
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Problem Specification & Software Architecture

Department of Computer Science

University of Maryland, College Park

Overview
• Problem specification

• Obstacles

• Software Architecture

• How to divide work

• Interface & conditions

© 2018 Dept of Computer Science UMD 2

Problem Specification
• Goal

• Create complete, accurate, and unambiguous

statement of problem to be solved

© 2018 Dept of Computer Science UMD 3

Problem Specification
• Example

• Specification of input & output for program

© 2018 Dept of Computer Science UMD 4

Problem Specification Problems
• Description may not be accurate

• Problem not understood by customer

• Description may change over time

• Customer changes their mind

• Difficult to specify behavior for all inputs

• Usually only covers common cases

• Hard to consider all inputs (may be impossible)

• Most UNIX utilities used to crash with random inputs

• An Empirical Study of the Reliability of UNIX Utilities,

B.P. Miller, L. Fredriksen, and B. So, 1991

© 2018 Dept of Computer Science UMD 5

Problem Specification Problems
• Description may be ambiguous

• Natural language description is imprecise

• Why lawyers use legalese for contracts

• Formal specification languages are limited and may be

difficult to understand

• Examples

• Find sum of all values between 1 and 100 that occur in

the set S

• Sum { x | x ∈ S  1 ≤ x ≤ 100 }

• Difficult to write specifications that are both readable and

precise

© 2018 Dept of Computer Science UMD 6

Specification Example
• int process(int x, int [] a)

• Precondition:

• a is an array of n integers, index 0..n-1

• x is an integer

• Postcondition:

• if result == -1, there is no value i such that a[i] == x

• else, a[result] == x

• Critique this specification

• What is the task the method is suppose to perform?

© 2018 Dept of Computer Science UMD 7

Implementation
• int process(int x, int [] a) {

a[0] = x;

return 0;

}

• Precondition:

• a is an array of n integers, index 0..n-1

• x is an integer

• Postcondition:

• if result == -1, there is no value i such that a[i] == x

• else, a[result] == x

© 2018 Dept of Computer Science UMD 8

Multiple Occurrences
• What if there are multiple occurrences of the value x in a?

• Are we allowed to return the index of any of them?

• Or should we always return the first index?

© 2018 Dept of Computer Science UMD 9

Program Design
• Goal

• Break software into integrated set of components that work together to

solve problem specification

• Problems

• Methods for decomposing problem

• How to divide work

• What work to divide

• How components work together

• Software Architecture

• Big picture of the software

• Components generally bigger than objects or classes

• API (Application Programming Interface)

• Set of subroutine definitions, protocols and tools for building software and

applications

• Reference: Wikipedia

© 2018 Dept of Computer Science UMD 10

Architecture of ProMoT
Just an arbitrary

example of a

real-world

software

architecture

© 2018 Dept of Computer Science UMD 11

Different Architecture Styles
• The same system can be described using several different

architecture styles

• Pipes and filters

• What is the data, and what components do they move

through

• Blackboard

• Components communicate through a shared, updatable

blackboard

• Let’s see some examples

© 2018 Dept of Computer Science UMD 12

Key Words in Context
• KWIC Index 

http://www.cs.uleth.ca/~forsyth/seminar/problems/kwic.html

• The KWIC index system accepts an ordered set of lines,

each line is an ordered set of words, and each word is an

ordered set of characters. Any line may be "circularly shifted"

by repeatedly removing the first word and appending it at the

end of the line. The KWIC index system outputs a listing of

all circular shifts of all lines in alphabetical order.

• On the Criteria To Be Used in Decomposing Systems into

Modules, David Parnas, 1972

© 2018 Dept of Computer Science UMD 13

http://www.cs.uleth.ca/~forsyth/seminar/problems/kwic.html

Software Productivity Improvements
• This is a small system. Except under extreme circumstances

(huge data base, no supporting software), such a system

could be produced by a good programmer within a week or

two.

• On the Criteria To Be Used in Decomposing Systems into

Modules, David Parnes, 1972

• Today: 15 minutes

© 2018 Dept of Computer Science UMD 14

Modularization
• Module 1: Input

• Reads input and stores the lines

• Module 2: Circular shift

• Prepares index with one entry per shifted line

• Module 3: Alphabetizing

• Produces a sorted index

• Module 4: Output

• Produces a formatted output

• Module 5: Master Control

© 2018 Dept of Computer Science UMD 15

Kwic Architecture

© 2018 Dept of Computer Science UMD 16

Commentary
• Using this solution data can be represented efficiently, since

computations can share the same storage. The solution also has a

certain intuitive appeal, since distinct computational aspects are

isolated in different modules. However, as Parnas argues, it has a

number of serious drawbacks in terms of its ability to handle changes.

In particular, a change in data storage format will affect almost all of

the modules. Similarly changes in the overall processing algorithm

and enhancements to system function are not easily accommodated.

Finally, this decomposition is not particularly supportive of reuse.

• An Introduction to Software Architecture, David Garlan and Mary Shaw

© 2018 Dept of Computer Science UMD 17

Kwic Architecture, Pipes and Filters

© 2018 Dept of Computer Science UMD 18

Commentary
• This solution has several nice properties. First, it maintains the intuitive flow

of processing. Second, it supports reuse, since each filter can function in

isolation (provided upstream filters produce data in the form it expects). New

functions are easily added to the system by inserting filters at the appropriate

point in the processing sequence. Third, it supports ease of modification,

since filters are logically independent of other filters.

• On the other hand it has a number of drawbacks. First, it is virtually

impossible to modify the design to support an interactive system. For

example, in order to delete a line, there would have to be some persistent

shared storage, violating a basic tenet of this approach. Second, the solution

is inefficient in terms of its use of space, since each filter must copy all of the

data to its output ports.

• An Introduction to Software Architecture, David Garlan and Mary Shaw

© 2018 Dept of Computer Science UMD 19

Compiler Architecture
• Pipes and Filters (Passing Tree)

© 2018 Dept of Computer Science UMD 20

Compiler Architecture, Revisited
• Blackboard

© 2018 Dept of Computer Science UMD 21

References
• On the criteria to be used in decomposing systems into

modules, David Parnas, 1972

• http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarc

h/intro_softarch.pdf

• An Introduction to Software Architecture, David Garlan and

Mary Shaw, January 1994

• http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarc

h/intro_softarch.pdf

© 2018 Dept of Computer Science UMD 22

http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

