Table 4 we show the number of
events for each sensor and the scheduler, as well as the burst
event rate,4 in events per second. The burst event rate in-
dicates the burden on the record-and-replay system during
periods of high load.

The table suggests a natural grouping of sensors by burst
rate. First, the camera (in “taking pictures” mode) has the
lowest burst rate, since the user must press the shutter which
naturally limits the picture-taking rate. Similarly, the intent
event rate is low since intents are usually triggered in re-
sponse to user input. The camera (in “frame buffer” mode)
has a low burst rate as well—at most 12.5 events per sec-
ond; this is due to the app having to perform frame-buffer
processing, namely image recognition, which is computa-
tionally intensive.

The touchscreen, GPS and audio have moderate burst
rates, 41–200 events/second. The network’s burst rate is
higher, 207 events/second on average. Note, however, that
the touchscreen and network are used by most apps, so their
burst rates might need to be accommodated simultaneously.

4 The event rate fluctuates during an execution. For each sensor’s events, we
identified the burst periods as the top 25% intervals by event rate, and took
the median event rate of those periods.
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Finally, the scheduler has the highest burst rate, typi-
cally in excess of 1,000 events/second (our timer had mil-
lisecond granularity, so for events separated by less than 1
millisecond, we rounded up to the ceiling value of 1 mil-
lisecond). More specifically, Type-1 and Type-2 events were
the most prevalent, indicating that most messages are self-
postings (the sender and receiver thread are the same, per
Section 5.2).

Thus we can conclude that, with respect to our chosen
apps, VALERA is efficient at record-and-replay in terms time
overhead, space overhead, and supporting high-rate burst
events.

7. Related Work
Record-and-replay has been widely studied and imple-
mented on various platforms.

On the smartphone platform, the most powerful, and
most directly related effort is our prior system RERAN [19],
which has been used to record and replay GUI gestures
in 86 out of the Top-100 most popular Android apps on
Google Play. RERAN does not require app instrumentation
(hence it can handle gesture nondeterminism in apps that
perform GUI rendering in native code, such as Angry Birds)
or AF changes. Mosaic [13] extends RERAN with support for
device-independent replay of GUI events (note that our ap-
proach is device-independent as well). Mosaic has low over-
head, typically less than 0.2%, and has replayed GUI events
in 45 popular apps from Google Play. However, RERAN and
Mosaic have several limitations: they do not support critical
functionality (network, camera, microphone, or GPS), re-
quired by many apps; they do not permit record-and-replay
of API calls or event schedules; their record-and-replay in-
frastructure is manual, which makes it hard to modify or
extend to other sensors.

Android test automation tools such as Android Guitar [1,
5], Robotium [11], or Troyd [17] offer some support for
automating GUI interaction, but require developers to extract
a GUI model from the app and manually write test scripts
to emulate user gestures. In addition to the manual effort
required to write scripts, these tools do not support replay
for sensors or schedules.

On non-smartphone platforms, record-and-replay tools
have a wide range of applications: intrusion analysis [10],
bug reproducing [22], debugging [26], etc. Hardware-based [22,
29] and virtual machine-based [10, 25] replay tools are of-
ten regarded as whole-system replay. Recording at this low
level, e.g., memory access order, thread scheduling, allows
them to eliminate all non-determinism. However, these ap-
proaches require special hardware support or virtual ma-
chine instrumentation which might be prohibitive on current
commodity smartphones.

Library-based approaches [9, 16, 24, 30] record the non-
determinism interaction between the program libraries and
underlying operating system with a fixed interface. R2 [12]

extends them by allowing developers to choose which kinds
of interfaces they want to replay by a simple annotation
specification language. VALERA borrows this idea from R2
(which targets the Windows kernel API) but applies it to
sensor-rich event-based Android.

CAFA [15] and Droidracer [21] are dynamic race detec-
tion tools for Android. Our work is complementary and, we
hope, useful to the authors and users of these tools, for the
following reason: these tools report a possible race, but can-
not capture and replay an execution that deterministically re-
produces the race. With VALERA, once a race is captured, it
will be reproduced.

8. Conclusions
We have presented VALERA, an approach and tool for ver-
satile, low-overhead, record-and-replay of Android apps.
VALERA is based on the key observation that sensor inputs,
network activity and event schedules play a fundamental role
in the construction and execution of smartphone apps, hence
recording and replaying these two categories is sufficient
for achieving high-accuracy replay. Experiments with using
VALERA on popular apps from Google Play, as well as re-
playing event race bugs, show that our approach is effective,
efficient, and widely applicable. VALERA’s accuracy and low
runtime overhead make it suitable as a platform for applica-
tions such as profiling, monitoring, debugging, testing, or
dynamic analysis. We believe that stream-oriented replay
could be applied in other contexts besides smartphones, e.g.,
replay of time-sensitive or stream-processing programs on
desktop/server platforms.
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