
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Software Process Models

Department of Computer Science

University of Maryland, College Park

Software Process Models
• Software methodology

• Codified set of practices

• Repeatable process for producing quality software

• Software process model

• Methodology for organizing software life cycle

• Important for team interactions

• Makes it easier for teams to work together since you can clearly convey what phases

the project is in, etc.

• Sometimes people include coding standards in the concrete processes they defined for

their organizations

• Major approaches

• Waterfall model

• Iterative development

o Unified model

o Agile software development

o Extreme programming (XP) (prominent example)

• Formal methods

© 2018 Dept of Computer Science UMD 2

Waterfall Model
• Approach

• Perform steps in order

• Begin new step only when

previous step is complete

• Result of each step flow

into next step

© 2018 Dept of Computer Science UMD 3

Waterfall Model
• Advantages

• Simple

• Predictable results (emphasizes predictability)

• Software follows specifications

• Reasonable for small projects

• Problems

• In real life

• May need to return to previous step

• Steps may be more integrated

• Steps may occur at same time

• Unworkable for large projects

© 2018 Dept of Computer Science UMD 4

Iterative Software Development
• Approach

• Iteratively add incremental improvements

• Take advantage of what was learned from earlier

versions of the system

• Use working prototypes to refine specifications

© 2018 Dept of Computer Science UMD 5

Iterative Software Development
• Goals

• Emphasize adaptability instead of predictability

• Respond to changes in customer requirements

• Examples

• Unified model

• Agile software development

• Extreme programming (XP)

© 2018 Dept of Computer Science UMD 6

Unified Model
• Development divided into phases (iterations)

• Inception

• Elaboration

• Construction

• Transition

• During each phase

• Multiple iterations of software development

• Development treated as mini-waterfalls

• Emphasis gradually shifts from specification to testing

© 2018 Dept of Computer Science UMD 7

Unified Software Life Cycle Model

© 2018 Dept of Computer Science UMD 8

Agile Software Development
• Agile approach

• Based on iterative development

• Short iterations (timeboxes) lasting 1- 4 weeks

• Working software as principal measure of progress

• Produced at end of each iteration

• Adds a more people-centric viewpoint

• Face-to-face communication preferred

• Co-locate programmers, testers, “customers”

• Relies on adapting to feedback rather than planning as the primary control
mechanism

• Less specification & documentation

• Agile Manifesto

• https://www.agilealliance.org/agile101/the-agile-manifesto/

• 12 Principles Behind the Agile Manifesto

• https://www.agilealliance.org/agile101/12-principles-behind-the-agile-
manifesto/

© 2018 Dept of Computer Science UMD 9

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

Extreme Programming (XP)
• Prominent example of Agile methodology

• Iterative, adaptive software development

• Describes set of day-to-day practices

• Followed by managers & programmers

• Intended to encourage a set of values

• Appropriate for environments with

• Small teams

• Rapidly-changing requirements

© 2018 Dept of Computer Science UMD 10

Extreme Programming Values
• Communication

• Rapidly building & disseminating institutional knowledge

among programming team

• Simplicity

• Implement simplest code needed by customer without

emphasis on future versions

• Feedback

• From testing, team members, customers

• Courage

• Willingness to rewrite / refactor software to add or change

features

© 2018 Dept of Computer Science UMD 11

Extreme Programming Practices
• Pair programming

• Pairs of programmers combine software development

efforts at one computer

• Especially useful for novice programmers

• Test-driven development

• Tests are designed first, before writing software

• Continuous integration

• Tests performed throughout development process

• On-site customer

• Customer available at all times to answer questions

© 2018 Dept of Computer Science UMD 12

Formal Methods
• Mathematically-based techniques for

• Specification, development, and verification

• Software and hardware systems

• Intended for high-integrity systems

• Safety

• Security

• Levels

• 0 – Informal implementation of formal specifications

• 1 – Formal code development & verification

• 2 – Theorem prover to ensure correctness

© 2018 Dept of Computer Science UMD 13

Choosing A Software Model
• Which software process model is appropriate?

• For class programming projects

• Code and test probably suffices

• But software in real world not like class projects

• Some big questions

• Do you understand what you are trying to build?

• What is the cost of change?

• How many people have to interact with the design?

• How easy is it to get the entire thing in your head?

© 2018 Dept of Computer Science UMD 14

Do You Understand The Problem?
• In many cases, the things we want software to do are not

well understood

• Examples

• Provide a web interface for student applications

• Allow users to view and manipulate photographs

• Build a better search engine

• Hard to understand constraints / interactions

• May have to build prototype

• To understand how users can effectively use it

© 2018 Dept of Computer Science UMD 15

What Is The Cost Of Change?
• Possible situation

• Most coding already complete

• Realize need to change something in the design or even the
requirements

• How expensive is that?

• If hugely expensive better get requirements & design right before
completing too much code

• Some people believe recent software development techniques have
substantially reduced cost of change

• Possible reasons

• Safer programming languages

• E.g., not C/C++/assembly language

• Object-oriented design & programming

• Test-driven development

© 2018 Dept of Computer Science UMD 16

Rapid Prototyping
• Goal explore requirements

• Without building the complete system

• Start with part of the functionality

• That will yield significant insight

• Build a prototype

• Focus on core functionality

• Use the prototype to refine the requirements

• Repeat the process, expanding functionality

© 2018 Dept of Computer Science UMD 17

