An Alternative Storage Organization for ROLAP Aggregate
Views Based on Cubetrees

Yannis Kotidis
Department of Computer Science
University of Maryland
kotidis@cs.umd.edu

Abstract

The Relational On-Line Analytical Processing (ROLAP) is emerg-
ing asthedominant approachin datawarehousing with decision sup-
port applications. In order to enhance query performance, the RO-
LAP approach relies on selecting and materiadizing in summary ta-
bles appropriate subsets of aggregate views which are then engaged
in speeding up OLAP queries. However, a straight forward rela
tional storage implementation of materialized ROLAP viewsisim-
mensely wasteful on storageand incredibly inadequate on query per-
formance and incremental update speed. In this paper we propose
theuse of Cubetrees, acollection of packed and compressed R-trees,
as an aternative storage and index organization for ROLAP views
and provide an efficient algorithm for mapping an arbitrary set of
OLAPviewsto acollection of Cubetreesthat achieve excellent per-
formance. Compared to a conventional (relational) storage organi-
zation of materialized OLAP views, Cubetrees offer at least a 2-1
storage reduction, a 10-1 better OLAP query performance, and a
100-1 faster updates. We compare the two alternative approaches
with data generated from the TPC-D benchmark and stored in the
Informix Universa Server (IUS). The straight forward implemen-
tation materializesthe ROLAP views using |US tables and conven-
tional B-tree indexing. The Cubetree implementation materializes
the same ROLAP views using a Cubetree Databl ade devel oped for
IUS. The experiments demonstrate that the Cubetree storage orga-
nization is superior instorage, query performance and update speed.

1 Introduction

Decision support applications often reguire fast response time to a
widevariety of On-LineAnalytical Processing (OLAP) queriesover
vast amounts of data. These queries project the data onto multidi-
mensiona planes (slices) of it and aggregate some other aspects of
it. The “multi-dimensiona modeling” can berealized by aMultidi-
mensional indexing (MOLAP) typically implemented by an exter-
nal to therelational system engine. The Relational OLAP gpproach

Nick Roussopoulos
Department of Computer Science
Institute of Advanced Computer Studies
University of Maryland
nick@cs.umd.edu

starts off with the premisethat OL AP queriescan generatethe multi-
dimensional projectionson the fly without having to store and main-
taintheminforeign storage. Thisapproach isexemplified by a“star
schema’” [Kim96] linking the “ dimensions” with a“fact table” stor-
ing the data. Join and bit-map indices [Val87, OQ97, OG95] are
used for speeding up the joins between the dimension and the fact
tables. Since datais generated on the fly, the maintenance cost of
the MOLAP structuresis avoided at the cost of index maintenance.
Thisisvery important because it determines the “down-time” win-
dow for an “incremental update” (refresh) of the warehouse.

However, in large data warehouses, indexing alone is often not
sufficient to achieve high performance for some queries. For ex-
ample, computing the sum of all sales from afact table grouped by
their region would require (no lessthan) scanning the whole fact ta-
ble. On the other hand, some of these aggregate views can be pre-
computed in the ROLAP approach and stored in “ summary tables’.
Inthis case, the ROL AP gpproach relies on selecting and materializ-
ing in summary tables the “right” subsets of aggregate views along
with their secondary indexing that improves overall aggregate query
processing [Rou82, BPT97, GHRU97, Gup97]. Like the MOLAP
case, controlled redundancy is introduced to improve performance.
A discriminating and fundamental differenceremainshowever. The
ROLAP redundancy is supported and controlled by tools that are
within therelational paradigm, typically through viewsin SQL con-
trary to the arbitrary MOLAP import programs which are external
to the underlying relational DBMS.

Having sel ected the best subset of aggregate ROLAP views, we
then look how to implement these views and their indices. A some-
what surprising discovery wasthat astraight forward rel ational stor-
age implementation of materialized ROLAP views and B-tree in-
dexing on them isimmensely wasteful on storage and incredibly in-
adequate on query performance and incremental update speed. We
will demonstratethat conventional relationa storagetechniquessuf-
fer from the separation of the indexing dimensions residing in B-
trees and data residing in tables. Most of the waste stems from the
fact that multidimensiona B-treesareindependent of each other even
when they share some dimensions. This causesthe keysto be repli-
cated several times in addition to the values stored in the relational
storage too. Another major drawback is that in the relational stor-
age dataistypically stored unsorted which prohibits efficient merge
operations during the updates.

In [RKR97] we introduced Cubetrees, acollection of packed R-
trees [Gut84, RL85], as a“multidimensional” indexing scheme for
the Data Cube. Cubetrees best features include their efficiency dur-
ing incremental bulk update and their high query throughput. The
bulk incremental update relies on their interna organization which
ismaintained sorted at all timesand permitsboth an efficient merge-

pack algorithm and sequentia writes on the disk. An expanded ex-
periment [KR97] showed that Cubetrees can easily achieve a pack-
ing rate of 6GB/hour on an 2100A/275M Hz Alphaserver withasin-
gle CPU and asingle disk, afairly low-end hardware platform com-
pared with todays warehousing standards.

In this paper, we propose the use of Cubetrees as an alternative
storage organi zation for ROLAP views and provide an efficient al-
gorithm for mapping an arbitrary set of OLAP views to a collec-
tion of Cubetreesthat achieve excellent performance. The Cubetree
organization combines both storage and indexing in a single data
structure and still within the relational paradigm. Wewill show that
when compared to a conventional (relational) storage organization
of materidized OLAP views, Cubetrees offer at least a 2-1 storage
reduction, a10-1 better OL AP query performance, and a100-1 faster
updates. We compare the two alternative approaches with datagen-
erated from the TPC-D benchmark and stored in the Informix Uni-
versal Server (IUS). The straight forward implementation materi-
alizes the ROLAP views using |US tables which are then indexed
with B-trees. The Cubetree implementation materidizes the same
ROLAP views using a Cubetree Datablade [ACT97] developed for
IUS. The experiments demonstrate that the Cubetree storage orga-
nization is superior instorage, query performance and update speed.

Section 2 definesthe Cubetree storage organization for material-
izing ROLAP aggregate views and the mapping of SQL queries to
the underlying Datablade supporting the Cubetrees. Section 3 de-
fines a TPC-D experiment and compares the straight forward rela-
tional storage implementation with the Cubetree one. The compar-
isonsaremade on al accounts, storageoverhead, query performance
and update speed. The conclusions are in section 4.

2 Cubetreesand Aggregate ROLAP Views
2.1 A Data Warehouse model

Consider the architecture of atypica warehouse shownin Figure 1,
where datais organized through a centralized fact table F, linking
several dimension tables. Each dimension table contains informa-
tion specific to the dimension itself. The fact table correlates all
dimensions through a set of foreign keys. A typical OLAP query
might involve aggregation among different dimensions. The Data
Cube [GBL P96] representsthe computation of interesting aggregate
functions over al combinations of dimension tables. Thus, the size
of the cube itself is exponential in the number of dimensionsin the
warehouse.

Part Dimension Fact Table:F
partkey partkey
Thame | ——— suppkey) _
E?aruﬁ custkey Customer Dimension
type quantity custkey
S|zet _ name
con ame; address
m phone
Supplier Dimension coment
———— suppkey
name
address
phone
coment

Figurel: A simpledata warehouse

Moreover, some databases contain hierarchies among each di-
mension attributes, such as there are aong the time dimension:
day — month — year. Hierarchiesare very useful sincethey provide
the meansto examinethe datain different levelsof detail throughthe
drill-down and roll-up operators. By drilling-down onthe aggregate
datathe user is getting amore detailed view of theinformation. For
example starting from the total sales per year, the user may ask for a
more detailed view of the sales for the last year, grouped by month
and then examinethe daily volume of salesfor an interesting month.
Roll-up is the opposite operation where the warehouse is examined
at progressively lower granularity.

A typica warehouse may contain 10 or more dimension tables,
with up to 20 attributes each. The computation and materialization
of al possible aggregate views, over al interesting attributes, with
respect to the given hierarchies, is often unrealistic both because of
the meresize of the dataand of theincredibly high update cost when
new data is shipped to the warehouse. Several techniques [Rou82,
BPT97, GHRU97, Gup97] have been proposed to select appropriate
subsets of aggregate views of the Data Cube to materialize through
summary tables.! Because these views are typically very large, in-
dexing, which adds to their redundancy, is necessary to speed up
queries on then.

In the rest of this section we present an unified framework for
organizing these views. Even though the examples that we use re-
fer to the star scheme in Figure 1 there is nothing that restricts us
from applying exactly the same framework to other data warehouse
organizations.

2.2 Cubetreesasplaceholdersfor Multidimen-
sional Aggregates

In figure 1 we can see an abstraction of adata-warehouse organi za-
tion whosefact table correl ates datafrom the following dimensions:
part, supplier and customer. Each entry in the fact table F consists
of atriplet of foreign-keys partkey, suppkey, custkey from the di-
mension tables and a measure attribute quantity. Lets assume that
for query performance reasons, we decided to materialize the fol-
lowing views:

V1. select partkey,suppkey,sum(quantity)
from F
group by partkey,suppkey

V! select part.type,sum(quantity)
from F, part
where F.partkey = part.partkey
group by part.type

V3. select suppkey,partkey,custkey,sum(quantity)
from F
group by suppkey,partkey,custkey

By having these views materialized in the data warehouse and
indexed, we are able to give quick answers to a variety of different
querieswithout having to perform costly scansor joins over thefact
table. For example view V; can be used to answer the query

(J1: Give me the total sales of every part bought from a given sup-
plier S.

Similarly V5 can be used for answering the query:

()2 Find the total sales per part and supplier to a given customer C.

Intheremaining of thispaper wewill usethetermviewsto refer
to these summary tables

Notice that (21 can also be answered using view V5. Even though
view V; seemsmore gppropriate, other parameterslikethe existence
of anindex on V3 should be taken into account if we are aiming for
the best performance.

View V2 is an example where the grouping is done by an at-
tribute different than the key-attribute of adimension. Given the hi-
erarchy part-type — part, if view V, were not materialized, queries
would normally require ajoin between the fact table F and the part
table. Special purpose indices [Val87, 0Q97, OG95] can be used
to compute these joins faster. However, such indices add to the re-
dundancy of the warehouse and, in most cases, a materialized view,
accompanied with a conventional B-tree index will perform better.

We will now proceed to show how the above set of views can be
materialized using a single Cubetree. Assume that a three dimen-
sional R-tree Ry, , -} isused. Consider for example the tuples of
view V5. We may map suppkey to the = coordinate, partkey to y
and custkey to z. Inthisway, every tuple ¢s of view Vs is mapped
toapoint(ts,, t2,, ta,) onthethreedimensional spaceof Ry , .3.
Thevalue of the sum function is stored as the content of such point.
Assuming that each coordinateisa positive (greater than zero) value
Figure 2 gives agraphical representation of Ry, , .1.

z ® t3(suppkey,partkey,custkey)
AT A
, el
/ A
oA S
4 s s - |
, , a /
‘ﬁ**;‘**; 77‘\L ****** 1‘ (suppkey,éarlkey,custkey)
. 1) S R I
! ‘(1/ ! A ! |
| } o | |
A [| |
o
RN |
Lo P | I ! | .
Pl L | L, | I
} | i |, } 2 Y
I |
| |

X
Figure2: Mapping of view V3
ty (partkey,suppkey)
V4 @ ty(part.type)
@ t3(suppkey,partkey,custkey)
AT A
, gl
, 7
e —— 7 s !
S A
VA ; !
R i - !
- — Y —— |
I f -, I A |
| y | 0 | |
p [| |
e
[[} | }
[[| | |
| P S T
| g i // Y
L e Voo
| i A s
| e
,,,,,,,,,,,,, L
X

Figure 3: Cubetree organization

By considering view V; asamultidimensional dataset, one can
also map every tupleof V; toapointin Ry, , .3 though the foll ow-
ingtransformation : partkey — =, suppkey — ¥, and usingzero as
the ~ coordinate. This transformation maps view V1 to plane (zy)

on theindex. Finaly thetuples of view V> can be mapped to the z-
axis, where the part.type integer valueis used as the corresponding
z coordinate. Thisillustrateshow thewhole set of viewsfitsinasin-
ole Cubetree, while every oneof V1, V2, V occupies adistinct area
inthetree-dimensiona index space, see Figure 3. Thus, we may use
asingle R-tree interface when querying any one of these views. For
example @1 can be handled though view V1, by searching R, ;-1
using the dice (zmin, S, 0, Tmaz, S, 0) a shown in Figure 4. In
the same Figure the shaded plane (z min ; Ymin, C, Tmaz, Ymaz, C)
corresponds to query 0.

ty (partkey,suppkey)

ya ® ty(part.type)
® tg(suppkey,partkey,custkey)

Figure4: Querieson theviews

Even though the above example is a smplified one, there is a
point that is worth highlighting. In Figure 3 one can see that the
sameindex is used for storing aggregate data for different attributes
that are not necessary correlated. For example the z axis is con-
sidered to have suppkey values for view V> while the same axisis
“named” part.type when querying V2. Thisimplies that the seman-
tics on the indexing space are defined dynamically depending on
which view wefocuson.? Thereason for combining multiple views
on the same index is to reduce space requirements and increase the
buffer hit ratio asdiscussedin subsection 2.4. Taking thiscaseto the
extreme, one may visualize an index containing arbitrary aggregate
data, originating even from different fact tables. Hence our frame-
work is not only applicable to the star-scheme architecture, but can
be suited to a much more general data warehouse organization.

2.3 A fagt algorithm for placing the ROLAP
Views

Givenaset V={V1, V»,..., V,,} of viewsoneshould be abletofind
an efficient way to map these views to a collection of Cubetrees R
={Ry,Ra,...,Ry}. Each Cubetree R; = R{%%Mmmml} is
packed having its points sorted first by # 4., coordinate then by
Tmaz,;—1 and SO on. For example Ry, ,; will have its points first
sortediny, = order. Thissortingisdoneon an externd filewhichis
then used to bulk load the R-tree and fill its leaf-nodes to capecity.
For the purpose of this paper we propose the use of afast dgorithm
that runsin linear time with the size of V.

For each view V wewill usetheterm projectionlist of V torefer
tothelist of attributesfrom thefact and the dimensiontablesthat are
projected by the view. For instance the projection list of view V1
in the example of the previous section is {partkey,suppkey}. When

2The assumption to this scheme isthat each coordinate of thein-
dex should hold attributes of the same data type.

applicable, we will use the notation Viprojection 1isty O refer to a
view,i.e. Vi = Vipartkey,s suppkey}- The arity of view V is defined
as the number of attributes in the projection list and is denoted by
|V| eg |V{partkey,suppkey}| =2 .

A valid mapping of view V' = Vo, as.. ax) 0 Riz y 2,1 IS
defined as the transformation where we store each tuple of V' as a
pointin Ry, -1 by using attribute a; as the & coordinate, at-
tribute a» as the y coordinate and so on. If the dimensionality of
Ryzy,2,...} ishigher than the arity & of V' then the unspecified co-
ordinates of the tuple are set to zero when stored in the Cubetree.
Given these definitions, the SelectMapping algorithmin Figure5is
used to materiaize V' through aforest of Cubetrees.

SelectMapping(V={V1,V2,...,Va})
begin
Let mazArity = mazy,ev(|Vi]) ;
Initialize sets S;,: =1, ...
/* Group views according to their arity
i.eput all viewsof arity 1to 57 et.c*/
for each V; € V do
Let S|y, = Sy, U{Vi}s
while (Uizl,mamAritySi #* @) do
begin
/* calculate the maximum arity of
the views that have not been mapped so far */
Let arity = mawg,2¢(4);
Create new R-tree R{%%M%my};
/* Pick a view from each of the sets S,
and mapitto R */
for j =1toarity do
if (S; # 0) then
begin
extract a view V' € S; from S;;
map V to R,
end
end /* while */
end

,maxrArity

Figure5: The SelectMapping algorithm

Intuitively the algorithm maps the views in such away, that no
Cubetree containstwo views of the same arity. In general, one may
choose to map each view to adifferent Cubetree or, in the other ex-
treme, to put as much information as possible to each Cubetree. In
[KR97] we present comparisons using viewsfrom aDataWarehouse
with 10 dimension tables. These experiments indicate that the Se-
lectMapping algorithm achievesthe best compromise with respect to
the following criteria:

¢ Degree of clustering inside each Cubetree
e Storage requirements

¢ Efficiency of bulk-loading the Cubetrees
¢ Query performance.

In the following subsection we present an example of using the Se-
lectMapping algorithm and discuss the above issues.

24 A morecomplete example

Consider an example where the set of views shown in Figure 6
ischosen for materialization. Thisexample refersto the Data Ware-
house shown in Figure 1 with the addition of afourth dimension ta-
ble time. Figure 7 shows the grouping of views by the agorithm
according to their arlty and how they are maoped to three different
Cubetrees, namely R{m,y,z,w}, R{m,y,z,w},

L et usnow concentrate on views Vs and Vs W%lch will be stored
in R%_ . Table 1 and 3 show the data for these views while Ta-
bl esé and 4 the corresponding 2-dimensional points when stored in
R {,4)- BY definition when packing R 1 wewill first sort points
inorder y, z asin Tables2 and 4. Flgure8 depicts the resulting Cu-
betree, assuming that the fan-out of the index is 3. The leaf nodes
of theindex contain these 2-dimensiona points along with their ag-
gregate val ues.”

[partkey [sum(quantity) |
15
84
67
102
42
24

GQOoORFrWND™

Table 1: Datafor view Vg

contert

{10} | 102
{201 | 84
{30} | 67
{40} | 15
{50} | 24
{60} | 42

Table 2: Sorted pointsfor view Vs

| suppkey [custkey [sum(quantity) |

3 1 2
1 1 24
1 3 1
3 3 17
2 1 6

Table 3: Datafor view Vy

Aninteresting characteristic of thetreesthat aregenerated by us-
ing the SelectMapping algorithmisthat the points of different views
are clearly separated in the leaves of the index. For examplein R®
we can see that the index can be virtually cut in two parts, the | eft
one used for view Vs and the right part for view V,. Thus, thereis
no interleaving between the points of different views. Thisis true
because of the sorting and i s one of the reasons for considering only
sortshased on lowY, lowX and not spacefilling curves[FR89] when
packing the trees. Clearly the same sort order is used for comput-
ing the views at creation time and during updates, as will be shown
in the experiments section. One can prove that the SelectMapping
algorithm picks a minimal set R of Cubetrees with such organiza-
tion to store V. The set R is minimal in the sense that it uses the

®This scheme can be extended to support multiple aggregation
functions for each point.

V1 select part.brand,count(*)
from F,part
where part.partkey = F.partkey
group by part.brand

V5 select suppkey,partkey,sum(quantity)
from F
group by suppkey,partkey

Vs select brand,suppkey,custkey,month,
sum(quantity)
from Ftime,part
where F.timekey = time.timekey
and F.partkey = part.partkey
group by brand,suppkey,custkey,month

V4 : select partkey,suppkey,custkey,year,
sum(quantity)
from Ftime
where F.timekey = time.timekey
group by partkey,suppkey,custkey,year

from Ftime
where F.timekey = time.timekey
group by partkey,custkey,year

Vs select partkey,custkey,year,sum(quantity)

Vg select custkey,avg(quantity)
from F
group by custkey

V7: select custkey,partkey,avg(quantity)
from F
group by custkey,partkey

Vs select partkey,sum(quantity)
from F
group by partkey

Vg select suppkey,custkey,sum(quantity)
from F
group by suppkey,custkey

Figure 6: Selected set of views

1| 24
{21} | 6
(31} | 2
{13} | 11
{33} | 17

Table 4: Sorted points (y, =) for view Vj

least number of indicesto materialize theviews, whileit guarantees
that each and every one of them occupiesadistinct continuous string
of leaf-nodes in the corresponding index. By minimizing the num-
ber of Cubetrees used, we also minimize the space overhead that
their non-leaf nodes add to the storage requirements. In addition,
the buffer hit ratio, i.e. the probability of having thetop-level pages
of the trees in memory, is also increased, leading to higher perfor-
mance during search.

This organization achieves excellent clustering for the tuples of
every view. Moreover, thereisno actual need to store the zero coor-
dinates on the leaves. Considering the Cubetreein Figure 8, we can
mark that thefirst two leaf nodes“belong” to view Vs and compress
the tuples by storing only the useful z-coordinate of these points on
the leaves. In this way we can dramatically compress the space re-
quirements of the Cubetrees. Our experiments indicate that due to
the packing, about 90% of the pages of every index correspond to
compressed leaf nodes. Since zero coordinates appear only on the
few non-leaf nodes, the resulting compressed and packed Cubetrees
occupy less spacethan an unindexed corresponding relationa repre-
sentation of the same views. This explains the reason why the com-
bined indexing and materializing storage organi zation of the Cube-

treesis more economical by afactor of more than 2-1.

3 Experiments

In order to validate our performance expectations, we used a Cu-
betree Datablade [ACT97] that implements the Cubetrees, the Se-
lectMapping & gorithm and the supporting routines on the Informix
Universal Server. This Datablade defines a Cubetree access method
asan alternativeprimary storage organizationfor materialized views
and provides the end-user with a clean and transparent SQL inter-
face. For al Cubetree experiments we used this interface to make
fair comparisons of the Cubetree performancewithacommercial in-
dustria strength system. All experimentsin this section wereranon
asingle processor Ultra Sparc |, with 32M B main memory, running
SunOS 5.5. The experiment data was generated using the DBGEN
data generation utility available in the TPC-D Benchmark.

partkey,suppket,custkey
partkey,custkey suppkey,custkey

e

Figure 9: The Data Cube lattice

partkey,suppkey

Sets
Vo | [V, || Ve || V. 1
§ ‘ 1| V2|| V5| V3 ‘ Ricyizm
2
E % Vi Vo | REim
x 3
Ve Ve | Ry
s, S, S,

Figure 7: Cubetree selection

| (1,06

6,0),(1,1,335_ |

| (1.030,4060%) |

i

| (11319,1333% |

-~

(1,0,202),(2,0,84),30,67)| | (4,0,15),(5,0,24),(6,0,42) | | (1,1,24),(2,16),(3,1,2)

(1,311),3317) |

\; data

\, data

Figure 8: Content of Cubetree R*

TPC-D models a business warehouse where the businessis buy-
ing parts from a supplier and sellsit to a customer. For our exper-
iments, we will consecrate on a subset of the database that contains
these three dimensions only. The measure attribute in every caseis
the quantity of the parts that is involved in each transaction. Fig-
ure 1 shows a smplified model of the warehouse and Figure 9 the
Data Cube operator as a lattice [HRU96] in the {partkey, suppkey,
custkey} dimensions. In SQL terms, each node in the | attice rep-
resents a view that aggregates data by the denoted attributes. For
example the element partkey,suppkey correspondsto the view :

select partkey,suppkey,sum* (quantity)
from F
group by partkey,suppkey

The none element in figure 9 isthe super aggregate over all entries
on the fact table. This aggregate is a scalar value and in the Cube-
trees framework is mapped to the origin point (0,0,..) in one of the
Cubetrees.

Since the computation of any of the views of the lattice on-the-
fly is extremely time-consuming, data warehouses pre-compute a
subset of them to guarantee a satisfactory query responsetime. The
trade-off inthis selection isbetween speed up of thequeriesandtime
to reorgani ze these views. Several techniques have been proposed
to dea with this problem. For the purposes of our work we have
used the 1-greedy algorithm presented in [GHRU97], for the view
sdlection. This agorithm computesthe cost of answering aquery ¢,
as the total number of tuples that have to be accessed on every ta
ble and index that is used to answer ¢. At every step the algorithm
picks aview or an index that gives the greatest benefit in terms of

*We have sel ected the sum function as acommon representative
of atypical aggregate operator.

thenumber of tuplesthat need to be processed for answering agiven
set of queries.

The main reason for using this algorithm is that it selects both
materialized views and indicesto accel erate the execution of queries.
Clearly view selection without additional indexing has no vaue be-
cause these views would be extremely dow. Given the lattice on
Figure 9, the dgorithm computes the following sets of views) and
indices Z in a decreasing order of benefit:®

V= {V{partkey,suppkey,custkey}a V{partkey,suppkey}a V{custkey}a
V{suppkey}a V{partkey}a V{none}

7= custkey,suppkey,partkey; Ipartkey,custkey,suppkeya
Isuppkey,partkey,custkey

For our tests we used two configurations for storing the TPC-D
data. Inthefirst wemateriaizedthesetV using traditiond relational
tables and also created the selected set of B-trees 7. In the second,
we materialized the same set V' through a forest of Cubetrees us-
ing the SelectMapping agorithm, but no additional indexing. The
packing algorithm that is implemented by the Cubetree Datablade
provides a datareplication scheme, where selected views are stored
inmultiple sort-orders, to further enhance the performance. Inorder
to compensate for the additional indices that were used by the con-
ventiona relationa scheme, we used this replication feature for the
top View Viparikey,s suppkey,custhey} - The additional replicas that
we materialized for that view were Vi, ppkey, custkey partkey} and
Vicusthey,partkey,suppkey}- 1N therest of this section we make di-
rect comparisonson query performance, spacerequirementsand up-
date codt, of the two storage alternatives.

®The notation 1, . refersto anindex onview Vi, 5 . that uses
as the search key the concatenation of a,b and c attributes.

3.1 QueriesDescription

The query model that is used by the TPC-D benchmark, involves
slice queries [GHRU97] on the lattice hyper-space. This type of
queriesconsist of alist of smple selection predicates between adi-
mension attribute and a constant val ue, while aggregating the mea-
sure quantity among another digoint set of group-by attributes. For
our experiments, we only considered selection predicates that use
the equal operator. This is because the attributes are foreign keys
(see Figure 9), and a generic range query, doesn’'t seem applicable.
Consider for example the partkey, custkey element in Figure 9, the
following types of queries can be requested on our model:

e Give me the total sales per part and customer
o Give me the total sales per part for a given customer C
o Give me the total sales per customer for a given part P

o Give me the total sales of a given part P to a given customer C

Notice that for the Cubetrees this kind of queries with “open”
dimensions are the most expensive ones in terms of 1/0O overhead.
This is because R-trees in general behave faster in bounded range
queries [Sar97, KR97]. Thus, in amore general experiment where
arbitrary range queriesare allowed we expect that the Cubetreeswould
be even fagter.

For any view V', there are 2!V'! different types of slice queries.
If wesum up for al possible views, the total number of dice queries
is27. More complex queries can be constructed based on the above
framework, if we alow join operators between the fact and the di-
mension tables. For example, by considering the hierarchy part-
type — part on the part dimension, one can roll-up and examine the
sdesto a customer for a particular category of parts. However, the
computation of such queries adds the same extra overhead for both
implementations and therefore is not included in the experiment.

3.2 Initial load of the TPC-D dataset

Using the DBGEN utility of the TPC-D benchmark, wefirst created
aninstance of a1-GB database. Thisdataset wasthen used for load-
ing the set of viewswith the appropriate tuples. The total number of
rows in the generated fact table of Figure 1 was 6,001,215.

Fact Table

partkey,suppket,custkey

partkey,suppkey

Figure 10: The dependency graph for V

We used the lattice framework to define a derives-from relation
[MQM97, GHRU97] between theviews shown in Figure 9. For ex-
ampleview Vi o, ¢keyy Canbederived fromview Vi, rikey, suppkeyt
and also from View Viparikey, suppkey,custkey- ON the other hand,

VIEW Vipartkey, suppkey,custkey} CaN e derived only from the fact
table. The materialization of set V' through typica relational tables

was done by computing each view fromthe smallest “ parent” [AAD* 96],

as shown in Figure 10. For speeding up the computation we issued
transactions that requested exclusive locks on the tabl es, since con-
currency is not an issue when loading the warehouse. After dl the
viewsin YV were materialized, we created the set of indicesZ to en-
hance query performance. The tota number of tuplesin al views
was 7,110,464.

| Cubetree | View |
R}r,y,Z} V{partkey,suppkey,custkey}
Rir,y,z} V{partkeyysuppkey}
im’y’z} V{custkey}
gm,y,z} Vinone}
R%m} Visuppkey}
R{m} V{partkey}

Table5: View allocation for the TPC-D dataset

ﬂ —— SORT| —
\
I
V

Data Warehouse

Cubetrees

View selection

Figure 11: Loading the Cubetrees

For the Cubetree Databl ade the creation of the viewsis slightly
different. First the SelectMapping agorithm is used® to allocate a
forest of Cubetreesto store). Table5 depictsthe selection of thisal-
gorithm. We then bulk-loaded the Cubetrees as shown in Figure 11.
Notice that loading the Cubetrees involves a preprocessing step for
sorting the tuples. However this step can be hardly considered as an
overhead, since sorting is a the same time used for computing the
viewsin V. In our implementation we used a variation of the sort-
based a gorithmsthat are discussed in [AAD™ 96] for computing the
lattice. The general ideaof thealgorithmisto minimizethe process-
ing requirements by computing an element of the cube-lattice from
one of its parents as we aready saw in Figure 10. Our implemen-
tation of the Cubetrees considers such optimizations, however the
details of the algorithms used are beyond the scope of this paper.

[Configuration [Views Indices Tota Time |
Conventional | 10h58m23s 51m05s 11h49m 28s
Cubetrees 45m 04s - 45m 04s

Table 6: Loading the databaseswith the TPC-D data

Table 6 shows the total time taken for loading the two config-
urations. The Cubetree implementation is impressively faster than
the conventional approach. Cubetrees require only 1/16°™ of the

Thisstep isexecuted transparently by the system when the user
specifies the materialized set V.

250

200 1

Total time (secs) for 100 queries

Il cConventional
Cubetrees

150 7
100
) I I

partkey,suppkey,custkey partkey,suppkey

partkey,custkey

suppkey,custkey

View

partkey suppkey custkey

Figure 12: Queryingtheviews

time it took the Informix Universal Server to build the conventional
tables and indices. A main contributor to this differential isthein-
ternal organization of the Cubetree storage that permits sequentia
writes to disk during the bulk-load operation as opposed to random
1/0. Therelational representation of the viewsand their indices con-
sumes 602M B of disk spacein Informix, whereasthetotal disk space
for the Cubetrees in this experiment was only 293MB, 51% less.
This advantage is mostly due to the fact that Cubetrees are loaded
in abulk operation and packed and compressed to capacity.

3.3 Queries

For testing the performance, we used arandom query generator, coded
to provide a uniform selection of dice queries on the views shown
inFigure 9. For each one of the 27 possible types of queries, we did
apreliminary set of experiments to validate the best way that each
query should be written in SQL to achieve the maximum perfor-
mance under the selected set of views and indices. Consider for ex-
amplequery 1 shown in page 6. Using the materiaized set V', one
may answer this query by scanning either view Viparikey, suppkey}
OF VIeW Vipartheys, supphey,custkey}- N SQL terminology, we can
use either of the following expressions:

select suppkey,sum_quantity
from V_partkey_suppkey or
where partkey = P

select suppkey,sum(sum_quantity)
from V_partkey_suppkey_custkey
group by partkey,suppkey

having partkey = P

Even though View Vi,arikey, suppkeyt SEEMS more applicable our
experiments showed that View Vo, ikey, suppkey,custkeyt that re-
quiresan additional aggregatestep for answering @+, isindeed faster
due to the |ndeX Ipartkey, suppkey,custkey-

We used therandom query generator to create aset of 100 queries
for each one of the views in the | attice. We assumed equal proba-
bility for al types of queries, with the exception of queries with no
selection predicate, like “Give me the total quantity for all products
and customers”. These queries generate a very large output, which
dilutesthe actual retrievad cost. All querieswhere executed in batch
through a script and their output was printed on the screen. In Fig-
ure 12, we show the total execution time of the queries along al
views, for both configurations. It isinteresting to notice that most
of the queries ran in sub-second levels. Thisresult validates the as-
sumption, that view materialization significantly enhances the per-
formanceof OLAP queries. However, comparing thetwo approaches,

— Conventinal
Cubetrees

0 5 10 15 20 25 30 35 40 45

Throughput (queries/sec)

Figure 13: System throughput

we can see that the Cubetrees outperformed the conventional orga-
nization in all cases. Figure 13 depicts the minimum and maximum
system throughput measured in queries/sec for both configurations.
Its shows that the peak performance of the conventiona approach,
barely matches the system low for the Cubetrees implementation.
The average query throughput was 1.1 queries/sec for the conven-
tiona viewsand 10.1 queries/sec for the Cubetrees, dmost 10times
faster.

Figure 14 depicts how the Cubetrees scale up with larger input.
This time we tested the Cubetree Datablade using a 2-GB dataset
of TPC-D data. The Figure showsthat query performanceis practi-
cally unaffected by thelarger input. Thesmall differencesarecaused
by the variation on the output size, which for the 2-GB caseislarger.

3.4 Updating the Data Warehouse

Perhaps the most critical issue in data warehouse environments is
the time to generate and/or refresh the derived data from the raw
data. The meresize of them doesnot permit frequent re-computation.
Having a set of views materialized in the warehouse adds an extra

overhead to the update phase. Many optimi zati on techniques[AAD* 96,

HRU96, ZDN97] dea only with the initial computation of the ag-
gregate data, while others [GM S93, GL 95, IM S95, MQM97] focus
on incrementally updating the materialized views.

307

25 1

20

15 4

10 1

Total time (secs) for 100 queries

Il 1GB Datase
2GB Datase

partkey,suppkey,custkey partkey,suppkey

partkey,custkey

suppkey custkey partkey suppkey custkey

View

Figure 14: Scalability test (Cubetrees only)

However traditional database systems, will most probably ex-
posetheir limitationswhen dealing with updatesrates of several MBs
or GBs per time unit (hour, date etc) of incoming data, in the context
of adatawarehouse. A typical approach that most commercial data
warehouse environments follow isto rebuild most structures from
scratch during an update down-time window. However by creating
anew instance of the derived dataevery time an updateincrement is
obtained is not only wasteful but, it may require a down-time win-
dow that leaves no time for OLAP! Thus, the only viable solution
is to consider bulk incremental operations, where changes are de-
ferred and applied to the warehouse in large batches. The Cubetree
organization nicely fitsinto this framework. Figure 15 showsabulk
incremental architecturefor keepingtheset V' up-to-date. At firstthe
increment of the warehouseis obtained. Then, using the same oper-
ations that were used for theinitial creation, the delta increment of
Y iscalculated. During afinal phase, thisincrement ismerged with
the existing Cubetrees, to create an instance of new packed Cube-
trees.

| Daily Sorted ' If': *"r';u
—= increment| —— SORT| ——| gy | —— MERGE[—— L
y \ \ al"lfc

|]
3 .J P
Data Warehouse \Y '-1:'. -'1‘:
View selection ".i:.‘)

Old Cubetrees

New Cubetrees

Figure 15: Bulk incremental updates of the views

To demonstrate the performance of the Cubetrees during incre-
menta updates, we generated a 10% increment (598,964 rows) of
the 1-GB TPC-D dataset, using again the DBGEN utility. For the
conventional representation of the materialized views, wetested both
updating theviewsincrementally and computing them from scratch.
For all experimentswe assumed adaily update and adrop-dead dead-
line of 24 hours to incorporate the changes to the data warehouse.

Table 7 shows the time taken to complete the update of the data
warehouse in al tree cases. For all experiments we computed the
timetaken by the server to update the database, after thedaily incre-
ment was |oaded into the system. Updating the viewsincrementaly
for the conventional database did not succeed in compl eting thetask
withinthe one day window. Thiswas duetothe fact that updating/or
inserting tuples one-at-a-time for all viewsin V' adds too much of
an overhead to therelationa system. For every tuplein the deferred

[Method | Total Time |
Incremental updates of materialized views >24hours
Re-computation of materialized views 12h 59m 11s
Incremental updates of Cubetrees 8m 24s

Table 7: Updates on the TPC-D dataset

update-set, we have to perform alook-up operation” in each one of
the views, to check if a corresponding aggregate does already exist
and update its value, or if not insert a new row. Thus, the problem
with materidizing the views as relational tables is that these struc-
tures areimmensely inadequate for incremental updates. Cubetrees
on the other hand, maintain the stored tuples sorted at all times. This
permits merge-packing of the sorted deferred set with the old val-
ues. Thisoperationrequireslinear timeinthetota number of tuples.
Furthermore, the packing a gorithm that we use does only sequential
writes to the disk. Thus, Cubetree organization achieves the small-
est down-time by afactor of 100-1.

4 Conclusions

In this paper we proposed the use of Cubetreesasan aternative stor-
age and indexing organization for ROLAP views. We argued and
showed by experiments that the relational storage organization and
indexing of such viewsisinadequatefor thetype of operationsneeded
in the context of a Data Warehouse. Cubetrees, on the other hand,
are much more economical in storage and very efficient in query ex-
ecution and updates.

We have used a Cubetree Datablade devel oped for the Informix
Universal Server and presented experimental resultsusing the TPC-
D benchmark for populating the same set of views using both the re-
lational and the Cubetrees alternative framework. Our experiments
firgt, validate the need for materializing OLAP views and second,
provethat Cubetrees offer 10-1 better query performance and a 100-
1 faster update speed over the relational representation. At the same
time, Cubetrees provide 51% storage savings due to packing and
compression.

" For the reported fi gures we used additional indexing on the con-
ventional implementation of the views to speed up this phase.

Acknowledgments

We would like to thank ACT Inc. for providing the Cubetree Dat-
ablade code and its software libraries on which we built our exper-
iments. We would also like to thank Informix Software, Inc. for
making avail able thelnformix Universal Server through the Univer-
sity Grant Program.

References

[AAD* 96]

[ACTO7]
[BPT97]

[FR89]

[GBLP96]

[GHRU97]

[GLYS]

[GMS93]

[Gup97]

[Guts4]

[HRU96]

[IMS95]

S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the Computation of Multidimensiona Aggregates. In
Proc. of VLDB, pages506-521, Bombay, I ndia, August
1996.

ACT Inc. The Cubetree Datablade. August 1997.

E. Bardlis, S. Paraboschi, and E. Teniente. Material-
ized View Sdlection in a Multidimensional Database.
InProc. of the 23th Inter national Conferenceon VLDB,
pages 156-165, Athens, Greece, August 1997.

C. Faloutsos and S. Roseman. Fractas for Secondary
Key Retrieval. Eighth ACM S GACT-SSGMOD-
SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 247-252, March 1989.

J. Gray, A. Bosworth, A. Layman, and H. Piramish.
Data Cube: A Relational Aggregation Operator Gener-
alizing Group-By, Cross-Tab, and Sub-Totals. In Proc.
of the 12th Int. Conference on Data Engineering, pages
152-159, New Orleans, February 1996. | EEE.

H. Gupta, V. Harinarayan, A. Rejaraman, and J. Ull-
man. Index Selection for OLAP. In Proceedings of the
Intl. Conf. on Data Engineering, pages 208-219, Bur-
mingham, UK, April 1997.

T. Griffinand L. Libkin. Incremental Maintenance of
Views with Duplicates. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 328-339, San Jose, CA, May 1995.

A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Main-
taining Views Incrementally. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pages 157-166, Washington, D.C., May
1993.

H. Gupta. Selections of Viewsto Materializein aData
Warehouse. In Proceedings of ICDT, pages 98-112,
Delphi, January 1997.

A. Guttman. R-Trees. A Dynamic Index Structure
for Spatial Searching. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 47-57, Boston, MA, June 1984.

V. Harinarayan, A. Rajaraman, and J. Ullman. Imple-
menting Data Cubes Efficiently. In Proc. of ACM SIG-
MOD, pages 205-216, Montreal, Canada, June 1996.

H. Jagadish, I. Mumick, and A. Silberschatz. View
Maintenance Issues in the Chronicle Data Moddl. In
Proceedings of PODS, pages 113-124, San Jose, CA,
1995.

[Kimoe]

[KR97]

[MQM97]

[0G95]

[0Q97]

[RKR97]

[RL85]

[Rou82]

[Sar97]

[Val§7]

[ZDN97]

R. Kimball. The Data Warehouse Toolkit. John Wiley
& Sons, 1996.

Y. Kotidisand N. Roussopoulos. A Generaized Frame-
work for Indexing OLAP Aggregates. Technical Re-
port CS-TR-3841, University of Maryland, Oct 1997.

I. S. Mumick, D. Quass, and B. S. Mumick. Mainte-
nance of Data Cubes and Summary Tables in a Ware-
house. In Proceedings of the ACM SSGMOD Interna-
tional Conference on Management of Data, pages 100—
111, Tucson, Arizona, May 1997.

P. O'Neil and G. Graefe. Multi-Table Joins Through
Bitmapped Join Indices. SGMOD Record, 24(3):8-11,
Sept 1995.

P. O’'Nell and D. Quass. Improved Query Performance
with Variant Indexes. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 38—49, Tucson, Arizona, May 1997.

N. Roussopoulos, Y. Kotidis, and M. Roussopoulcs.
Cubetree: Organization of and Bulk Incremental Up-
dates on the Data Cube. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 89-99, Tucson, Arizona, May 1997.

N. Roussopoulosand D. Leifker. Direct Spatial Search
on Pictorial Databases Using Packed R-trees. In Procs.
of 1985 ACM SGMQOD Intl. Conf. on Management of
Data, Austin, 1985.

N. Roussopoulos. View Indexing in Relational
Databases. ACM TODS, 7(2), June 1982.

S. Sarawagi. Indexing OLAP Data. |EEE Bulletin on
Data Engineering, 20(1):36-43, March 1997.

P. Valduriez. Joinindices. ACM TODS, 12(2):218-246,
1987.

Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
Array-Based Algorithm for Simultaneous Multidimen-
sional Aggregates. In Proceedings of the ACM SG-
MOD International Conference on Management of
Data, pages 159170, Tucson, Arizona, May 1997.

