
1

The Cubetree Storage Organization

Nick Roussopoulos & Yannis Kotidis
Advanced Communication Technology, Inc.

Silver Spring, MD 20905
Tel: 301-384-3759 Fax: 301-384-3679

{nick,kotidis}@act-us.com

1. Introduction

The Relational On-Line Analytical Processing (ROLAP) is emerging as the dominant approach in
data warehousing. In order to enhance query performance, the ROLAP approach relies on selecting
and materializing in summary tables appropriate subsets of aggregate views which are then engaged
in speeding up OLAP queries. However, a straight forward relational storage implementation of
materialized ROLAP views is immensely wasteful on storage and incredibly inadequate on query
performance and incremental update speed.

ACT Inc. has developed a unique storage organization for on-line analytical processing (OLAP) on
existing relational database systems (RDBMS). The Cubetree Storage Organization1 (CSO) logically
and physically clusters data of materialized-views, single- and multi-dimensional indices on these
data, and computed aggregate values all in one compact and tight storage structure that uses a
fraction of the conventional table-based space. This is a breakthrough technology for storing and
accessing multi-dimensional data in terms of storage reduction, query performance and incremental
bulk update speed. Each Cubetree structure is not attached to a specific materialized view or an
index but acts like a place holder which stores multiple and possibly unrelated views and multi-
dimensional indices without having to analyze and identify the dense and sparse area of the
underlying multi-dimensional data. In CSO tuples are clustered regardless of the skewedness of the
underlying data. Given a set of views that need be supported, the CSO optimizer finds the best
placement on one or more cubetrees for achieving maximum clustering. The underlying cost model
is tailored to the CSO and uses standard greedy algorithms for selecting the optimal configuration.
The DBA can tune the optimization to upper-bound either the duration of the incremental update
window or the maximum storage used.

CSO offers a scalable and yet inexpensive alternative to existing pricey data warehousing and
indexing tools. CSO is developed to be used as a stand-alone system, or as a co-resident of an
RDBMS or tightly coupled with the extensible facilities of an Object-Relational DBMSs.

2. OLAP and the Data Cube

On Line Analytical Processing (OLAP) is critical for decision support in today's competitive and low
margin profits era. The right information at the right time is a necessity for survival and data
warehousing industry has an explosive market growth compared to a stagnant one for the database
engines. The data cube is a multi-dimensional aggregate operator and has been very powerful for
modeling multiple projections of data of a data warehouse. It is, however, very expensive to
compute. And to access the some or all of these projections efficiently, requires extensive multi-
dimensional indexing which adds an equal or even higher cost to the data warehouse maintenance
cost. Computing the data cube requires enormous hardware resources and takes a lot of time.
Indexing can be done using either a multi-dimensional (MOLAP) approach or a Relational (ROLAP)
modeling exemplified by star-schemas and join bitmap indexes. Both approaches speed up queries
but suffer enormously in maintenance of the indexes which essentially takes the data warehouse out
for an extensive period. The downtime window is critical in applications globally available for the

1 US Patent Pending

2

most of the day.

1. Performance- the ultimate reality check

The CSO avoids the high cost of creation and maintenance by sorting and bulk incremental merge-
packing of cubetrees. The sorting portion of it is the dominant factor in this incremental bulk update
mode of operation while the merge-packing portion achieves rates of 5-7 GB per hour on a single
disk I/O. No other storage organization offers this scaleable bulk merge-packing technology.
Experiments with various data sets showed that multi-dimensional range queries perform very fast
and this performance is the result of the packing and compression of CSO and the achieved
reduction of disk memory over conventional relational storage and indexing. In a recent test using
the TCP-D benchmark data the CSO implementation achieved at least a 2-1 storage reduction, a 10-
1 better OLAP query performance, and a 100-1 faster updates over the conventional (relational)
storage organization of materialized OLAP views indexed in the best possible way.

The CSO optimizer selects the best set of views to materialize and the best placement on one or
more cubetrees for achieving maximum clustering. The underlying cost model is tailored to the CSO
and uses standard greedy algorithms for selecting the optimal configuration. The DBA can tune the
optimization to upper-bound either the duration of the incremental update window or the maximum
storage used. Another feature of the CSO software is that the incremental maintenance can be
done on-line while the data warehouse is operational using the previous version of the cubetrees
while creating the new ones. Although such a background continuous maintenance steels I/O from
query processing, it achieves no down-time for the warehouse and can take advantage of low-peak
periods.

4. The Informix CSO Datablade

The CSO has also been also developed as a datablade for the Informix Universal Server (IUS)
Environment. IUS and CSO harmoniously inter-operate in a tightly coupled configuration that has no
overhead. This architecture takes advantage of the extensibility of Object-Relational database
management system (O-R DBMS) and allows to include user-defined aggregate and statistical
functions not normally offered by RDBMSs. The CSO datablade offers all the advantages of the
stand-alone CSO software, namely efficient OLAP aggregate queries and bulk-incremental update
on them, but at the same time transparent calls of the CSO software from within the IUS SQL
environment. Results from the CSO search are merged with results from the IUS database.

5. Extensibility

The CSO has been developed with extensibility in mind. New data types for the dimension and
measure attributes can be facilitated. Similarly, the aggregate functions on the measure attributes
can be user-defined for specialized computation. Such functions can return either a scalar or a
vector value. Additional indexing on the aggregate values themselves can also be stored in the
same cubtree storage. Other functions that extend the SQL have been developed and incorporated
into the Cubetree SQL some of which are illustrated in the examples given in the appendix.

3

6. A Grocery Benchmark

This benchmark uses a synthetically generated grocery demo dataset that models supermarket
transactions. The data warehouse is organized according to the star schema below. The sales fact
table includes 12 dimension attributes and two measure attributes, namely revenue and cost. The
hardware platform used for this benchmark is a 180MHz Ultra SPARC I with a single SCSI 9GB hard
drive.

We have precomputed seven aggregate tables as
materialized views and stored them using the Cubetree
Storage Organization. These views aggregate data over
some attributes chosen from the fact and the dimension
tables and compute the sum function for both measures
The following table summarized the characteristics of
the stored data:

View
Name

Gross revenue
& cost by:

Number of
dimensions

Number of
rows

view 1 State 1 49
view 2 store, state 2 2,000
view 3 product, store 2 17,158,551
view 4 Customer,

product, store
3 39,199,723

view 5 pay method,
time, store

4 29,382,902

view 6 store, product 2 10,000
view 7 store, product,

customer, pay
method,

employee,
category

6 40,067,142

Total 12 125,820,367

Loading the views data into the cubetrees requires
sorting it first in the CSO order and bulk-packing it into the cubetrees. The following table shows the
time for the initial load of the cubetrees and the time for each bulk-incremental update of
approximately 0.6 GB of data. In the initial load of the views the dominant cost is the sort time as it
was done on a single disk with no parallel I/O. Bulk-packing and incremental bulk merge-packing of
of the CSO utilizes almost the full disk bandwidth, roughly 6 GB per hour on a single disk.

Increment
(million rows)

Total rows Sort time
(hours:mins:secs)

Pack time
(hours:mins:secs)

Cubetree
size (GB)

Packing rate
(GB/Hour)

88.2 88.2 2:07:04 0:22:21 2.40 6.44
18.2 106.4 0:25:18 0:33:01 2.93 5.33
19.4 125.8 0:27:20 0:40:22 3.50 5.20

To emphasize the storage advantage of the CSO, we loaded summary tables as materialized views
on a commercial RDBMS using plain unindexed relational tables to store the data. The space
requirements of the views stored as tables was 5.15GB compared to a total of 3.5 for the CSO, i.e.
47% more. The CSO at the same time provides full indexing capabilities for the stored OLAP data,
whereas to make the summary tables of acceptable query performance they require indexing that
adds more than three times the raw data.

This graph illustrates the storage required
in each of these three storage configurations:

4

OLAP queries using the CSO are very fast because they take advantage of the unique clustering of
the data. The retrieval has almost zero noise to data ratio, that is after the first record satisfying the
view is found, the remaining records are very close with not much of noise data interleaved with
useful data. CSO utilizes both the high sequential transfer speed rate of the storage and the
clustering of the data. The table below is a small sample of queries, their result size, and the real
time of execution for the grocery benchmark.

QUERY DEFINITION # OF ROWS
IN VIEW

OF ROWS
RETURNED

TIME
(SECS)

select product_id, store_id, sum(revenue),
sum(cost)
from view3
where (store_id = 155) or (store_id = 156)
group by product_id, store_id;

17,158,551 17,143 0.8

select store_id, basket_start_tm,
basket_end_tm, sum(revenue-cost) as profit
from view5
where (store_id >=50) and (store_id
<=1500) and (pay_method=’ATM’) and
(between(basket_start_tm,’12:00’,’12:40’))
and
(between(basket_end_tm,’12:00’,’12:40’))
group by store_id, basket_start_tm,
basket_end_tm;

29,382,902 234,699 1.87

select customer_id, product_id,
sum(revenue)
from view7
where (store_id=901) and
(pay_method=’Cash’) and
(category=’FOOD’) and
(employee=’Jim_G’)
group by customer_id, product_id

40,067,142 7 0.12

select store_id, product_id, sum(revenue),
sum(cost)
from view4
where (customer_id=5561)
group by store_id, product_id

39,199,723 260 0.06

select store_id, basket_start_tm,
basket_end_tm, sum(revenue), sum(cost)
from view5
where (pay_method=’Check’)
group by store_id, basket_start_tm,
basket_end_tm;

29,382,902 7,344,419 50.21

select store_id, sum(revenue-cost) as profit
from view2
where (state=’MD’)
group by store_id;

2,000 41 0.01

5

Appendix: The Cubetree SQL

The Cubetree SQL is easy to use and in many cases linguistically simpler than standard SQL. To
create a new cubetree the user can execute the following procedure from an SQL interface:

execute procedure create_cube (<cube name>,<dimension list>,<measure list>,
<view list>, <function list>,<target directory>);

where:
<cube name>: can be any legal relational table name and is being used for accessing the

data later on.
<dimension list>: is a list of all dimensions along with their data types present in the cube.
<measure list>: defines the measure attributes. There can be multiple measure values for

each record
<view list>: is a selection of views from the defined dimensions that the user wants

to be materialized. If omitted the full Data Cube is created.
<function list>: defines a set of functions that will be computed for the given measures.
<target directory>: specifies where the cubetree is being stored.

For example in order to create a three dimensional partial Data Cube in the store_id, product_id and
customer_id dimensions with two measure attributes revenue and cost for the following views:

View1: select store_id, sum(revenue) as gross_revenue, sum(cost) as total_cost
 from fact_table

group by store_id

View2: select store_id, store_id, customer_id, sum(revenue) as gross_revenue,
sum(cost) as total_cost

 from fact_table
group by store_id

one can use the following procedure call:

execute procedure create_cube (‘cubed’, ’ store_id int product_id int customer_id int’,
’revenue float cost float’, ’((store_id), (store_id, customer_id, product_id))’,
’sum(revenue) as gross_revenue sum(cost) as total_cost’, ’/data/Cubes’);

Updating the Cubetree is extremely simple. Suppose that a temporary table delta holds a new set of
updates we can make the following call to refresh all views stored in cubed:

execute procedure updat e_cube (‘cubed’,’delta’);

For greater flexibility delta can also be a predefined view that filters-in data for the Cubetree or even
an external to the RDBMS source that provides the system with batch updates. Querying the
Cubetree is simpler than straight SQL. For example, to find the profit for a given store the Cubetree
SQL query is:

select (gross_revenue – total_cost) as profit
from cubed
where store_id = 419;

which is equivalent to the straight SQL query:

6

select sum(revenue-cost) as profit
from fact_table
where store_id = 419
group by store_id;

Similarly, to find all sales to a customer for a range of products at a given store which generated
revenue above a certain value one writes the Cubetree SQL query:

select product_id, gross_revenue
from cubed
where product_id>=10000 and product_id<12000
and customer_id=711 and store_id = 26 and gross_revenue>5000;

which is simpler than the the straight SQL query:

select product_id, sum(revenue)
from fact_table
where product_id>=10000 and product_id<12000
and customer_id=711 and store_id = 26
group by product_id
having sum(revenue) > 5000;

7

