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Abstract

The Client{Server DBMS model has emerged as the

main paradigm in database computing. The Enhanced

Client{Server architecture takes advantage of all the avail-

able client resources including their disk managers. Clients

can cache server data into their own disk units if data are

part of their operational space. However, when updates oc-

cur at the server, some of the client data managers may

need to not only be noti�ed about them but also obtain por-

tions of the updates as well. In this paper, we examine

the problem of managing server imposed updates that af-

fect client cached data. We propose a number of server

update propagation techniques in the context of the En-

hanced Client{Server DBMS architecture and examine the

performance of these strategies through detailed simulation

experiments.

1 Introduction

In recent years, we have seen a number of important

technology developments, namely, the wide availability

of inexpensive workstations and PCs, the introduction of
large, fast and reliable disk units, as well as the appearance

of fast local area networks (FDDI networks [19]). These

developments paved the way to the introduction of the
Client{Server Database Systems (CS{DBMSs).

The central concept in CS-DBMSs is that a dedicated

machine runs a DBMS and maintains a main centralized
database (DBMS{Server)[10, 8]. The users of the system

access the database through either their workstations or

PCs via a local area network. They usually run their
programs locally on their own machines and direct all

database inquiries and/or updates to the DBMS{Server.

In this way, they become the server's clients. This con-

�guration is termed Standard Client{Server DBMS (SCS)

[7]. Although the environment in SCS is distributed, the
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DBMS is centralized and therefore, transaction handling

is easier than distributed transaction management. The

computational Client{Server model [24] has been adopted
as a standard by DBMS suppliers and used in commercial

products [15, 13] as well as a number of research prototypes

[12, 3]. The Enhanced Client{Server DBMS [8] o�{loads
disk accesses from the server by having the clients run a

limited DBMS, in terms of concurrency, and by caching

results of server queries to the client disk managers. In
this paper, we study propagation strategies of server im-

posed updates for the Enhanced Client{Server DBMS ar-

chitecture as the number of participating clients increases.
A number of update propagation techniques is presented,

and their performance is studied through simulation under

various workloads.
The paper is organized as follows: the second section

gives an overview of the Enhanced Client{Server DBMS.

In section 3, we state the problem and compare this work
with prior related studies. The fourth section proposes a

number of policies, and discusses unique policy character-

istics and overheads. Section 5 gives an overview of the
simulation models used. In section 6, we present the eval-

uation methodology and some results from our simulation

experiments. Finally, conclusions can be found in the last
section.

2 Overview of the Enhanced Client{

Server DBMS Architecture

The Standard Client{Server DBMS architecture (SCS)

uses the network as the means to either send messages

or ship query results from the server to clients. Heavy

database processing can create serious overheads on the

server. The Enhanced Client{Server DBMS architecture
(ECS) utilizes both the CPU and the I/O of the client by

caching query results and by enhancing the client function-

ality to a DBMS for incremental management of cached
data [7]. Figure 1 depicts this setting. Although the archi-

tecture can be generalized for any data model we restrict

our discussion to the relational model where we have al-
ready de�ned incremental operations [20].

Caching query results over time permits a client to cre-
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Figure 1: The ECS DBMS Architecture

ate a server database subset on its own disk unit. A client
database is a partial replica of the server database that is of

interest to the client's application(s). There are two major

advantages for this kind of disk caching: �rstly, requests for
the same data from the server are eliminated and secondly,

system performance is boosted since the CPU of clients

can access local data copies. Nonetheless, in the presence
of updates the system needs to ensure proper propagation

of new item values to the appropriate clients.

When the result of a query is cached into a local relation

for the �rst time, this \new" local relation is bound to the

server relations used in extracting the result. Every such
binding is described by three elements: the participating

server relation(s), the applicable condition(s) on the rela-

tion(s), and a timestamp. The condition is essentially the
�ltering mechanism that decides what are the qualifying

tuples for a particular client. The timestamp indicates the

last time that a client has seen the server updates that may
a�ect its cached data. Bindings can be either stored at the

server's catalog or maintained by the individual clients.

Updates are directed for execution to the server which

is the primary site. Pages to be modi�ed are read into

main memory, updated and 
ushed back to the server disk
unit. Every server relation is associated with an update

propagation log which consists of timestamped inserted

tuples and timestamped qualifying conditions for deleted
tuples. Only updated (committed) tuples are recorded in

these logs. The number of bytes written to the log per

update is generally much smaller than the size of the pages
read into main memory [23].

Client query processing against bound data is preceded

by a request for an incremental update of the cached data.
The server is required to look up log portions of the query

involved relations. These log portions maintain times-

tamps greater than the one currently held by the client.
The look up process may be done once the binding infor-

mation for the demanding client is available. Only relevant

fractions or increments of the modi�cations (relation up-
date logs) are propagated to the client's site. The set of al-

gorithms that carry out these tasks are based on the incre-

mental access methods for relational operators described
in [20].

The concurrent processing of all updates and query/log

operations is carried out by the Server DBMS. In order to

maintain consistency, data pages are accessed through a

standard locking protocol such as the 2� locking protocol.
We assume that DBMS bu�er areas used in both server(s)

and clients can accommodate only portions of their disk{
resident data at a time. By making the server the pri-

mary site of the con�guration, we avoid all the complex

job management and processing that has to be carried out
by a conventional distributed DBMS.

3 The Problem and Related Work

The main question addressed in this paper could be

summarized as follows: given an ECS{DBMS con�gura-

tion and a server committed update, what are the best
alternatives in propagating the results of this operation to

the interested clients? Although the issue in its general

framework is not new, it has been examined under di�er-
ent contexts in the past. Alonso et. al. [1] examine relax-

ation (quasi) update propagation methods in information

systems. Carey et al. [6], and Wang and Rowe [26] ex-
amine the performance of data consistency algorithms for

maintaining consistency of data cached in clients' bu�ers.

Franklin et al. examine the performance of various page{
oriented caching techniques [11]. There is also a large

amount of work done in the areas of cache coherence al-

gorithms [2] and distributed shared main memories[18],
where the major bottleneck point is the common bus.

When the problem is examined in the context of the

ECS DBMS con�guration, there is a number of elements

that impose new constraints. These constraints stem from
the fact that databases work predominantly with disk res-

ident data and that the CPU time to process database op-

erations is not negligible at both server and clients. Few
other questions that can be examined in this setting are: �

What is the performance of the various propagation alter-

natives that we may employ ? � How do these strategies
scale up in the presence of many clients (more than 30{40)?

� Is there any gain in employing an incremental propaga-

tion strategy? � In an rare{update environment, there
is no data inconsistency and clients work o� their copies

providing a system with almost linearly scalable perfor-

mance. As updates increase and their operational areas
on the database become larger, what is the overhead that

needs to be paid by both clients and server to o�er timely

change propagation? Some work indirectly related to this
study can be found in [17, 4, 22, 25, 14].

4 Description of the Strategies

In this section, we introduce �ve possible strategies for

ECS data propagation and talk about their rationale and
supporting mechanisms.

On{Demand strategy (ODM): This policy has been es-
sentially used in the model of the Enhanced Client{Server

model outlined in section 2. The main idea is that the



server does not do any book{keeping in terms of the data
bindings. This implies that any time the client wants to

answer a query it has to poll the server with its bind-
ing/caching information. In this way, the server is capable

of identifying the data space of interest for every individ-

ual client and initiate the appropriate actions to service
the request. Query messages, binding information, as well

as update requests are directed through the network from

the clients to the server. Data increments and update com-
mit acknowledgments are forwarded from the server to the

clients.

The second alternative strategy is built around the idea
of broadcasting server data modi�cations to all clients in

the cluster as soon as the update commits [16]. The ra-

tionale is that if the updated tuples are already in main
memory, then we could avoid re{reading data from the

disk when the need for update propagation arises. Thus,

logs become unnecessary items. There are two alternatives
for broadcasting data modi�cations: Broadcasting with No

Catalog bindings, and BroadcastingWith Catalog bindings.

Broadcasting with No Catalog bindings (BNC): This

is the simple version of broadcasting in which commit-

ted updates are sent to all clients indiscriminately. This
strategy requires no extra server functional overhead. As

soon as a write operation commits, the server establishes

a communication channel with each of its clients (one at
a time). Through this channel, updated tuples (or pages)

are shipped to workstations. When the client receives the

changes, it suspends any on{going work and determines if
the broadcasted modi�cations a�ect its operational locale

in any way (this can be determined easily with the bind-

ing information at hand). If this is the case, the client
aborts the current job (if any), 
ushes the newly arrived

changes into its disk, and restarts the just aborted query.

The network tra�c consists of update requests and up-
dated records. Queries are executed solely at the clients

without any server interaction.

Broadcasting With Catalog bindings (BWC): The ap-

proach taken in this strategy is to limit the amount of

broadcasted data over the network. This is done by reduc-
ing the volume of data based on server maintained bind-

ing information. A directory (or catalog) of binding infor-

mation for each client has to be maintained in the server
DBMS system area. This directory is a table of bind-

ings that designate the speci�c areas of the database which

each client has cached into its disk. Every time an update

job commits, the server opens a communication channel

with a speci�c client only if the client's binding calls for

it. In addition, only a portion of the updated tuples needs

to travel over the network, e.g. the one pertinent to the

client. Any query executing at the time of broadcasting at

the client site is aborted and can be restarted after the in-
coming modi�cations have been committed into the client

disk manager. The directory of the bindings can be main-

tained in main memory. However, when the number of
clients increases such an assumption may not be realistic

and the binding directory has to be maintained on the disk.

Finally, there are two more possible propagation strate-
gies by combining the concepts described so far and by in-

corporating the idea of periodic update broadcasting. In
periodic update broadcasting, logs are used as the main

tool to record the \net changes" and client originated

queries are handled in a manner similar to that described
in the ODM strategy. The additional feature is that, at

regular intervals, the server is interrupted by a daemon.

This daemon essentially collects all the changes \not seen"
by the clients so far, and initiates their propagation. This

is done with the rationale that the strategy could gain

on server idle time periods. During these periods some
useful propagation work may take place. However, it is

expected that under stringent job submission times (short

think times) the periodic propagation su�ers in compar-
ison with the previous strategies. As soon as the server

daemon reads the \not seen" portions of the log(s) into

the memory bu�ers, it can dispatch them to the various
clients. This can happen by either using a naive or a dis-

criminatory broadcasting strategy. The former results into

the Periodic broadcasting with No Catalog bindings (PNC)
and the latter into the Periodic broadcasting With Cat-

alog bindings (PWC). The qualitative di�erence between

PNC and PWC is the same as that between BNC and
BWC. PWC tries to limit the volume of data traveling

over the local area network by using server catalog infor-

mation about the operational areas of every client. Client
queries in progress may be aborted and restarted after the

modi�cations are applied on the client data.

5 Simulation Models

We have developed �ve software packages based on
closed network queueing models corresponding to the �ve
update propagation policies.

DBMS Operational Aspects V alue

page size 2KBytes

srv cpu mips 41 MIPS

srv disk acc tm 12 msec

srv main mem 2000 Pages

read page 6500 ins

write page 8000 ins

inst sel 10000 ins

inst prj 11000 ins

inst join 29000 ins

inst mod 12500 ins

inst log 5000 ins

inst ism 6000 ins

mpl 12

bl delay 0.2 msec

dd search 10 msec

kill time 200 msec

cl cpu mips 20 MIPS

cl disk acc tm 16 msec

cl main memory 500 Pages

Network Features V alue

rpcdel 10 msec

mesg length 400 bytes

net rate 10 Mbits/sec

Database Features V alue

Relation Size 1000 pages

Page Size 2048 Bytes

Number of Relations 8

Caching � Logging V alue

Characteristics

�Reli
0.3

Write Log Fract 0.10

ISM Proc 6000 ins

Table 1: Model Parameters



AdditionalParameters Meaning V alue

net proc Avg. overhead for processing a page at NPM 2 msec

dir cond Avg. number of pages accessed for every directory search 2 pages

cpu per dir page Average time needed to CPU a directory page 15 msecs

ODM msg len Average Message Length for ODM{ECS Con�guration 2 KBytes

BRUP prc Avg. time to process a page of broadcasted updates 2.5 msec

msg len Average Message Length for non-ODM{ECS Con�gurations 400 Bytes

per interval Periodic Broadcasting Interval 5 sec

Table 2: Additional Model Parameters

The original ECS closed network simulation model [8]

is altered to re
ect the changes that the above propaga-

tion strategies impose. There are three additional issues
that are addressed by these queueing models, in particular:

network processing, time spent for accessing and process-

ing binding directory information, and �ltering of broad-
casted updates at the client sites wherever necessary. The

description of the used closed network models is omitted

for brevity here but it can be found in [9]. The set of
parameters that describe the model elements are provided

in Table 1. The �Reli factor indicates the fraction of the

server relation i that is cached in every client disk man-
ager. Both clients and servers spent time for processing

the critical path of RPCs [21, 5] in their Network Proc:

Modules(NPM). Table 2 shows some additional param-
eters used in the models of this section. The net proc

parameter accounts for the extra CPU penalties that take

place at the NPM processing elements.

The �ve simulation packages were written in C and their

size vary between 5.3k to 6.1k lines of source code. They

support concurrent job operations, automatic deadlock de-
tection at the server and interruption of processing at the

clients as discussed above. The run time for each of our
experiments requires approximately 47 hours of CPU time

on a SparcStation 2.

6 Workloads and Experiments

The means to create the client data patterns of access

is that of job streams. A job is either a query or an up-

date. A job stream is a sequence of jobs made up by
mixing queries and updates in a prede�ned proportion.

In the two extreme cases, we can have either query or

update only streams. Every client is assigned to execute
such a stream. Utilizing the varying query/update ratios

feature that our simulators have, we run two families of ex-

periments: �Those with Constant number of Update jobs
(CU), where a constant number of four streams submit

updates and the remaining clients queries only (simulat-

ing stock market environments or generally environments
with few writers and many readers). �Those with Variable

Update jobs (VU) where each stream is a combination of

both queries and updates|updates constitute 10% of all
the jobs and are uniformly distributed over the queries

(simulating traditional database environments). Queries
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Figure 2: CU Experiment with 2% Update Jobs

consists of relational operations that manipulate up to 10%
of the pages of the server relation(s). The same exactly

streams were submitted for all update propagation strate-

gies.

The objective of the experiments is twofold: �rst, to

examine how the various update propagation techniques

behave under these workloads, and second to identify im-
portant parameters and study their impact on the di�er-

ent strategies. In the experiments, we vary two param-

eters: the number of participating clients from 5 to 100
and the update page selectivity from 2% to 8%. The sim-

ulators create streams by randomly selecting jobs from

sets of query and update templates. The page update
selectivity remains the same throughout all the modi�ca-

tions of the same job stream. The number of participating

jobs per stream was selected to be long enough (135) to
guarantee throughput con�dent results. The main perfor-

mance criterion for our evaluation is the overall average job

throughput. The average throughput is measured in jobs
per minute (JPM). Initially, client think time is set to zero

in order to test the various update propagation strategies

under stringent conditions. In our experiments, the clients
have cached the data of their interest in their respective

disk units before experimentation commences.

6.1 CU Experiment

Figure 2 shows the results of the �ve con�gurations for

2% update jobs in the CU workload. The number of up-
date streams remains 4 throughout the experiment. BNC

surprisingly performs better than ODM. In ODM strategy,



there are log pages that need to be �rst 
ushed into the
disk and then read on behalf of the various clients. In BNC,

no such reading/writing takes place. Updated tuples from
the main memory bu�ers (just before or after the com-

mit) are transferred to system designated areas and put

forward to the network interface. BNC charges the server
CPU with some processing time and since the broadcasting

happens in a point to point fashion, the network utilization

increases. The server CPU is also charged with the net-
work preparation processing in the case of ODM, but the

amount of data is signi�cantly less and yields smaller net-

work utilization. However, the combined overhead of the
BNC CPU network processing and the network is less than

the overhead of ODM since BNC avoids expensive disk op-

erations. PNC throughput values fall below ODM perfor-
mance, while BWC and PWC con�gurations present the

worst performance rates. PNC is a hybrid between ODM

and BNC. It maintains logs and client originated queries
retrieve log portions on demand (similarly to ODM). In

addition, at regular time intervals (every 5 secs) a daemon

for update broadcasting is invoked and propagates without
discrimination the updated tuples \not sought" until that

time. Since there is no think time, the disk utilization for

PNC policy ranges between 0.91 and 0.94 for more than
30 clients. This forces the throughput curve to come con-

siderably lower than that of the ODM. The reason for the

low throughput rates achieved by both BWC and PWC
is the high CPU server utilization which ranges between

0.73 and 0.78 for the BWC, and 0.53 and 0.62 for PWC

for more than 25 clients. A great deal of the CPU time in
these policies goes in processing the catalog pages. More

speci�cally, BWC spends 73.00% of its busy CPU time

processing catalog pages and PWC 61.90%.
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For more than 80 clients, PWC o�ers slightly improved
throughput rates over BWC. PWC uses heavily its disk

unit (to retrieve portions of the logs at regular intervals)

which brings its disk utilization at high levels (between
0.95 and 0.97), while the BWC's disk utilization remains

limited (between 0.49 and 0.51). Higher disk utilization

means that while the CPU is processing either updates or
network related requests, the disk manager forwards into

the bu�er area the appropriate logs portions that need

transmission. This is the reason why PWC o�ers better
throughput rates.

Figure 3 shows the results of the CU experiment with

writers updating 6% of the server relation pages. BNC
and ODM curves come very close since the bene�ts and

penalties of each of both under the current size of updates

provide almost equivalent throughput rates. Essentially,
the higher network utilization along with the higher CPU

server utilization become equivalent to the high disk uti-

lization of the ODM. PNC and PWC drop below the BWC
curve predominantly because the size of the log increases

creating more disk accesses for both types of periodic prop-

agation.
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Figure 4: CU Experiment with 8% Update Jobs

Figure 4 depicts the results for the CU experiment with

8% page update selectivity jobs. The ODM curve gives

better results than that of BNC. Due to the signi�cantly
larger number of updated tuples, BNC creates a congested

network. The ODM con�guration maintains low network

utilization by forwarding selectively only portions of the
logs. The gap between BNC and BWC becomes smaller

compared to the corresponding gaps of the two previ-

ous graphs. The same is the case with PNC and PWC.
This indicates that heavy updates are handled better with

directory{based techniques (BWC, PWC).

6.2 VU Experiment

Figure 5 shows the results of the VU experiment for 2%

updates in all �ve propagation con�gurations. ODM domi-

nates up to 30 clients but then drops below the throughput
rates achieved by BNC. ODM disk and CPU utilization

values are overall higher than their counterparts of BNC

resulting in faster completion of the client jobs. ODM de-
cline starts at 40 clients. Beyond this point the server disk

utilization ranges between 0.87 and 0.97 indicating that the

number of updates{that increases with the number of par-
ticipating client{makes the server disk resource the main

bottleneck point. BNC decline starts at 50 clients when

the network utilization reaches 0.83. Beyond this point
the network utilization ranges between 0.91 and 0.98 and

it becomes the major bottleneck element for the strategy.
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PNC achieves lower rates than ODM mostly due to strin-

gent time conditions at the server and the extra disk and

CPU required processing for periodic update propagation.
Policies based on catalog page reviewing have the worst

performance. BWC requires heavy use of server CPU for

clusters that have more than 25 clients attached (CPU
utilization is between 0.47 and 0.83), while PWC demon-

strates highly utilized disk manager (utilization is between

0.79 and 0.97 for more than 25 clients). The heavy PWC
disk utilization in this area results in performance worse

than that of BWC.
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Figure 6: VU Experiment with 6% Update Jobs

Figure 6 shows the results of the experiment with up-

dates of 6%. BNC o�ers the best performance through-
out the range of the clients while BWC has emerged as

the second best con�guration. These two con�gurations

demonstrate high server disk and CPU utilizations while
the ODM su�ers from very high disk utilization for more

than 30 clients (higher than 0.91). The latter is the rea-

son for the early decline of the ODM con�guration curve.
Periodic type of propagation policies su�er also from very

high disk utilization rates for more than 15 clients. Similar

trends were found for the 8% update selectivity experiment
where the various curves become more distinguished than

in Figure 6. It is worth mentioning that in this VU work-

load, where the number of update jobs increases with the
number of clients increases, the coupling of a fast server

CPU with a fast network (where all 10Mbits/sec are e�ec-

tively used to transfer modi�ed tuples between the server
and the clients) makes broadcasting a more e�ective way of

propagating changes than the lazy and on demand strat-
egy. ODM has to spend considerable amount of time in

the disk resident log.

6.3 Experiments with Think Time

To examine the behavior of the various propagation

policies in the presence of non{zero think time we re{run
the experiments with average client think time 15 secs.

For brevity, we present only four of the produced graphs

namely those corresponding to experiments CU and VU
and for update jobs with page selectivity of 2% and 6%.

Figures 7 and 8 depict the results for the CU experiment.

ODM is doing better than any other con�guration since
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Figure 7: CU, 2% Updates, and Think Time

the think time provides lighter server resource contention.
In Figure 8 and for the range 80{100 clients, ODM of-

fers inferior throughput rates than BNC due to the high

disk utilization (ranges between 0.88 and 0.90). In this
same high client space, the BNC strategy capitalizes on

the fast network interface and provides better throughput

rates. ODM maintains lower throughput rates only when
the server disk becomes the bottleneck (Figure 8{space be-

tween 80 and 100 clients). The con�gurations based on the

Throughput
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Figure 8: CU, 6% Updates, and Think Time

periodic type of update propagation perform well and their



performance approaches that of ODM in Figure 7. They
use the server idle periods (implicitly provided by the client

think time) to propagate updates. However, under larger
updates (i.e. Figure 8) the gap between PNC/PWC and

ODM becomes larger since these idle server periods be-

come shorter. Note also that in Figure 8 and between 0{
25 clients PNC/PWC give better results than BNC/BWC

due to light server resource utilization.
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Figure 9: VU, 2% Updates, and Think Time

Figures 9 and 10 show the results of the VU with 2%

and 6% update jobs and an average client think time of 15
secs. In Figure 9, the ODM o�ers the best performance

between 0 and 80 clients. Beyond 80 clients, its through-

put rates are worse than those of BNC due to heavy server
resource utilization. Simple updated tuple broadcasting

does relatively well at the beginning of the client space

but o�ers the best rates for more than 80 clients (the net-
work for BNC is still fairly uncongested, i.e., at 100 clients

the utilization is 0.34). The BWC con�guration gives the

poorest rates. The number of binding information pages
that have to be retrieved in order to process the updates

increases linearly with the number of submitting streams

(VU experiment). This contributes signi�cantly to the de-
terioration of the throughput rates.
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Figure 10: VU, 6% Updates, and Think Time

When the updates become larger (Figure 10), the de-

cline of ODM over BNC comes much earlier {at around
50 clients{ since the server log manager copes with larger

items of updated data. The server disk utilization varies
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Figure 11: CU, Loaded Network, 8% Updates

between 0.69 and 0.89. BWC behaves better than ODM

in the range between 60 and 90 clients since both its main

server resources remain moderately loaded (disk utiliza-
tion varies between 0.49 and 0.56 and CPU between 0.59

and 0.76). Beyond that point, the BWC becomes CPU

bound and the ODM disk bound and they both provide
similar throughput rates. PNC/PWC present the poorest

performance. They not only use the log manager heavily

but they also utilize the server's CPU very much.

6.4 Sensitivity Analysis

In this last part, we examine the behavior of the �ve

update propagation strategies under diverse network and
catalog paging parameter settings. Figure 11 depicts the

results of the CU experiment, with job updates of 8% in

a highly loaded network. We simulate this congested net-
work by setting the init time to establish a connection

between any two machines at 20 msecs and bringing the

e�ective transfer rate over the network at 0.5 Mbits/sec.
ODM policy o�ers the best throughput rates while the

con�gurations based on �ltering results after consulting

catalog pages (BWC and PWC) are coming second. ODM
maintains performance of 1.8 times (on the average) better

than PWC and 4.14 times better than BNC throughout the

range of the clients due to e�ective use of the incremental
log operations. The network utilization in PNC/BNC for

more than 10 clients is more than 0.97 and around the same

levels in PWC/BWC for more than 40 clients. In contrast,
the ODM con�guration maintains network utilization be-

tween 0.13 (at 10 clients) and 0.70 (at 100 clients).

Figure 12 shows the results for the VU experiment with

8% update jobs in a highly loaded network. BWC o�ers

better rates than ODM in the range between 10 and 40
clients since the almost immediately appeared high disk

utilization of ODM creates delays that {in the case of

BWC{ are o�set by the network. Nevertheless, for more
that 40 clients BWC experiences high network utilization

(greater than 0.97). This works negatively for this con�g-

uration in the high client space since the total number of
updates increases linearly to the number of participating

clients (VU type of experiment). The ODM network uti-



lization ranges between 0.26 and 0.64 in the whole client
space of the experiment.
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Figure 13 shows the results of the CU experiment for
updates of 2% in a long haul network. Clients and server

communicate through dedicated telephone lines at 19,600

BPS. ODM o�ers the best throughput rates since it uses
its incremental log processing. The network bandwidth is

almost fully utilized for all con�gurations. Therefore, the

best strategy is the one that puts the least amount of traf-
�c on the network (i.e., ODM). Although both PWC and

BWC discriminate in terms of the volume of data they

forward to the network, they fail to service clients individ-
ually creating longer completion times for the submitted

streams than those achieved in ODM.
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Finally, Figure 14 presents the results for the VU ex-

periments, where light penalties for the catalog based op-

erations of the broadcasting con�gurations are assumed.
More speci�cally, the server makes one disk access to re-

trieve the binding conditions for a group of �ve clients

in average and each such page is processed for 20 msecs
once in the bu�er area. BWC and PWC have come much

closer to the ODM which maintains the best overall perfor-

mance. High network utilization works as an impediment
for achieving even higher performance rates in both BWC

and PWC for more than 40 clients.
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7 Conclusions

We have proposed server update propagation tech-

niques for the Enhanced Client{Server DBMS architecture
and evaluated them under multiple jobs streams of di�er-

ent composition and varying update rates. Five strategies
for propagating updates from the server to the clients were

proposed namely, ODM (on demand), BNC/BWC (broad-

casting with/without catalog bindings), and PNC/PWC
(periodic broadcasting with/without catalog bindings).

The core architectural con�guration for our experiments

consisted of a server connected to a varying number of
clients. We were interested in the way that the various up-

date propagation strategies scale up their performance as

the number of clients increases per server. Based on closed
network queueing models, we developed software packages

for all the strategies in discussion.

Our main experimental results are:

� ODM o�ers the best performance if none of the server

resources reaches full utilization.

� Under high utilization of server resources, the BNC

con�guration surprisingly o�ers the best performance

when: 1) The updates have small update page selec-
tivities. 2) The number of clients is large (more than

60-70) in the CU family of experiments. 3) The num-

ber of updates increases linearly with the number of
clients attached to the server. A fast local area net-

work paired with fast processing CPUs at both ends

of a critical path o�ers a combined job completion
time for the broadcasting policies that is shorter than

that achieved by the ODM strategy.

� If ECS operates under a heavily loaded network, then

ODM policy provides the best performance indepen-

dent of the workload. The gains become greater for
the more heavily updating curves. This is true if ECS

is to function in long haul networks as well.

� When server bookkeeping is inexpensive in terms of

disk accesses and CPU processing time, propagation

techniques based on catalog pages and updated tu-

ple �ltering may considerably cut down on network

tra�c.



� Periodic type of update propagation demonstrates
signi�cant gains when there is non{zero think time.

The highest gains were attained for the light update
curves.
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