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Abstract

The Relational On-Line Analytical Processing (ROLAP) is emerg-
ing as the dominant approach in data warehousing with decision sup-
port applications. In order to enhance query performance, the RO-
LAP approach relies on selecting and materializing in summary ta-
bles appropriate subsets of aggregate views which are then engaged
in speeding up OLAP queries. However, a straight forward rela-
tional storage implementation of materialized ROLAP views is im-
mensely wasteful on storage and incredibly inadequate on query per-
formance and incremental update speed. In this paper we propose
the use of Cubetrees, a collection of packed and compressed R-trees,
as an alternative storage and index organization for ROLAP views
and provide an efficient algorithm for mapping an arbitrary set of
OLAP views to a collection of Cubetrees that achieve excellent per-
formance. Compared to a conventional (relational) storage organi-
zation of materialized OLAP views, Cubetrees offer at least a 2-1
storage reduction, a 10-1 better OLAP query performance, and a
100-1 faster updates. We compare the two alternative approaches
with data generated from the TPC-D benchmark and stored in the
Informix Universal Server (IUS). The straight forward implemen-
tation materializes the ROLAP views using IUS tables and conven-
tional B-tree indexing. The Cubetree implementation materializes
the same ROLAP views using a Cubetree Datablade developed for
IUS. The experiments demonstrate that the Cubetree storage orga-
nization is superior in storage, query performance and update speed.

1 Introduction

Decision support applications often require fast response time to a
wide variety of On-Line Analytical Processing (OLAP) queries over
vast amounts of data. These queries project the data onto multidi-
mensional planes (slices) of it and aggregate some other aspects of
it. The “multi-dimensional modeling” can be realized by a Multidi-
mensional indexing (MOLAP) typically implemented by an exter-
nal to the relational system engine. The Relational OLAP approach

starts off with the premise that OLAP queries can generate the multi-
dimensional projections on the fly without having to store and main-
tain them in foreign storage. This approach is exemplified by a “star
schema” [Kim96] linking the “dimensions” with a “fact table” stor-
ing the data. Join and bit-map indices [Val87, OQ97, OG95] are
used for speeding up the joins between the dimension and the fact
tables. Since data is generated on the fly, the maintenance cost of
the MOLAP structures is avoided at the cost of index maintenance.
This is very important because it determines the “down-time” win-
dow for an “incremental update” (refresh) of the warehouse.

However, in large data warehouses, indexing alone is often not
sufficient to achieve high performance for some queries. For ex-
ample, computing the sum of all sales from a fact table grouped by
their region would require (no less than) scanning the whole fact ta-
ble. On the other hand, some of these aggregate views can be pre-
computed in the ROLAP approach and stored in “summary tables”.
In this case, the ROLAP approach relies on selecting and materializ-
ing in summary tables the “right” subsets of aggregate views along
with their secondary indexing that improves overall aggregate query
processing [Rou82, BPT97, GHRU97, Gup97]. Like the MOLAP
case, controlled redundancy is introduced to improve performance.
A discriminating and fundamental difference remains however. The
ROLAP redundancy is supported and controlled by tools that are
within the relational paradigm, typically through views in SQL con-
trary to the arbitrary MOLAP import programs which are external
to the underlying relational DBMS.

Having selected the best subset of aggregate ROLAP views, we
then look how to implement these views and their indices. A some-
what surprising discovery was that a straight forward relational stor-
age implementation of materialized ROLAP views and B-tree in-
dexing on them is immensely wasteful on storage and incredibly in-
adequate on query performance and incremental update speed. We
will demonstrate that conventional relational storage techniques suf-
fer from the separation of the indexing dimensions residing in B-
trees and data residing in tables. Most of the waste stems from the
fact that multidimensional B-trees are independent of each other even
when they share some dimensions. This causes the keys to be repli-
cated several times in addition to the values stored in the relational
storage too. Another major drawback is that in the relational stor-
age data is typically stored unsorted which prohibits efficient merge
operations during the updates.

In [RKR97] we introduced Cubetrees, a collection of packed R-
trees [Gut84, RL85], as a “multidimensional” indexing scheme for
the Data Cube. Cubetrees best features include their efficiency dur-
ing incremental bulk update and their high query throughput. The
bulk incremental update relies on their internal organization which
is maintained sorted at all times and permits both an efficient merge-



pack algorithm and sequential writes on the disk. An expanded ex-
periment [KR97] showed that Cubetrees can easily achieve a pack-
ing rate of 6GB/hour on an 2100A/275MHz Alphaserver with a sin-
gle CPU and a single disk, a fairly low-end hardware platform com-
pared with todays warehousing standards.

In this paper, we propose the use of Cubetrees as an alternative
storage organization for ROLAP views and provide an efficient al-
gorithm for mapping an arbitrary set of OLAP views to a collec-
tion of Cubetrees that achieve excellent performance. The Cubetree
organization combines both storage and indexing in a single data
structure and still within the relational paradigm. We will show that
when compared to a conventional (relational) storage organization
of materialized OLAP views, Cubetrees offer at least a 2-1 storage
reduction, a 10-1 better OLAP query performance, and a 100-1 faster
updates. We compare the two alternative approaches with data gen-
erated from the TPC-D benchmark and stored in the Informix Uni-
versal Server (IUS). The straight forward implementation materi-
alizes the ROLAP views using IUS tables which are then indexed
with B-trees. The Cubetree implementation materializes the same
ROLAP views using a Cubetree Datablade [ACT97] developed for
IUS. The experiments demonstrate that the Cubetree storage orga-
nization is superior in storage, query performance and update speed.

Section 2 defines the Cubetree storage organization for material-
izing ROLAP aggregate views and the mapping of SQL queries to
the underlying Datablade supporting the Cubetrees. Section 3 de-
fines a TPC-D experiment and compares the straight forward rela-
tional storage implementation with the Cubetree one. The compar-
isons are made on all accounts, storage overhead, query performance
and update speed. The conclusions are in section 4.

2 Cubetrees and Aggregate ROLAP Views

2.1 A Data Warehouse model
Consider the architecture of a typical warehouse shown in Figure 1,
where data is organized through a centralized fact table F, linking
several dimension tables. Each dimension table contains informa-
tion specific to the dimension itself. The fact table correlates all
dimensions through a set of foreign keys. A typical OLAP query
might involve aggregation among different dimensions. The Data
Cube [GBLP96] represents the computation of interesting aggregate
functions over all combinations of dimension tables. Thus, the size
of the cube itself is exponential in the number of dimensions in the
warehouse.

Fact Table:F

partkey
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custkey

name
address
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brand
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comment

Figure 1: A simple data warehouse

Moreover, some databases contain hierarchies among each di-
mension attributes, such as there are along the time dimension:
day!month! year. Hierarchies are very useful since they provide
the means to examine the data in different levels of detail through the
drill-down and roll-up operators. By drilling-down on the aggregate
data the user is getting a more detailed view of the information. For
example starting from the total sales per year, the user may ask for a
more detailed view of the sales for the last year, grouped by month
and then examine the daily volume of sales for an interesting month.
Roll-up is the opposite operation where the warehouse is examined
at progressively lower granularity.

A typical warehouse may contain 10 or more dimension tables,
with up to 20 attributes each. The computation and materialization
of all possible aggregate views, over all interesting attributes, with
respect to the given hierarchies, is often unrealistic both because of
the mere size of the data and of the incredibly high update cost when
new data is shipped to the warehouse. Several techniques [Rou82,
BPT97, GHRU97, Gup97] have been proposed to select appropriate
subsets of aggregate views of the Data Cube to materialize through
summary tables.1 Because these views are typically very large, in-
dexing, which adds to their redundancy, is necessary to speed up
queries on then.

In the rest of this section we present an unified framework for
organizing these views. Even though the examples that we use re-
fer to the star scheme in Figure 1 there is nothing that restricts us
from applying exactly the same framework to other data warehouse
organizations.

2.2 Cubetrees as place holders for Multidimen-
sional Aggregates

In figure 1 we can see an abstraction of a data-warehouse organiza-
tion whose fact table correlates data from the following dimensions:
part, supplier and customer. Each entry in the fact table F consists
of a triplet of foreign-keys partkey, suppkey, custkey from the di-
mension tables and a measure attribute quantity. Lets assume that
for query performance reasons, we decided to materialize the fol-
lowing views:

V1: select partkey,suppkey,sum(quantity)
from F
group by partkey,suppkey

V2: select part.type,sum(quantity)
from F, part
where F.partkey = part.partkey
group by part.type

V3: select suppkey,partkey,custkey,sum(quantity)
from F
group by suppkey,partkey,custkey

By having these views materialized in the data warehouse and
indexed, we are able to give quick answers to a variety of different
queries without having to perform costly scans or joins over the fact
table. For example view V1 can be used to answer the query

Q1: Give me the total sales of every part bought from a given sup-
plier S.

Similarly V3 can be used for answering the query:

Q2: Find the total sales per part and supplier to a given customer C.

1In the remaining of this paper we will use the term views to refer
to these summary tables



Notice that Q1 can also be answered using view V3. Even though
viewV1 seems more appropriate, other parameters like the existence
of an index on V3 should be taken into account if we are aiming for
the best performance.

View V2 is an example where the grouping is done by an at-
tribute different than the key-attribute of a dimension. Given the hi-
erarchy part-type! part, if view V2 were not materialized, queries
would normally require a join between the fact table F and the part
table. Special purpose indices [Val87, OQ97, OG95] can be used
to compute these joins faster. However, such indices add to the re-
dundancy of the warehouse and, in most cases, a materialized view,
accompanied with a conventional B-tree index will perform better.

We will now proceed to show how the above set of views can be
materialized using a single Cubetree. Assume that a three dimen-
sional R-tree Rfx;y;zg is used. Consider for example the tuples of
view V3. We may map suppkey to the x coordinate, partkey to y
and custkey to z. In this way, every tuple t3 of view V3 is mapped
to a point (t3x ; t3y ; t3z ) on the three dimensional space ofRfx;y;zg.
The value of the sum function is stored as the content of such point.
Assuming that each coordinate is a positive (greater than zero) value
Figure 2 gives a graphical representation of Rfx;y;zg.
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Y

Z

(suppkey,partkey,custkey)

t  (suppkey,partkey,custkey)3

Figure 2: Mapping of view V3
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Figure 3: Cubetree organization

By considering view V1 as a multidimensional dataset, one can
also map every tuple of V1 to a point inRfx;y;zg though the follow-
ing transformation : partkey! x, suppkey! y, and using zero as
the z coordinate. This transformation maps view V1 to plane (xy)

on the index. Finally the tuples of view V2 can be mapped to the x-
axis, where the part.type integer value is used as the corresponding
x coordinate. This illustrates how the whole set of views fits in a sin-
gle Cubetree, while every one of V1, V2, V3 occupies a distinct area
in the tree-dimensional index space, see Figure 3. Thus, we may use
a single R-tree interface when querying any one of these views. For
example Q1 can be handled though view V1, by searching Rfx;y;zg

using the slice (xmin; S; 0; xmax; S; 0) as shown in Figure 4. In
the same Figure the shaded plane (xmin; ymin; C; xmax; ymax; C)
corresponds to query Q2.

t  (partkey,suppkey)1

t  (part.type)2

t  (suppkey,partkey,custkey)3

X

Y

Z

Q 2

Q 1

Figure 4: Queries on the views

Even though the above example is a simplified one, there is a
point that is worth highlighting. In Figure 3 one can see that the
same index is used for storing aggregate data for different attributes
that are not necessary correlated. For example the x axis is con-
sidered to have suppkey values for view V3 while the same axis is
“named” part.type when querying V2. This implies that the seman-
tics on the indexing space are defined dynamically depending on
which view we focus on.2 The reason for combining multiple views
on the same index is to reduce space requirements and increase the
buffer hit ratio as discussed in subsection 2.4. Taking this case to the
extreme, one may visualize an index containing arbitrary aggregate
data, originating even from different fact tables. Hence our frame-
work is not only applicable to the star-scheme architecture, but can
be suited to a much more general data warehouse organization.

2.3 A fast algorithm for placing the ROLAP
Views

Given a set V=fV1; V2; : : : ; Vng of views one should be able to find
an efficient way to map these views to a collection of Cubetrees R
= fR1;R2; : : : ;Rmg. Each Cubetree Ri = Rfx1;x2;:::;xmaxi

g is
packed having its points sorted first by xmaxi coordinate then by
xmaxi�1 and so on. For example Rfx;yg will have its points first
sorted in y; x order. This sorting is done on an external file which is
then used to bulk load the R-tree and fill its leaf-nodes to capacity.
For the purpose of this paper we propose the use of a fast algorithm
that runs in linear time with the size of V .

For each view V we will use the term projection list ofV to refer
to the list of attributes from the fact and the dimension tables that are
projected by the view. For instance the projection list of view V1
in the example of the previous section is fpartkey,suppkeyg. When

2The assumption to this scheme is that each coordinate of the in-
dex should hold attributes of the same data type.



applicable, we will use the notation Vfprojection listg to refer to a
view, i.e. V1 � Vfpartkey;suppkeyg. The arity of view V is defined
as the number of attributes in the projection list and is denoted by
jV j , e.g jVfpartkey;suppkeygj = 2.

A valid mapping of view V = Vfa1 ;a2;:::;akg to Rfx;y;z;:::g is
defined as the transformation where we store each tuple of V as a
point in Rfx;y;z;:::g by using attribute a1 as the x coordinate, at-
tribute a2 as the y coordinate and so on. If the dimensionality of
Rfx;y;z;:::g is higher than the arity k of V then the unspecified co-
ordinates of the tuple are set to zero when stored in the Cubetree.
Given these definitions, the SelectMapping algorithm in Figure 5 is
used to materialize V through a forest of Cubetrees.

SelectMapping(V=fV1; V2; : : : ; Vng)
begin

Let maxArity = maxVi2V(jVij) ;
Initialize sets Si; i = 1; : : : ;maxArity

/* Group views according to their arity
i.e put all views of arity 1 to S1 e.t.c */

for each Vi 2 V do
Let SjVij = SjVij [ fVig;

while ([i=1;maxAritySi 6= ;) do
begin

/* calculate the maximum arity of
the views that have not been mapped so far */

Let arity = maxSi 6=;(i);
Create new R-tree Rfx1;x2;:::;xarityg

;

/* Pick a view from each of the sets Sj
and map it to R */

for j = 1 to arity do
if (Sj 6= ;) then

begin
extract a view V 2 Sj from Sj ;
map V to R;

end
end /* while */

end

Figure 5: The SelectMapping algorithm

Intuitively the algorithm maps the views in such a way, that no
Cubetree contains two views of the same arity. In general, one may
choose to map each view to a different Cubetree or, in the other ex-
treme, to put as much information as possible to each Cubetree. In
[KR97] we present comparisons using views from a Data Warehouse
with 10 dimension tables. These experiments indicate that the Se-
lectMapping algorithm achieves the best compromise with respect to
the following criteria:

� Degree of clustering inside each Cubetree

� Storage requirements

� Efficiency of bulk-loading the Cubetrees

� Query performance.

In the following subsection we present an example of using the Se-
lectMapping algorithm and discuss the above issues.

2.4 A more complete example
Consider an example where the set of views shown in Figure 6

is chosen for materialization. This example refers to the Data Ware-
house shown in Figure 1 with the addition of a fourth dimension ta-
ble time. Figure 7 shows the grouping of views by the algorithm
according to their arity and how they are mapped to three different
Cubetrees, namely R1

fx;y;z;wg, R2
fx;y;z;wg, R3

fx;yg.
Let us now concentrate on views V8 and V9 which will be stored

in R3
fx;yg. Table 1 and 3 show the data for these views while Ta-

bles 2 and 4 the corresponding 2-dimensional points when stored in
R3
fx;yg. By definition when packing R3

fx;yg we will first sort points
in order y; x as in Tables 2 and 4. Figure 8 depicts the resulting Cu-
betree, assuming that the fan-out of the index is 3. The leaf nodes
of the index contain these 2-dimensional points along with their ag-
gregate values.3

partkey sum(quantity)
4 15
2 84
3 67
1 102
6 42
5 24

Table 1: Data for view V8

point content
f1,0g 102
f2,0g 84
f3,0g 67
f4,0g 15
f5,0g 24
f6,0g 42

Table 2: Sorted points for view V8

suppkey custkey sum(quantity)
3 1 2
1 1 24
1 3 11
3 3 17
2 1 6

Table 3: Data for view V9

An interesting characteristic of the trees that are generated by us-
ing the SelectMapping algorithm is that the points of different views
are clearly separated in the leaves of the index. For example in R3

we can see that the index can be virtually cut in two parts, the left
one used for view V8 and the right part for view V9. Thus, there is
no interleaving between the points of different views. This is true
because of the sorting and is one of the reasons for considering only
sorts based on lowY, lowX and not space filling curves [FR89] when
packing the trees. Clearly the same sort order is used for comput-
ing the views at creation time and during updates, as will be shown
in the experiments section. One can prove that the SelectMapping
algorithm picks a minimal set R of Cubetrees with such organiza-
tion to store V . The set R is minimal in the sense that it uses the

3This scheme can be extended to support multiple aggregation
functions for each point.



V1: select part.brand,count(*)
from F,part
where part.partkey = F.partkey
group by part.brand

V2: select suppkey,partkey,sum(quantity)
from F
group by suppkey,partkey

V3: select brand,suppkey,custkey,month,
sum(quantity)
from F,time,part
where F.timekey = time.timekey
and F.partkey = part.partkey
group by brand,suppkey,custkey,month

V4: select partkey,suppkey,custkey,year,
sum(quantity)
from F,time
where F.timekey = time.timekey
group by partkey,suppkey,custkey,year

V5: select partkey,custkey,year,sum(quantity)
from F,time
where F.timekey = time.timekey
group by partkey,custkey,year

V6: select custkey,avg(quantity)
from F
group by custkey

V7: select custkey,partkey,avg(quantity)
from F
group by custkey,partkey

V8: select partkey,sum(quantity)
from F
group by partkey

V9: select suppkey,custkey,sum(quantity)
from F
group by suppkey,custkey

Figure 6: Selected set of views

point content
f1,1g 24
f2,1g 6
f3,1g 2
f1,3g 11
f3,3g 17

Table 4: Sorted points (y; x) for view V9

least number of indices to materialize the views, while it guarantees
that each and every one of them occupies a distinct continuous string
of leaf-nodes in the corresponding index. By minimizing the num-
ber of Cubetrees used, we also minimize the space overhead that
their non-leaf nodes add to the storage requirements. In addition,
the buffer hit ratio, i.e. the probability of having the top-level pages
of the trees in memory, is also increased, leading to higher perfor-
mance during search.

This organization achieves excellent clustering for the tuples of
every view. Moreover, there is no actual need to store the zero coor-
dinates on the leaves. Considering the Cubetree in Figure 8, we can
mark that the first two leaf nodes “belong” to view V8 and compress
the tuples by storing only the useful x-coordinate of these points on
the leaves. In this way we can dramatically compress the space re-
quirements of the Cubetrees. Our experiments indicate that due to
the packing, about 90% of the pages of every index correspond to
compressed leaf nodes. Since zero coordinates appear only on the
few non-leaf nodes, the resulting compressed and packed Cubetrees
occupy less space than an unindexed corresponding relational repre-
sentation of the same views. This explains the reason why the com-
bined indexing and materializing storage organization of the Cube-

trees is more economical by a factor of more than 2-1.

3 Experiments

In order to validate our performance expectations, we used a Cu-
betree Datablade [ACT97] that implements the Cubetrees, the Se-
lectMapping algorithm and the supporting routines on the Informix
Universal Server. This Datablade defines a Cubetree access method
as an alternative primary storage organization for materialized views
and provides the end-user with a clean and transparent SQL inter-
face. For all Cubetree experiments we used this interface to make
fair comparisons of the Cubetree performance with a commercial in-
dustrial strength system. All experiments in this section were ran on
a single processor Ultra Sparc I, with 32MB main memory, running
SunOS 5.5. The experiment data was generated using the DBGEN
data generation utility available in the TPC-D Benchmark.

partkey,suppkey partkey,custkey suppkey,custkey

partkey,suppket,custkey

partkey suppkey custkey

 none

Figure 9: The Data Cube lattice
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Figure 8: Content of Cubetree R3

TPC-D models a business warehouse where the business is buy-
ing parts from a supplier and sells it to a customer. For our exper-
iments, we will consecrate on a subset of the database that contains
these three dimensions only. The measure attribute in every case is
the quantity of the parts that is involved in each transaction. Fig-
ure 1 shows a simplified model of the warehouse and Figure 9 the
Data Cube operator as a lattice [HRU96] in the fpartkey, suppkey,
custkeyg dimensions. In SQL terms, each node in the lattice rep-
resents a view that aggregates data by the denoted attributes. For
example the element partkey,suppkey corresponds to the view :

select partkey,suppkey,sum4(quantity)
from F
group by partkey,suppkey

The none element in figure 9 is the super aggregate over all entries
on the fact table. This aggregate is a scalar value and in the Cube-
trees framework is mapped to the origin point (0,0,..) in one of the
Cubetrees.

Since the computation of any of the views of the lattice on-the-
fly is extremely time-consuming, data warehouses pre-compute a
subset of them to guarantee a satisfactory query response time. The
trade-off in this selection is between speed up of the queries and time
to reorganize these views. Several techniques have been proposed
to deal with this problem. For the purposes of our work we have
used the 1-greedy algorithm presented in [GHRU97], for the view
selection. This algorithm computes the cost of answering a query q,
as the total number of tuples that have to be accessed on every ta-
ble and index that is used to answer q. At every step the algorithm
picks a view or an index that gives the greatest benefit in terms of

4We have selected the sum function as a common representative
of a typical aggregate operator.

the number of tuples that need to be processed for answering a given
set of queries.

The main reason for using this algorithm is that it selects both
materialized views and indices to accelerate the execution of queries.
Clearly view selection without additional indexing has no value be-
cause these views would be extremely slow. Given the lattice on
Figure 9, the algorithm computes the following sets of views V and
indices I in a decreasing order of benefit:5

V= fVfpartkey;suppkey;custkeyg; Vfpartkey;suppkeyg; Vfcustkeyg;
Vfsuppkeyg; Vfpartkeyg; Vfnonegg

I = fIcustkey;suppkey;partkey; Ipartkey;custkey;suppkey;
Isuppkey;partkey;custkeyg

For our tests we used two configurations for storing the TPC-D
data. In the first we materialized the setV using traditional relational
tables and also created the selected set of B-trees I. In the second,
we materialized the same set V through a forest of Cubetrees us-
ing the SelectMapping algorithm, but no additional indexing. The
packing algorithm that is implemented by the Cubetree Datablade
provides a data replication scheme, where selected views are stored
in multiple sort-orders, to further enhance the performance. In order
to compensate for the additional indices that were used by the con-
ventional relational scheme, we used this replication feature for the
top view Vfpartkey;suppkey;custkeyg. The additional replicas that
we materialized for that view were Vfsuppkey;custkey;partkeyg and
Vfcustkey;partkey;suppkeyg. In the rest of this section we make di-
rect comparisons on query performance, space requirements and up-
date cost, of the two storage alternatives.

5The notation Ia;b;c refers to an index on view Vfa;b;cg that uses
as the search key the concatenation of a,b and c attributes.



3.1 Queries Description
The query model that is used by the TPC-D benchmark, involves
slice queries [GHRU97] on the lattice hyper-space. This type of
queries consist of a list of simple selection predicates between a di-
mension attribute and a constant value, while aggregating the mea-
sure quantity among another disjoint set of group-by attributes. For
our experiments, we only considered selection predicates that use
the equal operator. This is because the attributes are foreign keys
(see Figure 9), and a generic range query, doesn’t seem applicable.
Consider for example the partkey, custkey element in Figure 9, the
following types of queries can be requested on our model:

� Give me the total sales per part and customer

� Give me the total sales per part for a given customer C

� Give me the total sales per customer for a given part P

� Give me the total sales of a given part P to a given customer C

Notice that for the Cubetrees this kind of queries with “open”
dimensions are the most expensive ones in terms of I/O overhead.
This is because R-trees in general behave faster in bounded range
queries [Sar97, KR97]. Thus, in a more general experiment where
arbitrary range queries are allowed we expect that the Cubetrees would
be even faster.

For any view V , there are 2jV j different types of slice queries.
If we sum up for all possible views, the total number of slice queries
is 27. More complex queries can be constructed based on the above
framework, if we allow join operators between the fact and the di-
mension tables. For example, by considering the hierarchy part-
type! part on the part dimension, one can roll-up and examine the
sales to a customer for a particular category of parts. However, the
computation of such queries adds the same extra overhead for both
implementations and therefore is not included in the experiment.

3.2 Initial load of the TPC-D dataset
Using the DBGEN utility of the TPC-D benchmark, we first created
an instance of a 1-GB database. This dataset was then used for load-
ing the set of views with the appropriate tuples. The total number of
rows in the generated fact table of Figure 1 was 6,001,215.

partkey,suppkey

partkey,suppket,custkey

partkey suppkey custkey

 none

Fact Table

Figure 10: The dependency graph for V

We used the lattice framework to define a derives-from relation
[MQM97, GHRU97] between the views shown in Figure 9. For ex-
ample view Vfpartkeyg can be derived from viewVfpartkey;suppkeyg
and also from view Vfpartkey;suppkey;custkeyg. On the other hand,

view Vfpartkey;suppkey;custkeyg can be derived only from the fact
table. The materialization of set V through typical relational tables
was done by computing each view from the smallest “parent” [AAD+96],
as shown in Figure 10. For speeding up the computation we issued
transactions that requested exclusive locks on the tables, since con-
currency is not an issue when loading the warehouse. After all the
views in V were materialized, we created the set of indices I to en-
hance query performance. The total number of tuples in all views
was 7,110,464.

Cubetree View

R1

fx;y;zg Vfpartkey;suppkey;custkeyg
R1
fx;y;zg Vfpartkey;suppkeyg

R1

fx;y;zg Vfcustkeyg
R1
fx;y;zg Vfnoneg

R2
fxg Vfsuppkeyg

R3

fxg Vfpartkeyg

Table 5: View allocation for the TPC-D dataset

Data Warehouse

SORT

V
CubetreesView selection

Figure 11: Loading the Cubetrees

For the Cubetree Datablade the creation of the views is slightly
different. First the SelectMapping algorithm is used6 to allocate a
forest of Cubetrees to storeV. Table 5 depicts the selection of this al-
gorithm. We then bulk-loaded the Cubetrees as shown in Figure 11.
Notice that loading the Cubetrees involves a preprocessing step for
sorting the tuples. However this step can be hardly considered as an
overhead, since sorting is at the same time used for computing the
views in V . In our implementation we used a variation of the sort-
based algorithms that are discussed in [AAD+96] for computing the
lattice. The general idea of the algorithm is to minimize the process-
ing requirements by computing an element of the cube-lattice from
one of its parents as we already saw in Figure 10. Our implemen-
tation of the Cubetrees considers such optimizations, however the
details of the algorithms used are beyond the scope of this paper.

Configuration Views Indices Total Time
Conventional 10h 58m 23s 51m 05s 11h 49m 28s
Cubetrees 45m 04s - 45m 04s

Table 6: Loading the databases with the TPC-D data

Table 6 shows the total time taken for loading the two config-
urations. The Cubetree implementation is impressively faster than
the conventional approach. Cubetrees require only 1=16th of the

6This step is executed transparently by the system when the user
specifies the materialized set V.
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Figure 12: Querying the views

time it took the Informix Universal Server to build the conventional
tables and indices. A main contributor to this differential is the in-
ternal organization of the Cubetree storage that permits sequential
writes to disk during the bulk-load operation as opposed to random
I/O. The relational representation of the views and their indices con-
sumes 602MB of disk space in Informix, whereas the total disk space
for the Cubetrees in this experiment was only 293MB, 51% less.
This advantage is mostly due to the fact that Cubetrees are loaded
in a bulk operation and packed and compressed to capacity.

3.3 Queries
For testing the performance, we used a random query generator, coded
to provide a uniform selection of slice queries on the views shown
in Figure 9. For each one of the 27 possible types of queries, we did
a preliminary set of experiments to validate the best way that each
query should be written in SQL to achieve the maximum perfor-
mance under the selected set of views and indices. Consider for ex-
ample query Q1 shown in page 6. Using the materialized set V , one
may answer this query by scanning either view Vfpartkey;suppkeyg
or view Vfpartkeys;suppkey;custkeyg. In SQL terminology, we can
use either of the following expressions:

select suppkey,sum quantity select suppkey,sum(sum quantity)
from V partkey suppkey or from V partkey suppkey custkey
where partkey = P group by partkey,suppkey

having partkey = P

Even though view Vfpartkey;suppkeyg seems more applicable our
experiments showed that view Vfpartkey;suppkey;custkeyg that re-
quires an additional aggregate step for answeringQ1, is indeed faster
due to the index Ipartkey;suppkey;custkey.

We used the random query generator to create a set of 100 queries
for each one of the views in the lattice. We assumed equal proba-
bility for all types of queries, with the exception of queries with no
selection predicate, like “Give me the total quantity for all products
and customers”. These queries generate a very large output, which
dilutes the actual retrieval cost. All queries where executed in batch
through a script and their output was printed on the screen. In Fig-
ure 12, we show the total execution time of the queries along all
views, for both configurations. It is interesting to notice that most
of the queries ran in sub-second levels. This result validates the as-
sumption, that view materialization significantly enhances the per-
formance of OLAP queries. However, comparing the two approaches,

0 5 10 15 20 25 30 35 40 45

Throughput (queries/sec)
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Figure 13: System throughput

we can see that the Cubetrees outperformed the conventional orga-
nization in all cases. Figure 13 depicts the minimum and maximum
system throughput measured in queries/sec for both configurations.
Its shows that the peak performance of the conventional approach,
barely matches the system low for the Cubetrees implementation.
The average query throughput was 1.1 queries/sec for the conven-
tional views and 10.1 queries/sec for the Cubetrees, almost 10 times
faster.

Figure 14 depicts how the Cubetrees scale up with larger input.
This time we tested the Cubetree Datablade using a 2-GB dataset
of TPC-D data. The Figure shows that query performance is practi-
cally unaffected by the larger input. The small differences are caused
by the variation on the output size, which for the 2-GB case is larger.

3.4 Updating the Data Warehouse
Perhaps the most critical issue in data warehouse environments is
the time to generate and/or refresh the derived data from the raw
data. The mere size of them does not permit frequent re-computation.
Having a set of views materialized in the warehouse adds an extra
overhead to the update phase. Many optimization techniques [AAD+96,
HRU96, ZDN97] deal only with the initial computation of the ag-
gregate data, while others [GMS93, GL95, JMS95, MQM97] focus
on incrementally updating the materialized views.



partkey,suppkey,custkey partkey,suppkey partkey,custkey suppkey,custkey partkey suppkey custkey

View

0

5

10

15

20

25

30

T
ot

al
 ti

m
e 

(s
ec

s)
 fo

r 
10

0 
qu

er
ie

s

1GB Dataset

2GB Dataset

Figure 14: Scalability test (Cubetrees only)

However traditional database systems, will most probably ex-
pose their limitations when dealing with updates rates of several MBs
or GBs per time unit (hour, date etc) of incoming data, in the context
of a data warehouse. A typical approach that most commercial data
warehouse environments follow is to rebuild most structures from
scratch during an update down-time window. However by creating
a new instance of the derived data every time an update increment is
obtained is not only wasteful but, it may require a down-time win-
dow that leaves no time for OLAP! Thus, the only viable solution
is to consider bulk incremental operations, where changes are de-
ferred and applied to the warehouse in large batches. The Cubetree
organization nicely fits into this framework. Figure 15 shows a bulk
incremental architecture for keeping the setV up-to-date. At first the
increment of the warehouse is obtained. Then, using the same oper-
ations that were used for the initial creation, the delta increment of
V is calculated. During a final phase, this increment is merged with
the existing Cubetrees, to create an instance of new packed Cube-
trees.

Data Warehouse

SORT

Old Cubetrees

Daily

Increment

Sorted

delta MERGE

New Cubetrees
V

View selection

Figure 15: Bulk incremental updates of the views

To demonstrate the performance of the Cubetrees during incre-
mental updates, we generated a 10% increment (598,964 rows) of
the 1-GB TPC-D dataset, using again the DBGEN utility. For the
conventional representation of the materialized views, we tested both
updating the views incrementally and computing them from scratch.
For all experiments we assumed a daily update and a drop-dead dead-
line of 24 hours to incorporate the changes to the data warehouse.

Table 7 shows the time taken to complete the update of the data
warehouse in all tree cases. For all experiments we computed the
time taken by the server to update the database, after the daily incre-
ment was loaded into the system. Updating the views incrementally
for the conventional database did not succeed in completing the task
within the one day window. This was due to the fact that updating/or
inserting tuples one-at-a-time for all views in V adds too much of
an overhead to the relational system. For every tuple in the deferred

Method Total Time
Incremental updates of materialized views >24hours
Re-computation of materialized views 12h 59m 11s
Incremental updates of Cubetrees 8m 24s

Table 7: Updates on the TPC-D dataset

update-set, we have to perform a look-up operation7 in each one of
the views, to check if a corresponding aggregate does already exist
and update its value, or if not insert a new row. Thus, the problem
with materializing the views as relational tables is that these struc-
tures are immensely inadequate for incremental updates. Cubetrees
on the other hand, maintain the stored tuples sorted at all times. This
permits merge-packing of the sorted deferred set with the old val-
ues. This operation requires linear time in the total number of tuples.
Furthermore, the packing algorithm that we use does only sequential
writes to the disk. Thus, Cubetree organization achieves the small-
est down-time by a factor of 100-1.

4 Conclusions

In this paper we proposed the use of Cubetrees as an alternative stor-
age and indexing organization for ROLAP views. We argued and
showed by experiments that the relational storage organization and
indexing of such views is inadequate for the type of operations needed
in the context of a Data Warehouse. Cubetrees, on the other hand,
are much more economical in storage and very efficient in query ex-
ecution and updates.

We have used a Cubetree Datablade developed for the Informix
Universal Server and presented experimental results using the TPC-
D benchmark for populating the same set of views using both the re-
lational and the Cubetrees alternative framework. Our experiments
first, validate the need for materializing OLAP views and second,
prove that Cubetrees offer 10-1 better query performance and a 100-
1 faster update speed over the relational representation. At the same
time, Cubetrees provide 51% storage savings due to packing and
compression.

7For the reported figures we used additional indexing on the con-
ventional implementation of the views to speed up this phase.
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