
Appeared in the Proceedings of the 12th International Confer-

ence on Data Engineering, New Orleans, LA, February 1996

Consistency and Performance of

Concurrent Interactive Database Applications�

Konstantinos Stathatosy Stephen Kelleyz Nick Roussopoulosyz John S. Barasx

Institute for Systems Research, University of Maryland, College Park, MD, 20742

fkostas,skelley,nickg@cs.umd.edu, baras@isr.umd.edu

Abstract

In many modern database applications, there is
an emerging need for interactive environments where
users directly manipulate the contents of the database.
Graphical user interfaces (GUIs) display images of the
database which must reect a consistent up{to{date
state of the data with minimum perceivable delay to
the user. Moreover, the possibility of several appli-
cations concurrently displaying di�erent views of the
same database increases the overall system complex-
ity. In this paper, we show how design, performance
and concurrency issues can be addressed by adapting
existing database techniques. We propose the use of
suitable display schemas whose instances compose ac-
tive views of the database, an extended client caching
scheme which is expected to yield signi�cant perfor-
mance bene�ts and a locking mechanism that main-
tains consistency between the GUIs and the database.

1 Introduction

Fast networks and CPU abundance coupled with
large main and secondary memories have been the
primary reason for the nearly universal adoption of
the client{server computing model. Virtually every
DBMS employs this approach to o�oad processing
from the server to client machines in order to increase
the overall performance and scalability of the system.
This distribution of tasks has made possible a new

generation of database applications. Very often these
applications o�er to the user a highly interactive envi-
ronment through sophisticated Graphical User Inter-
faces (GUIs). GUIs compose complex displays where
database objects are graphically rendered in one or
more ways, based on the desired representation of the
objects (e.g. a graph versus a tabular format) and the
choice of interface drawing components used to real-
ize it within each application. Users access or update
database objects by interacting with (e.g. pointing
and clicking on) their graphical representations. This

�This material is based upon work supported by the Na-

tional Science Foundation under Grants No. EEC 9402384 and

No. ASC 9318183, by NASA under Grants No. NAGW{277S

and NAG 5{2926, by theMaryland IndustrialPartnership, Uni-

versity of Maryland under Grant No. MIPS 1122.11, and by

ARPA under Grant No. F30602{93{C{0177
yAlso with the Department of Computer Science
zAlso with the Institute for Advanced Computer Studies
xAlso with the Department of Electrical Engineering

increasing use of graphical user interfaces has posed
several challenges to database system as well as ap-
plications design.
An example of such an application, which was the

motivation for this work, is an advanced network
management system (NMS) that relies on an object{
oriented DBMS for storing and managing all the nec-
essary data [1]. This application builds graphical dis-
plays that represent the current state of part of the
managed network. Through this display, the network
operator can perform a number of management func-
tions (e.g. monitor network activity, change con�g-
uration parameters) in order to ensure the expected
network operation. To a great extent, the decisions of
the operator depend on the display which must agree
as much as possible with the real network state.
Designers and developers of interactive applications

put a lot of e�ort in building user interfaces appealing
to the users both in terms of appearance and func-
tionality. The speci�c goals they set include a system
that [2]:

� accurately reects the database contents on the
screen, and

� responds to user actions without lengthy and un-
predictable delays.

The importance of the �rst goal lies on the fact that
users take decisions and act based on the perception
of the database o�ered by the interface. Therefore, it
is imperative that the graphical elements composing
the GUI are consistent with the objects stored in the
database at all times. This requirement is not triv-
ial, especially in a multi{user database environment
where more than one user may concurrently access
and update the database through varied and complex
views. Then, the response time of the interface a�ects
signi�cantly the level of users' acceptance and satis-
faction of a system. Generally, people have a positive
reaction to fast predictable responses, but they easily
get annoyed or frustrated from unexpected delays.
These factors present several challenges to the de-

sign of both the database and the applications, as
well as the architecture of the DBMS itself. In the
following section, we elaborate on these challenges
by addressing problems pertinent to database design,
performance and consistency for interactive database
applications. Then, in section 3, we propose exten-
sions to existing database techniques, such as caching
and locking, that e�ciently address these problems.
In section 4 we briey describe our experience from

1



the development of network management application
over a commercial OODBMS. Finally, in section 5,
we present related work by other researchers before
we conclude in section 6.

2 User interface challenges

Our previous experience in developing interactive
database applications revealed some important prob-
lems. First, database design for such applications can
be extremely complex. Then, database systems are
tuned for e�cient query processing but ignore user
interface performance requirements. Last, in existing
systems there is no provision for maintaining consis-
tency between the database and the GUI.

2.1 Database design

User interfaces contain several graphical elements
that are aimed to be an intuitive representation of
real world entities. These elements o�er some view
of the real world tailored to the desired functional
requirements. In database applications, each such el-
ement is associated to one or more database objects.
Its appearance depends �rst on attribute values of the
associated database object(s), and second on the user
interface context. Consider, for example, a network
management application that displays a graph repre-
senting the nodes and links of a real communication
network. Assume that in the database schema, a class
Link is de�ned whose Utilization attribute holds the
current utilization of a link. On the user's monitor,
a link would appear as a line connecting two nodes
(boxes, circles, icons etc). Depending on the interface
context, there are several options for displaying its
utilization. Two possible examples are color coding
(e.g. red, pink and white lines could represent links
with high, moderate and low utilization respectively)
and width coding (the line width is proportional to
the link utilization).
It can be argued that the database schema should

be designed in a way that incorporates user inter-
face functionality. In other words, classes should in-
clude attributes and methods that allow object dis-
play and manipulation through a graphical user inter-
face. However, we argue that there are several points
that make this approach impractical:

Complexity Modelling real world entities through a
collection of data structures is often a very dif-
�cult task by itself. Extreme caution must be
taken so that the �nal schema design is an ade-
quately accurate and e�cient model. Obviously,
any additional design requirements imposed by
the user interface, makes this process far more
complicated. It would prescribe the introduction
of additional attributes (e.g. screen coordinates),
methods (e.g. for drawing objects, clicking on ob-
jects etc) and possibly hierarchies (e.g. all draw-
able objects should be derived from a common
base class).

Multiple perspectives Depending on the function
that a user performs, it may be desirable to have
several visual representations (perspectives) of
the same object (e.g. color{coded and width{
coded link utilization) or di�erent \views" of the

same database (e.g. tabular or graph representa-
tion). Each one would require a di�erent set of
attributes (e.g. screen coordinates, color, width,
etc). This may incur a signi�cant storage space
overhead and potentially degrade performance.
Moreover, user interface methods can become ex-
tremely complex to implement.

Multiple users A database schema that incorpo-
rates user interface speci�c attributes (e.g. screen
coordinates) cannot accommodate di�erent user
or application preferences about the way data
are displayed. Consider, for example, a sce-
nario where multiple users are working on a com-
mon subset of the database objects. Even if all
these users select the same visual representation,
it is conceivable that they may prefer di�erent
screen layout (i.e. di�erent object arrangement
on the screen) for the speci�c function they per-
form. But this would not be possible since the at-
tributes of persistent objects must have the same
value system{wide, no matter how many physical
copies of the objects exist.

Orthogonal design Most existing database systems
do not e�ciently support schema evolution. In
many cases, a modi�cation in the structure of
the data is very expensive since it may involve
o�{line reloading of the entire database. But it
is possible that new application and/or user in-
terfaces are designed and developed or existing
ones are modi�ed long after the database. Obvi-
ously, it is practically impossible for the database
schema to have provision for every possible user
interface. Therefore, the database design should
be orthogonal to user interface design, and fo-
cus on capturing the important aspects of the
real world, ignoring any design requirements from
user interfaces. Ideally, no modi�cations to the
database structure should be required in order to
create new user interfaces.

2.2 Performance considerations for GUI

based applications

One of the main concerns of application developers
is that users are very sensitive to the response time of
the system. Lengthy response times are usually detri-
mental to productivity, increasing user error rates and
decreasing satisfaction [2]. Also, users tend to estab-
lish expectations of the time required to complete a
given task based on past experiences. Unexpected de-
lays usually trouble or frustrate the users. Therefore,
high variability in the response time of the user in-
terface should be prevented. Hence, building a GUI
that displays large amounts of information stored and
managed by a DBMS can be very challenging. Many
performance pitfalls may exist, since the response to
a user action may require extensive data processing, a
number network message exchanges, and several data
retrievals from secondary storage.
The majority of existing object{oriented database

systems are based on the client{server model, mainly
in order to take advantage of the ample resources of
modern workstations. The role of servers is limited to
serving clients' requests for data (e.g. individual ob-

2



jects, object clusters or disk pages) while maintaining
the integrity of data across the system. The main part
of the processing load is distributed among powerful
clients. This approach yields better overall system
throughput and, consequently, wider scalability mar-
gins.
The degree up to which client processing can be ex-

ploited depends on the coupling between the clients
and the server. The more a client depends on a server
to perform a task the less it can use its local resources.
A widely used method for minimizing this coupling is
client data caching [3]. This method allows data to
be located close to where they are needed, reducing
the client{server communication overhead. As a re-
sult, there is a big performance bene�t from reduced
transaction latency and server workload.
Client data caching appears as the best approach

to deal with the performance problems of the user in-
terface too. Database objects cached in client's main
memory can be directly used for user interface manip-
ulations. This can reduce secondary storage accesses
and client{server communication overhead. However,
data caching as has been implemented in current sys-
tems does not completely address the user interface
requirements, mainly for two reasons:

� It is possible that only few of the database ob-
ject attributes are required in order to build a
display. In the link example we mentioned ear-
lier, a Link object may contain a large number of
attributes that characterize the actual link. But
for display purposes, only the end points of the
link and its utilization are necessary. With tra-
ditional caching techniques, database objects are
cached as a whole. Therefore, it is possible that
a large part of the client memory is wasted for
storing data completely useless to the user inter-
face.

� Usually the applications have no explicit control
on the clients' cache. Although they can cause
data to come into the local memory, they cannot
\pin" data there either due to space limitations or
concurrency control considerations. The DBMS
architecture and parameters (e.g. bu�er replace-
ment policy, bu�er size, object clustering) as well
as the system{wide workload a�ect the contents
of the cache. For example, the bu�er manager
may drop an object out of the bu�er in order
to free memory space or simply because its copy
has become invalid. As a result, a simple user
action such as zooming or panning that involves
that object maybe unexpectedly delayed until it
is brought back into the bu�er.

Hereafter, we refer to this form of caching as client
database caching in order to emphasize its dependency
to the database system.

2.3 User interface consistency

A non{trivial task for the graphical user interfaces
of database applications is presenting a consistent and
up{to{date view of the database. This task is even
more more di�cult in a multi{user environment where
di�erent users may view and possibly update the same
database objects. Obviously, some sort of display syn-

chronization mechanism is required which preserves
the consistency of the user interfaces, under the per-
formance requirements mentioned above. Generally,
the straightforward approach of periodically refresh-
ing the user interfaces is not considered acceptable,
since it may cause excessive overhead.
From the database perspective, the display consis-

tency problem is not much di�erent from the client
cache coherency problem. GUIs retain graphical rep-
resentations of database objects much like caches keep
copies of these objects. Therefore, the consistency re-
quirements imposed upon the database system by user
interfaces are similar to the those of client caches.
DBMSs preserve client cache coherency as well as

transaction semantics by enforcing some kind of con-
currency control protocol. Transactions that read
and/or update data must satisfy the ACID proper-
ties [4]. Among those, isolation is usually guaranteed
by a data lockingmechanism. Under such mechanism,
a transaction must obtain exclusive (write) locks for
data it wants to update, and shared (read) locks for
reading data. An exclusive lock can be granted to a
transaction only if no other lock of any kind has been
granted to any other transaction.
Displaying some database objects can be consid-

ered a kind of long transaction, a display transaction,
which spans the lifetime of the display. However, tra-
ditional transaction semantics cannot be used to pre-
serve GUI consistency as too restrictive. User inter-
faces cannot hold shared locks on objects being dis-
played, since that would prevent any updates to them
or, at best, it would require all but one client to re-
move (erase) their renderings of the database objects
to be updated, at least until the updates are commit-
ted to the database. In other words, these display
transactions cannot be isolated. In section 3.3 we de-
scribe how data locking can be extended to handle
this looser requirement.

3 Proposed database extensions

The user interface challenges presented so far have
not been systematically addressed by database re-
searchers. In the following subsections, we propose
such a systematic approach which extends and com-
bines techniques previously employed in di�erent con-
texts.

3.1 Display schema

Through GUIs, applications try to o�er an envi-
ronment where users can carry out their tasks with
minimal e�ort. Thus, depending on the speci�c tasks
performed as well as personal preferences, interfaces
may present several views of the same database. This
way, users may perceive a number of di�erent data
organizations (schemas) which may be quite di�erent
from the actual database schema.
In section 2.1 we argued that the database design

should not be a�ected by the user interface. As an
alternative, we propose that, for each interactive ap-
plication, a proper external display schema should
be de�ned over the existing database schema. Dis-
play schemas are composed of display classes (DCs)

3



that encapsulate the desired user interface function-
ality and form inheritance and/or containment hier-
archies that better meet GUI requirements (e.g. for
screen layout computation, for screen navigation etc)
both in terms of implementation e�ort and runtime
e�ciency.
The de�nition of a DC depends on the database

class(es) it represents as well as the user interface con-
text. It should include only attributes and methods
that are necessary for the display and manipulation
of the corresponding user interface elements. These
attributes may be a subset of the database class(es)
attributes as well as additional GUI speci�c attributes
(e.g. screen coordinates).
The graphical elements that compose the image dis-

played by a GUI must be instances of display classes,
i.e. display objects (DOs). Display objects are cre-
ated by copying and/or computing the necessary in-
formation from database objects. During their life-
time, they are explicitly associated and kept consis-
tent with those database objects1. This association
turns the collection of display objects into an active
(updatable) view of the database as opposed to a pas-
sive snapshot.
For our network management example, the Color-

CodedLink and theWidthCodedLink display classes can
be de�ned, as in �gure 1. Both classes have attributes
for screen coordinates whose values are computed by
graph layout algorithms, as well as methods for draw-
ing the graphical elements (i.e. lines). In addition,
the ColorCodedLink class has a Color attribute and the
WidthCodedLink class a Width attribute. The value of
these attributes is determined by the Utilization at-
tribute of the associated Link database object.

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

ColorCodedLink
X1:
Y1:
X2:
Y2:
Color:

100
50
300
250
Red

WidthCodedLink
X1:
Y1:
X2:
Y2:
Width:

230
470
510
400
8

A

B

A

B

Figure 1: Display Classes Example

DCs can also be de�ned in order to combine mul-
tiple database objects into a single graphical element
or, reversely, represent a single database object with
multiple graphical elements. For example, the path
between two nodes in a communication network may

1Each display object keeps an OID list for all its associated

database objects

be represented by a line connecting the two nodes,
without showing the actual links in the path. The
graphical element for that line can be a display object
that is associated with all the Link database objects of
the path. Its utilization (i.e., color, width etc) would
depend on the utilization of all these database objects
(e.g. maximum or average utilization).

3.2 Display caching

The various memory spaces found within a client{
server database system form a memory hierarchy ac-
cording to the data access latency associated with
each of them [5]. Usually, it is a three level hierarchy
consisting of the server's disk, the server's main mem-
ory and the clients' main memory2. Client requests
force data to be copied from a lower to an upper level
in the hierarchy in order to reduce the latency of fu-
ture accesses to the same data.
In principal, client database caching can enhance

the user interface performance. However, in sec-
tion 2.2 we argued that it has two important draw-
backs. As an alternative, we propose a double client
caching scheme, with the introduction of client dis-
play cache as the new topmost level in the memory
hierarchy (�gure 2).

Client

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

ColorCodedLink
X1:
Y1:
X2:
Y2:
Color:

100
50
300
250
Red

WidthCodedLink
X1:
Y1:
X2:
Y2:
Width:

230
470
510
400
8

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

A
B
0.85
...

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

D
is

pl
ay

 C
ac

he
(le

ve
l 3

)
D

at
ab

as
e 

C
ac

he
(le

ve
l 2

)
S

ec
on

da
ry

 &
 M

ai
n 

M
em

or
y

(le
ve

ls
 0

 &
 1

)

Server

Client

Figure 2: Extended Client{Server Memory Hierarchy

Unlike the other memory levels, the display cache
holds display objects. They are created by read-
ing database objects that are brought into the client
database cache. This double caching may initially ap-
pear as an unnecessary overhead and waste of mem-
ory space. However, it has two major performance
advantages:

2A client's local disk has occasionally been considered as an

extra intermediate level of the hierarchy

4



� As we mentioned earlier, one of the functions
of display objects is �ltering out database infor-
mation that is irrelevant to the GUI. Using this
approach, the display cache space can be man-
aged in an optimal way from the GUI perspec-
tive. Once display objects are created, they are
retained for as long as they are displayed. The as-
sociated database objects are no longer of any use
to the GUI and, eventually, they will be dropped
out of the database cache3. This way, the in-
formation overlap between the two client caches
is reduced. The database cache is released from
the GUI data requirements and can be more ef-
fectively used for answering database queries. In
cases where large database objects are associated
with relatively small display objects, the dou-
ble caching scheme could actually save instead
of wasting client memory.

� It is explicitly managed by the application which
gives the GUI the exibility to \pin" data in local
main memory according to its own performance
requirements. The contents of the display cache
are a�ected neither by database system param-
eters and policies nor by system workload and
concurrency control considerations. This is very
crucial for avoiding long and unpredictable user
interface responses.

3.3 Display locks

From what we described so far, we can think of the
image presented to a user by the GUI as an accu-
rate visual reection of its display cache. In this way,
the problem of keeping application interfaces synchro-
nized and consistent with the database turns into a
client cache coherency problem. The only di�erence
has to do with transaction correctness criteria since
display transactions cannot be isolated.
In client{server DBMSs, the server is usually re-

sponsible for maintaining data consistency through
the enforcement of a concurrency control protocol.
It must make sure that all user accessible copies
of the same data in any level of the memory hier-
archy are consistent, so that a user never accesses
stale information. Generally, there are two major
classes of protocols: detection{based and avoidance{
based protocols [6]. Detection{based protocols al-
low stale data to reside in a client's main mem-
ory but require that transactions validate any cached
data before they commit. On the other hand, under
avoidance{based schemes, cached data are guaranteed
to be valid at any time. This is achieved by employing
the read{one/write{all (ROWA) replica management
paradigm. Locally cached data are considered read{
locked (and therefore valid) across transaction bound-
aries, unless instructed di�erently by the server. As
a result, no explicit communication with the server
is required for reading cached data. For updates, the
server is responsible for \calling back" data that some
client either intends to update or has already updated.
Detection{based protocols, which allow stale copies

of data to reside in the client's cache, are not suitable
for display objects. Moreover, within the display's

3Assuming LRU bu�er replacement policy

lifetime there are no transaction boundaries, thus
there are no clear points when data consistency should
be validated. The user interface, therefore, needs to
be somehow noti�ed on relevant data updates so that
any necessary action can be taken (i.e. redraw the
updated part of the display). This makes avoidance{
based protocols more appropriate since, under such
a scheme, data validation is initiated by the server
whenever necessary.
However, these protocols are mostly designed to en-

force strict transaction correctness. For the relaxed
correctness requirements of display transactions we
propose a non{restrictive form of shared locks, called
display locks. They are non{restrictive in the sense
that display locked database objects can be updated,
provided that at any time all lock holders get noti�ed
about the updates committed to the database.
The display locking protocol is quite simple and can

be easily integrated with a strict avoidance{based pro-
tocol. A client requests display locks for all database
objects that are associated with display objects. The
database lock manager on the server is expected to
grant those locks, since display locks are compatible
with all types of locks. When a transaction wants
to update some data, it does so after obtaining an
exclusive lock for that data. After the update is com-
mitted to the database, the lock manager releases the
exclusive locks and noti�es all clients that hold display
locks on the updated data. The noti�ed clients refresh
the associated display objects (and therefore the dis-
play) by reading the new data from the database. We
call this protocol post{commit notify protocol.
A variation of this protocol is the early notify proto-

col, more suitable for long transactions. In this case,
user interfaces are noti�ed about update intentions
as well. When a client requests an exclusive lock for
a database object, the lock manager sends noti�ca-
tions to displays holding display locks on that object.
The displays could then graphically mark (e.g. turn
red) the object being updated, deterring users from
modifying objects already being updated. As a result
update conicts and therefore transaction aborts can
be signi�cantly decreased. After the exclusive lock is
released, the lock manager sends again messages in-
forming whether the update transaction committed so
that the a�ected clients can take appropriate actions.
We must note that a server can easily support both
protocol variations. Also, in every case the database
consistency is ultimately guaranteed by the existing
concurrency control algorithm.

4 Implementation

In order to demonstrate the concepts presented and
investigate any potential implementation problems,
we designed and implemented a multiple user, limited
functionality version of a network con�guration man-
agement application [7]. This application employs two
di�erent visualization techniques, the Tree{Map [8]
and the PDQ Tree{browser [9], to display complex
hardware hierarchies. ObjectStore [10], a commercial
object{oriented database system, was used to store
the network database.
The implementation included three major tasks:

5



1. Extend the database server with display locking
capabilities,

2. Enhance the client applications structural design
to incorporate the display locking mechanism,
and

3. Design the user interface in terms of de�ning ap-
propriate display classes for the tree{map and
PDQ tree{browser.

The overall system architecture is presented in �g-
ure 3. In the following subsections we will discuss in
more detail each of the three tasks and explain the
various modules of the �gure.

Display Lock

Manager

Database
Server

Database
Access
Module

Display
Lock Client

Application

User Interface

TCP/IP

Display Display

TCP/IP

Agent

Enhanced Server

Database
Access
Module

Application

User Interface

TCP/IP

Display Display

Display
Lock Client

Figure 3: Implementation Architecture

4.1 Extending the server

Extending the database server with display lock-
ing capabilities is straightforward, assuming that the
server already implements an avoidance{based proto-
col for client cache consistency. The lock manager
is be the only module that should be modi�ed. The
required modi�cations are simple extensions, since it
has already built{in most of the required structures
and functionality4.
However, using a commercial system prohibited us

from directly modifying the existing lock manager.
The desired functionality had to be implemented on
top of the existing server, at the application level.
Therefore, we built the Display Lock Manager (DLM)
as a separate application, acting as an agent to the
server. This approach is possible because display locks
are compatible with all types of locks and there is
no need for the DLM to interact with the existing
lock manager. The obvious drawback is that most
of the lock management functions are replicated at
the agent, but on the other hand, there is a potential
performance bene�t by relieving the database server
from additional overhead5.

4For more details look chapter 8 in [4]
5The database server and display lock manager may run on

di�erent machines

The DLM has two{way communication capability
with the clients. It receives messages for holding or
releasing display locks as well as update noti�cations
and propagates noti�cations to clients as necessary.
Display lock requests are not acknowledged back to
the clients since they are expected to be satis�ed. In-
ternally, it maintains information about the clients'
display locks. This information is updated with any
display lock request or release and determines which
clients (if any) should be noti�ed upon updates.

4.2 Building client applications

Creating client applications within the proposed
framework requires the incorporation of the display
locking mechanism as well as the design of appropri-
ate display classes.

4.2.1 Display lock client

Early in the implementation process, we made the
observation that a single client application often uses
multiple displays (windows) concurrently. It is also
possible that such displays may share some database
objects, in which case the same consistency problem
arises. One solution to this is to consider the di�er-
ent displays of an application as di�erent clients for
display locking purposes. Each display would contact
the agent separately and the agent could send update
noti�cations directly to each display. However, this
solution would add some extra overhead to the agent
in terms of communication, processing and memory
requirements.
A better solution is to use a hierarchical approach

that distributes part of the display locking respon-
sibility to the clients. For this purpose, each client
should include a Display Lock Client (DLC) module.
The DLC functionality and internal structure is al-
most identical to the that of the DLM. This concept
is similar to that of having a single bu�er manager
per client. The bene�t is two{fold:

� The DLC can take over all communication with
the DLM. Display lock requests and releases as
well as update noti�cations can be sent through
the DLC. Also, this module can be the \listener"
for DLM noti�cations, relieving user interface de-
velopment from network programming details.

� The DLC can be a local display lock manager
that manages, �lters and dispatches local display
lock requests and update noti�cations. This can
result in signi�cant decrease in the number of
messages that need to exchanged with the DLM.
A database object is display{locked at the DLM
only once, no matter how many local displays de-
pend on it. Also, the DLM has to send only one
update noti�cation to the client no matter how
many of the client's displays are a�ected.

4.2.2 Designing display classes

The display schema need to be carefully designed
to meet the GUI functional requirements e�ciently.
Under our proposed framework, display objects are
also required to request and release display locks for

6



database objects that a�ect the appearance of the in-
terface, and react properly upon receiving update no-
ti�cations.
Object{orientation o�ers features that allow sys-

tematic design of display classes that meet those re-
quirements. More speci�cally, constructors and de-
structors of display objects can explicitly request or
release the required display locks, since they can have
accurate knowledge about their associated database
object(s). Moreover, display object methods can en-
capsulate both GUI functionality and the desired re-
action to database updates. In other words, when a
display receives an update noti�cation, it can invoke
properly designed update methods of the a�ected dis-
play objects, in order to refresh its appearance. In
addition, combining display classes into proper inher-
itance hierarchies can signi�cantly reduce implemen-
tation e�ort.

4.3 System evaluation

In order to test our system, we had up to 4 concur-
rent users performing simplemonitoring and updating
functions. In addition, there was a separate process
that was continuously modifying attribute values of
database objects, simulating real{time network mon-
itoring. Although we only tested our system with
a small number of concurrent users, we can briey
present some performance remarks from those tests.
From the user point of view, the application perfor-

mance was very satisfying, in terms of user interface
responsiveness. Considering our tests scale, it is not
clear that this is a result of the double caching scheme
and the GUI's decoupling from the database work-
load. But, because of the relatively high update rate
caused by the updating process, we can more safely
conclude that, at the client side, the display consis-
tency maintenance overhead is very small to deteri-
orate performance. On the other side, our tests in-
dicated no e�ect of the server overhead for handling
display locks. Extending the traditional lockingmech-
anisms to include display locks will only contribute a
very small fraction of overhead and, therefore will not
hurt the overall server's performance.
An important performance metric is the time re-

quired for updates to be propagated to the users
screen. Generally, the actual time between an update
commit to the database and its appearance on all rel-
evant displays was in the order of 1 to 2 seconds. We
must note that, since copies of updated objects in the
client database cache are dirty, this propagation time
includes the exchange of at least three network mes-
sages: the DLM noti�cation to the client, the client
request to the database server for the updated ob-
jects, and the database server reply with the objects.
The noti�cation protocol could be extended so that
updated objects are shipped to the a�ected clients
along with the update noti�cation. In many cases,
this more eager approach could eliminate two of the
three messages. However, it is not always clear how
an update a�ects the contents of client displays, since
the DLM has no semantic information about them,
and therefore, it may better to let the clients explic-
itly request the new information required for display
refreshing.

Last, we noticed that the required size for the client
display cache was from 3 to 5 times smaller than the
corresponding client database cache. Although for our
small scale system this was important, it is expected
to be a signi�cant factor for real systems whose sophis-
ticated displays are often required to accommodate a
very larger number of (possibly bigger) objects.

5 Related work

To the best of our knowledge, not much emphasis
has been given by the database research community
on user interfaces even though it has been recognized
as an important area [11]. User interfaces are usually
considered external to a database system and commu-
nication is limited to pure data exchange.
Views in the context of object{oriented databa-

ses [12] are similar to the display schemas that we
propose. As in relational databases, views provide
external schemas for user convenience and data pro-
tection. They allow dynamic de�nition of classes, sets
of objects, multiple interpretations of objects and can
facilitate schema evolution [13]. Work on this area has
mainly concentrated on view de�nition mechanisms
and query languages, as in [14] where a query lan-
guage is proposed to de�ne virtual classes which are
populated either with database or with imaginary ob-
jects. Performance and consistency issues have been
largely ignored. However, it would be interesting to
investigate the applicability of these view de�nition
techniques for dynamic user interface speci�cation.
A two{level client caching architecture has been

also proposed in [15]. Their approach uses the top
cache level for realizing application speci�c schemas.
However, the focus of this work was on exploiting
this architecture to e�ciently implement object{views
over a relational database as well as reuse local data
for answering subsequent queries.
Last, display locks are similar to the notify locks

presented in [16]. Their di�erence is that the notify
lock algorithms were designed to provide strict trans-
action concurrency control. However, it seems that
the rich set of locks and communicationmodes o�ered
by ObServer [17] for cooperative transactions, can
be used to implement display locks. Non{restrictive
read (NR{READ) locks allow a transaction to read an
object without prohibiting write privileges to other
transactions. These locks can be combined either
with the update{notify (U{NOTIFY) communication
mode which noti�es lock holders upon updates (post{
commit notify protocol), or with the write{notify (W{
NOTIFY) communication mode which noti�es lock
holders when another transaction request object for
writing (early notify protocol).

6 Conclusions

In this paper we have presented and discussed sev-
eral issues necessary to support the creation and
maintenance of consistent, acceptably performing
GUIs for highly interactive, multi{user database ap-
plications. We focused on schema design, memory
organization and management mechanisms as well as

7



locking protocols as the principal areas of investiga-
tion.
In the area of schema design we noted the di�erence

between database object attributes and methods, and
those needed by the GUI only to render the objects on
its display. We proposed the adoption of GUI speci�c
display schemas, external to the database. This way,
GUIs are realized through instances of that schema,
called display objects, that need not (and sometimes
cannot) be maintained by the database. For perfor-
mance reasons, we de�ned a new niche for them in
the topmost level of the system's memory hierarchy
where they can be cached according to the GUI needs,
not a�ected either by DBMS policies and parameters
or by other concurrent user accesses to the data.
This approach to GUI implementation, gave us the

opportunity to address GUI consistency as a client
cache coherency problem. Since it is necessary that
cached display objects are at all times consistent with
persistent, yet updatable, objects, we proposed a lock-
ing mechanism based on a display locks and two vari-
ations of a noti�cation protocol.
Finally, we presented some implementation issues

from a simple prototype of a network con�guration
management application to test the feasibility of our
approach.

Acknowledgments

The authors wish to thank Michael Franklin,
Ramesh Karne and Sandeep Gupta for their helpful
comments and suggestions.

References

[1] Jayant R. Haritsa, Nick Roussopoulos,
Michael O. Ball, Anindya Datta, and John S.
Baras, \MANDATE: MAnaging Networks using
DAtabase TEchnology", IEEE Journal on Se-
lected Areas in Communications, vol. 11, no. 9,
pp. 1360{1372, Dec. 1993.

[2] Ben Shneiderman, Designing the User Interface:
Strategies for E�ective Human-Computer Inter-
action, Addison-Wesley, Reading, MA, second
edition, 1992.

[3] Michael J. Franklin, \Exploiting Client Re-
sources Through Caching", in Proceedings of
the 5th International Workshop on High Per-
formance Transaction Processing, Asilomar, CA,
Sept. 1993.

[4] Jim Gray and Andreas Reuter, Transaction Pro-
cessing: Concepts and Techniques, Morgan Kauf-
mann, San Francisco, CA, 1994.

[5] Michael J. Franklin, Michael J. Carey, and Miron
Livny, \Local Disk Caching for Client{Server
Database Systems", in Proceedings of the 19th
International Conference on Very Large Data
Bases, Dublin, Ireland, Aug. 1993, pp. 641{655.

[6] Michael J. Franklin, Caching and Memory
Management in Client{Server Database Systems,
PhD thesis, Department of Computer Science,
University of Wisconsin { Madison, 1993.

[7] John S. Baras et al., \Next Generation Net-
work Management Technology", in AIP Con-
ference Proceedings 325, Conference on NASA
Centers for Commercial Development of Space,
Albuquerque, NM, Jan 1995, pp. 75{82.

[8] Brian Johnson and Ben Shneiderman, \Tree{
Maps: A Space{Filling Approach to the Visu-
alization of Hierachical Information Structures",
in Proceedings of IEEE Visualization Conference,
San Diego, CA, Oct. 1991, pp. 284{291.

[9] Harsha P. Kumar, Catherine Plaisant, and Ben
Shneiderman, \Browsing Hierarchical Data with
Multi{Level Dynamic Queries and Pruning",
Technical Report 95{53, Institute for Systems
Research, University of Maryland, College Park,
MD, Mar. 1995.

[10] Charles Lamb, Gordon Landis, Jack Orenstein,
and Dan Weinreb, \The ObjectStore Database
System", Communications of the ACM, vol. 34,
no. 10, Oct. 1991.

[11] Michael Stonebraker, Rakesh Agrawal, Umesh-
war Dayal, Erich J. Neuhold, and Andreas
Reuter, \DBMS Research at a Crossroads: The
Vienna Update", in Proceedings of the 19th
International Conference on Very Large Data
Bases, Dublin, Ireland, Aug. 1993, pp. 688{692.

[12] Sandra Heiler and Stanley Zdonik, \Object
Views: Extending the Vision", in Proceedings of
the 6th International Conference on Data Engi-
neering, Los Angeles, CA, Feb. 1990, pp. 86{93.

[13] Elisa Bertino, \A View Mechanism for Object{
Oriented Databases", in Proceedings of the In-
ternational Conference on Extending Database
Technology, Vienna, Austria, Mar. 1992, pp. 136{
151.

[14] Serge Abiteboul and Anthony Bonner, \Objects
and Views", in Proceedings of the ACM SIG-
MOD International Conference on Management
of Data, Denver, CO, May 1991, pp. 238{247.

[15] Catherine Hamon and Arthur M. Keller, \Two{
Level Caching of Composite Object Views of Re-
lational Databases", in Proceedings of the 11th
International Conference on Data Engineering,
Taipei, Taiwan, Mar. 1995, pp. 428{437.

[16] Kevin Wilkinson and Marie-Anne Neimat,
\Maintaining Consistency of Client{Cached
Data", in Proceedings of the 16th International
Conference on Very Large Data Bases, Brisbane,
Queensland, Australia, Aug. 1990, pp. 122{133.

[17] Mark F. Hornick and Stanley B. Zdonik, \A
Shared, Segmented Memory System for an
Object{Oriented Database", ACM Transactions
on O�ce Information Systems, vol. 5, no. 1,
1987.

8


