
CMSC 132: 

OBJECT-ORIENTED PROGRAMMING II

Program Testing

Department of Computer Science

University of Maryland, College Park



Program Testing
• Empirical testing

• Test software with selected test cases

• More scalable than verification

• Test failures frequently indicate software errors

• Absence of failures doesn’t prove software correct

• If code isn’t exercised by any test, hard to have 

confidence in it

• Even if it has been “formally verified”

© 2018 Dept of Computer Science UMD 2



Kinds of Testing
• Automated testing

• The software is tested by a completely automatic process

• e.g., JUnit or submit server testing

• Can be expensive or difficult to construct, but fairly cheap 

to repeat

• Manual testing

• A person uses the software, perhaps guided by a script, 

and notes bugs

• Often easier to conduct than writing test cases, but very 

expensive to repeat

© 2018 Dept of Computer Science UMD 3



Test Size
• Small

• Unit test – test individual components

• Medium

• Integration tests

• Test subsystems containing several components

• Can test interactions between components, properties that 

are only demonstrated in larger systems

• Large

• System or acceptance tests

• Test entire system, including non-software components

© 2018 Dept of Computer Science UMD 4



Types of Testing
• Clear box testing

• Allowed to examine code

• Attempt to improve thoroughness of tests

• Black box testing

• No knowledge of code

• Treat program as “black box”

• Test behavior in response to inputs

© 2018 Dept of Computer Science UMD 5



Testing – Terminology
• Test case

• Individual test

• Test suite

• Collection of test cases

• Test harness

• Program that executes a series of test cases

• Test framework

• Software that facilitates writing & running tests

• Example  JUnit

© 2018 Dept of Computer Science UMD 6



Testing – Terminology
• Test driver

• Program to create environment for 

running tests

• Declares variables, creates objects, 

assigns values

• Invokes tested code, checks results, 

reports failures
• Stub

• Skeleton code in place of unfinished method / class

• Implements minimal functionality to allow test to occur

• Allows software testing to begin

© 2018 Dept of Computer Science UMD 7



Mock Objects
• Similar to a stub

• But they record the calls made to them

• If the wrong calls are made to them, the test fails

• Can prerecord the sequence of expected calls

• Also eliminates need for mock objects to contain any logic

• Or the test driver can query the calls after the test

• Useful if calls aren’t deterministic and need more careful logic 

to check

© 2018 Dept of Computer Science UMD 8



When to Use Mock Objects
• If you want to test the calls made to other objects, rather 

than the return values or output of the methods under test

• Mock objects can also be easier to use than creating 

functional stubs

• Mock objects can simulate situations that might be hard to 

test on real code

• e.g., Does the code recover if the network fails? 

© 2018 Dept of Computer Science UMD 9



Unit Test
• Test individual units extensively

• Classes

• Methods

• Central part of Extreme Programming (XP)

• Extensive unit testing during development

• Pair programming

• Design unit tests along with specification

• Approach

• Test each method of class

• Test every possible flow path through method

© 2018 Dept of Computer Science UMD 10



When to Test
• If code has never been tested, you have no idea if it ever 

worked

• But it is also important to perform regression testing

• Check to see if some functionality that used to work stops 

working

• The faster a regression is identified, the cheaper it is to fix, 

at any scale

• Within a minute is better than within an hour

• Within a day is better than within a week

© 2018 Dept of Computer Science UMD 11



Why Regression Test?
• Running regression tests give developer much more 

freedom to change existing code

• “I need to rewrite this component to support new 

functionality – I wonder if anything might be depending on 

the details of how it works now?”

• This freedom is key to agile development, and important 

even in more structured development methodologies

© 2018 Dept of Computer Science UMD 12



Selecting Regression Tests
• Big, well tested systems will have too many tests to run all of 

them every time you compile

• Prioritize tests by size

• Ones that take only a few seconds

• Ones that need to run over the weekend

• And by proximity to code changed

• After changing some code, you only need to rerun the 

tests that executed the code that was changed

• Research work on prioritizing tests

© 2018 Dept of Computer Science UMD 13



Miscellaneous
• Bug Tracking

• Dilbert Comic  http://dilbert.com/strips/comic/1995-11-13/

• First Computer Bug?

• http://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug/

• Tools for managing, tracking, performing statistics on bugs and 

vulnerabilities essential, particularly on large projects

• Bugzilla  http://www.bugzilla.org/

• Jira  http://www.atlassian.com/software/jira/overview

• Javadoc

• Great tool to generate documentation

• Submit Server

• Uses clover for code coverage

• Runs findbugs on all java programs

• http://findbugs.sourceforge.net/

© 2018 Dept of Computer Science UMD 14

http://dilbert.com/strips/comic/1995-11-13/
http://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug/
http://www.bugzilla.org/
http://www.atlassian.com/software/jira/overview
http://findbugs.sourceforge.net/

