CMSC 216 Arduino Exercise #2 Summer 2019

Pixel Spin Due: Monday, Jul 29, 2019, 11:30PM

1 Objectives

To practice basic Arduino development, ensure your environment is set up with the TwoSixteen library, prac-
tice processing input from a push button, develop a debugging strategy for the Arduino device, and practice
use of arrays and (optionally) structs.

We will use init_neopixel_blit and neopixel_blit, init_serial _stdio and printf, as well as functions you've already
used (pinMode, digitalRead, and delay) while writing setup and loop.

2 Overview

Your task is to make the neopixels (RGB LEDs) “spin”, faster when the right button (pin 19) is pressed, slower
when the left button (pin 4) is pressed. The following video illustrates the functionality you are expected to
implement:

https://tinyurl.com/y9jbdvjd
To save joules and your eyesight, do not use full brightness. (A color value of 30 is plenty.)
You must include (and use) the TwoSixteen library.

Submit by uploading a single source file to submit.cs. The single source file may be named with the .ino
extension from the Arduino IDE or a .c extension if developing using an alternate method with an arduino
makefile.

Unlike other assignments for this course, you can work together with other classmates, but like all assign-
ments, you may NOT share, exchange, post, etc., any code.

3 TwoSixteen library
3.1 Installation

You may have seen instructions for installing TwoSixteen. Download it from:
http://www.cs.umd.edu/~nelson/classes/resources/circuitplayground/TwoSixteen-0.0.5.zip

To install, from within the IDE, in the “Sketch” menu, “Include Library”, “Add .ZIP Library”.

3.2 Use of stdio

The serial_interface.h file declares init_serial_stdio(). Call that function in setup(). Call printf() as you like,
but be careful calling it too frequently as the capture buffer on the submit server is finite and it can take time
on the hardware to complete the printf.

3.3 Use of neopixels

The neopixel_blit.h file declares init_neopixel_blit and neopixel_blit. Its contents are below.
#include <stdint.h>

typedef uint8_t Pixels[10][3];

typedef struct Pixel {

uint8_t green, red, blue;
} PixelStruct[10];

#define PIX_.GRN 0
#define PIX_RED 1
#define PIX_BLU 2


https://tinyurl.com/y9jbdvjd
http://www.cs.umd.edu/~nelson/classes/resources/circuitplayground/TwoSixteen-0.0.5.zip

#ifdef __cplusplus
extern "C” {
#endif

void init_neopixel_blit();
void neopixel blit(const void xpixels); /* typically, Pixels or PixelStruct x/

#ifdef __cplusplus
#endif

To use this, call the init_neopixel_blit function in setup() to ensure that the lights go out and possibly to initial-
ize. Declare an instance of Pixels, or of PixelStruct, to pass to neopixel_blit. This function will send the colors
of all pixels. The only way to change the color of a single pixel is to set the color of all pixels, typically to a
modified copy you've kept.

Set a color by setting your defined pixels as you like. For example,
Pixels pix = {{0}};
pix[1][PIX_BLU] = 20;
neopixel_blit(pix);

The colors passed to neopixel_blit() are in green-red-blue order, not RGB as you might be familiar with, but
you won't even notice if you use the constants as array subscripts or use the structure.
The uint8_t type is an unsigned integer that occupies 8 bits, meaning it can take a value from 0-255.

When compiled from within a C++ compiler, the symbol __cplusplus is defined, which wraps the function
prototypes in a block that tells the C++ compiler that the functions are to be called as C functions.

4 Specifications

1. Exactly one neopixel may be active at a time. Don’t submit a comet-like pattern where other pixels stay
active. Tests will be looking for whether the pixel previously lit is turned off.

2. Your pixel may be any color you choose; I recommend color values at most 30.

3. You must printf(”delay:.%dms\n”, d); once per revolution (cycle). (Name our variable as you like, just
print the delay.)

4. Start with a delay between frames of 100ms, such that the cycle completes about once per second.
5. Check button state once per frame, not just once per cycle.

6. Your implementation should accelerate the spin when the button is pushed, but not continue to accel-
erate while the button remains pushed. Ensure the button is released before allowing a button push to
accelerate again.

7. You may assume the button remains pressed through any delay. You may, but do not need to create a
helper function that polls the button every, say, 100ms while trying to wait for 1 second.

8. Pushing the left button should slow the spin, doubling delay up to 1 second delay per frame. (If you
double to compute a delay greater than 1s, set it to 1s.)

9. Pushing the right button should speed up the spin, halving delay down to 2 milliseconds delay per
frame. (If you halve to compute a delay less than 2ms, set it to 2ms.)

10. Take care that delay does not become negative. If the delay becomes terribly large, you may need to
double-press the reset button to reprogram.



11.

12.

13.

It takes about 300us to send colors to the pixels, though you need not account for this time. (That is, it’s
fine to delay for dms directly, not d — 0.3 ms.

You may use the switch to alter how the pixels spin, as long as both switch positions are valid: you may
change the color or direction.

You must not use the CircuitPlayground library.

5 Project Requirements

1.

10.

11.

Your grade will be based on the results obtained from the submit server. It is your responsibility to verify
that your program generates the expected results in the submit server.

. Your program should be written using good programming style as defined at

http://www.cs.umd.edu/~nelson/classes/resources/cstyleguide/

Please define symbolic constants for left and right button pins. (In contrast to the last Arduino exercise
that relaxed that requirement.)

Functionality should be distributed to the setup and loop functions as expected: one-time initialization
code happens in setup, repeated testing of the switch happens in loop. Your code must at least occasion-
ally return from loop.

. Do not use the CircuitPlayground.redLED() or CircuitPlayground.slideSwitch() functions or other com-

ponents of the circuit playground library. The CircuitPlayground.begin() function in particular can cause
tests to fail.

Ensure that you are not taking advantage of the Arduino IDE’s ability to infer which include files are
necessary and automatically add them. That is, make sure your sketch explicitly includes Arduino.h
(Capitalized), neopixel blit.h, serial interface.h, and stdio.h. If you notice that your sketch includes two
different files in a single #include line, this is not supported, split them.

Do not blank the neopixels at any time after initialization. Each time neopixel blit is called, it must
illuminate exactly one LED.

We expect you to explicitly set pinMode for the input buttons. Technically, setting pinMode to input
is redundant; this to encourage a general “initialize your variables” practice. You do not need to set
pinMode for the neopixel pin (17), since this is handled by init_neopixel_blit.

The change in speed should happen before releasing the button, but not again until being released.

Make sure you submit often and check tests results. Your code might seem to work when run in the
device, but due to the simulator used by the submit server, you might not be passing tests. You have to
submit and check submit server results often so you can see a TA early in case you are not passing tests.

Do not clear (turn off) all neopixels at any time after initialization. If you need to clear a pixel, just set
that particular pixel to 0 and not all of them (do not set to 0 something that is already 0). You will not
pass submit server tests if you don’t follow this rule (even though the program seems to be working in
your device).

Everything you need to complete this assignment is in the examples we have provided. Visit:

http://www.cs.umd.edu/~nelson/classes/resources/circuitplayground/basics.shtml


http://www.cs.umd.edu/~nelson/classes/resources/cstyleguide/
http://www.cs.umd.edu/~nelson/classes/resources/circuitplayground/basics.shtml

6 Submitting your assignment

1. Visit submit.cs.umd.edu and upload the source file. You may submit a zip file, but note that it must not
place your source file in a subdirectory, and if it includes additional c files, the submit server will likely
choose to compile all of them together and the build will fail.

2. Your assignment must be electronically submitted by the date and time above to avoid losing credit. See
the course syllabus for details.

3. Make sure you check your release test results.

7 Grading Criteria
Your assignment grade will be determined with the following weights:

Results of public tests  84%
Results of release tests  16%

8 Academic integrity statement

Please carefully read the academic integrity section of the course syllabus. Any evidence of impermissi-
ble cooperation on assignments, use of disallowed materials or resources, or unauthorized use of computer
accounts, will be submitted to the Student Honor Council, which could result in an XF for the course, or
suspension or expulsion from the University. Be sure you understand what you are and what you are not
permitted to do with regard to academic integrity when it comes to assignments. These policies apply to all
students, and the Student Honor Council does not consider lack of knowledge of the policies to be a defense
for violating them. Full information is found in the course syllabus — please review it at this time.



	Objectives
	Overview
	TwoSixteen library
	Installation
	Use of stdio
	Use of neopixels

	Specifications
	Project Requirements
	Submitting your assignment
	Grading Criteria
	Academic integrity statement

