
Adaptive Data Broadcast in Hybrid Networks
�

Konstantinos Stathatos
kostas@cs.umd.edu

Nick Roussopoulos
nick@cs.umd.edu

John S. Baras
baras@isr.umd.edu

Institute for Systems Research, University of Maryland

Abstract

With the immense popularity of the Web, the world
is witnessing an unprecedented demand for data
services. At the same time, the Internet is evolving
towards an information super-highway that incor-
porates a wide mixture of existing and emerging
communication technologies, including wireless,
mobile, and hybrid networking. Taking advantage
of these new technologies, we are proposing a hy-
brid scheme which effectively combines broadcast
for massive data dissemination and unicast for in-
dividual data delivery. In this paper, we describe a
technique that uses the broadcast medium for stor-
age of frequently requested data, and an algorithm
that continuously adapts the broadcast content to
match the hot-spot of the database. We show that
the hot-spot can be accurately obtained by mon-
itoring the “broadcast misses” observed through
direct requests. This is a departure from other
broadcast-based systems which rely on efficient
scheduling based on precompiled user profiles.
We also show that the proposed scheme performs
effectively even under very dynamic and rapidly
changing workloads. Extensive simulation results
demonstrate both the scalability and versatility of
the technique.

1 Introduction

The world is witnessing an unprecedented demand for data
services. The immense popularity of the Web is generat-
ing exponential demand workloads that cannot be satisfied
with existing Internet capacity and traditional data services

�
This material is based upon work supported by the Center for Satellite

and Hybrid Communication Networks under NASA grant NAGW-2777,
by the National Science Foundation under Grants No. NSF EEC 94-02384
and No. ASC9318183, and by ARPA under Grant No. F30602-93-C-0177

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

in which scalability grows at best linearly with network
bandwidth and server capacity. Such workloads have al-
ready been observed in the course of special events such as
the 1996 Olympics, the last elections in the US, etc. when
several million requests were made during peak periods.

Traditional unicast (point-to-point) connection-oriented
data services are uneconomical because even if the infras-
tructure were developed to meet the demand in both net-
work bandwidth and server capacity, most of it would be
underutilized and wasted during non-peak periods. On the
other hand, the Internet is evolving towards an information
super-highway that incorporates a wide mixture of com-
munication technologies, including wireless, mobile, and
hybrid networking[KB96, BG96, Kha97]. In this environ-
ment, new types of information services are surfacing and
practical solutions to the anticipated explosion of user de-
mands are being proposed[FZ96]. Among these, broadcast-
based services have the potential of meeting such work-
loads, as they can efficiently disseminate information in a
connection-less mode to any number of receivers, with no
significant performance degradation in terms of access la-
tency. But a major concern for the success of such systems
is broadcasting the right set of data, i.e. data for which there
is indeed vigorous demand.

In [SRB96], we introduced a hybrid system that effec-
tively combines broadcast for massive data dissemination
(broadcast data push) and unicast for upon-request data de-
livery (unicast data pull). This system is built around the
notion of air-caching, i.e. the use of the available broad-
cast capacity for temporary storage of frequently requested
data. The key issue is the identification of the database hot-
spots to be air-cached, so that only a small load of “broad-
cast misses” is left to be serviced in the usual connection-
oriented way. There are, however, at least two major ob-
stacles: First, data needs can be neither characterized nor
predicted a-priori because of the dynamic nature of the
demand. For example, emergency or weather related situ-
ations may cause abrupt shifts in demand. Therefore, tech-
niques based on precompiled broadcast schedules are not
applicable in this case. Second, users receiving information
from a broadcast channel are passive, in the sense that they
do not communicate with the server to acknowledge the
usefulness of the broadcast. Therefore, the server lacks a
lot of invaluable information about actual data needs.

In this paper, we propose a technique that continu-
ously� adjusts the broadcast content to match the hot-spot
of the database. We show that the hot-spot can be accu-
rately obtained by monitoring the “broadcast misses” ob-
served through direct requests. This is a departure from all
other schemes which rely on complete—but in most cases
unavailable—knowledge about both “hits” and “misses”.
We develop an adaptive algorithm which relies on marginal
gains and probing to identify the more intensively requested
data. We show that the overall performance of this hybrid
system can surpass the capacity of a unicast-only server
by at least two orders of magnitude, under the assumption
that the server’s capacity is sufficient for servicing the cold
set of data. If that holds, the performance of the hybrid
system proposed herein is independent of the total volume
of the workload and, thus, the system exhibits significant
scalability, even for rapidly changing access patterns.

2 Hybrid Data Delivery

In this section, we develop a simplified analytical model for
hybrid data delivery which will provide some intuition be-
hind our work and illustrate the involved trade-offs. Based
on this model, we discuss how broadcast and unicast can
work synergistically to yield high data service rates.

2.1 The Hybrid Model

In a hybrid scheme, we can exploit the characteristics of
each of the data delivery modes and integrate them in a way
that better matches the clients’ demands. The objective is to
deliver the needed data with minimum delay to very large
numbers of clients. Striving for that goal, we should be
looking for solutions that range between:
Pure broadcast (push)1: The server repetitively (periodi-

cally) broadcasts all the data items, while clients are
passive listeners who make no requests. The repeti-
tion allows the broadcast medium to be perceived as a
special memory space. Its major advantage is that it
can be accessed concurrently by any number of clients
without any performance degradation. This makes
broadcasting an attractive solution for large scale data
dissemination. However, its limitation is that it can
be accessed only sequentially, as clients need to wait
for the data of interest to appear on the channel. A
direct consequence is that access latency depends on
the volume of the data being broadcast, which has to
be fairly small.

Pure unicast (pull): This is a standard client-server archi-
tecture where all requests are explicitly made to the
server. Such a scheme cannot scale beyond the capac-
ity of the server and the network. The average data
access time depends on the aggregate workload as well
as the network load, but not on the size of the database.

1Throughout this paper the terms data push and broadcast are used
interchangeably; so are the terms data pull and unicast

0
�

N
�

R
es

po
ns

e
T

im
e

M
�

G
Number of Broadcast Items ()n

T
Tpull�Tpush�

Figure 1: Hybrid Delivery Trade-off

Consider a database containing
�

data items of equal
size � . Assume that the demand for each item 	 forms a
Poisson process of rate
�� with the items numbered such
that
 1

 2
�������

�� . A server, modeled as an M/M/1
system, services requests for these items with mean service
time 1 ��� . In addition, this server can broadcast data over
a channel at a rate � . Also assume that, for some reason,
the server decides to broadcast the � first items and offer
the rest on-demand. If we define Λ ����� �� � 1
 � , then
the expected response time for requests serviced by the
server is !#"�$&%'%(� 1)�*(+ Λ , * Λ -/. , while for those satisfied by

the broadcast it is !0"�$&1324�65872 9 , half the time required to
broadcast all � items. The expected response time ! of the
hybrid system is the weighted average of ! "�$&%'% and ! "�$&132 .

Figure 1 plots a representative example of ! , ! "�$&%'% and
!#"�$&1:2 as a function of � , i.e. the number of broadcast items.
We have assumed that the total workload is greater than � ,
which is a safe assumption for large scale systems with huge
client populations. Henceforth, we refer to � as the system’s
pull capacity. The first thing to note in this figure is that
the performance of the pull service ! "�$&%'% is exponentially
affected by the imposed load. It is evident that with too
little broadcasting, the volume of requests at the server may
increase beyond its capacity, making service practically
impossible (left side of the graph). Stated more formally,
the response time for pulled data—and consequently the
overall response time—grows arbitrarily large, for �<;>= ,
where = is such that Λ �@? Λ AB�C� . On the other hand,
the response time for pushed data is a straight line, growing
proportionally to the volume of the broadcast data. The
slope of that line is determined by the size of the data � and
the available bandwidth � . Hence, too much broadcasting
is not desirable either. Obviously, for best performance, we
must look for solutions in the area around D , where we can
maintain a proper balance between data push and pull.

2.2 Practical Considerations about Workloads

The discussion of the previous section suggests that it is
possible to balance data delivery modes in order to obtain
optimal response time. However, this optimal solution de-
pends on the shape and size of the imposed workload. In
what follows, we explore hybrid delivery from a practical
perspective and give a qualitative answer to how a combi-

≈R
eq

ue
st

 R
at

e
λ i

i0
E

N
F

GG
Figure 2: Skewed Data Access Pattern

nation of broadcasting and unicasting can be advantageous.
Intuitively, data broadcasting is helpful when its con-

tent is useful to multiple receivers. The benefit is twofold:
first, with each broadcast message the server saves several
unicast messages that otherwise would have to be sent indi-
vidually, and second, the satisfied receivers avoid sending
requests that might end up clogging the server. On the other
hand, broadcast data that are useful to hardly any receivers
do not yield any benefit,1 but instead harm overall perfor-
mance by occupying valuable bandwidth. This implies that
broadcasting is effective when there is significant common-
ality of reference among the client population. Ideally, we
would like to detect and exploit that commonality.

Consider, for example, a data set of
�

items and assume
that they get requested according to the skewed access pat-
tern of Figure 2. For clarity, we assume that items are sorted
according to their respective request rates. From the dis-
cussion so far, it becomes clear that we are looking for the
optimal point D to draw the line between data that should
be pushed and data that are left to be pulled. The area to the
left of D (the head of the distribution)represents the volume
of requests satisfied by the broadcast. The shaded area to
the right of D (the tail of the distribution) represents the
volume of the explicit requests directed to the server. Ac-
cording to the model presented in the previous section, the
response time depends on the area of the tail and the width
of the head (i.e. the number of broadcast items). The height
of the head reflects the savings of broadcasting. Generally,
the selection of D should satisfy two constraints:

(1) The tail should be maintained below the pull capacity.
(2) The head should be wide enough to accommodate the

hot-spot but should not include rarely requested data.

While the first constraint is intuitive, the second deserves
some clarification, as it is critical to the practicality of a
hybrid solution. Consider a case where the tail is a very
long area of very small, but not zero, height. That repre-
sents a large number of items that each gets requested very
infrequently. If this area is larger than the pull capacity, we
need to move the point D even more to the right. But since
each item contributes very little to the total area, the optimal
D would be found deep into this tail. This means that the
quality of the broadcast content would substantially deteri-

1Assuming there is another way to satisfy those very few receivers

orate by including lots of rarely requested items, yielding
unacceptably high response time, which nonetheless would
be optimal according to our model. Consequently, under
such workloads, slightly increased pull capacity is a more
favorable solution than inordinate broadcasting.

Bearing this in mind, we consider cases where the opti-
mal solution does not require broadcasting rarely requested
data. It is assumed that the pull capacity is at least such that
it can handle the aggregate load imposed by requests for
such data. Under this assumption, we propose an adaptive
hybrid scheme that, in a near optimal way, exploits broad-
casting to take the load of hot data off the server which is
left with a tolerable load imposed by infrequently requested
data.

3 Adaptive Hybrid Delivery

In this section we elaborate on the proposed adaptive hy-
brid delivery scheme. Our approach is mainly based on the
notion of data caching. Conceptually, we treat the available
broadcast capacity as a global cache memory between the
server and the clients. Much like typical cache memories,
this air-cache is used to increase throughput in terms of
requests serviced per time unit, and should be adaptive to
changing workloads. The challenge in making it adaptive
lies in the fact that the server cannot have any information
about “air-cache hits” simply because they are not acknowl-
edged by the clients. Therefore, traditional cache manage-
ment techniques based on cache hits, such as LRU, MRU,
etc., are not applicable. Instead, the algorithm presented
here relies on “air-cache misses”, indicated by explicit re-
quests for data not broadcast, that provide the server with
tangible statistics on the actual demand. This unveils an
interesting perplexity of the system: the more misses the
better server statistics to adapt on; but, on the other hand,
the more hits on the broadcast, the more satisfied the clients.

3.1 Vapor, Liquid and Frigid Data

In our work, for each item in the database we define a tem-
perature that corresponds to its request rate
 � . In addition,
each item can be in one of three possible states (for a more
intuitive presentation, we borrow terminology from their
analogy to the physical states of water):
Vapor: Items deemedas heavily requested which are there-

fore broadcast, i.e. put in the air-cache.
Liquid: Items currently not broadcast for which the server

has recently received a moderate or small number of
requests, but not enough to justify broadcasting.

Frigid: Items that have not been requested for a while and
their temperature
 � has practically dropped to 0.

In the proposed adaptive scheme, the server dynamically
determines the state of the database items, relying on air-
cache misses. These can be considered as the “sparks” that
regulate the temperature and state of the data. Specifically:

H Vapor data are retrieved from the air-cache, and the
server does not get any feedback about their actual
temperature. As they are not heated by requests, they
gradually cool down and eventually turn into liquid.
The duration of the cooling process depends on the
temperature that initially turned them into vapor.H Liquid data items that continue being requested either
turn into vapor or remain liquid, depending on the
intensity of the requests. If they stop being requested
they eventually freeze.H Frigid data items that start being requested turn into
liquid or even vapor, again depending on the intensity
of the requests. Obviously, as long as they get no
requests they remain frigid.

The hardest part of this process is distinguishing vapor
from liquid data, and this is the focus of this paper. The dis-
tinction between liquid and frigid data items is the same to
that achieved by a buffer manager of a database system us-
ing a frequency-based replacement policy[RD90, OOW93].
Likewise, the server should maintain liquid items in main
memory anticipating new requests in the near future, and
can retrieve frigid items from secondary memory only when
necessary. In practice, the distinction of frigid data plays
an important role in terms of overhead, specially in the case
where frigid data make up the largest part of the database.
With a default 0 temperature, the server is off-loaded from
tracking their demand statistics, and can also safely ignore
them when looking for candidate vapor items.

3.2 Repetitive Data Broadcasting

In order to create the effect of caching on the air, we employ
a repetitive broadcast scheme. Contrary to typical periodic
broadcast schemesthat assume a fixed schedule, the sizeand
content of our broadcast is continuously updated to better
match the workload. The heart of our approach is a queueI

which stores all vapor data. The server picks the next
item to broadcast from the head of

I
. After an item gets

broadcast, it is removed from the head and gets appended
back to tail of

I
. At the same time, its temperature is

multiplied by a predetermined CoolingFactor J�K 0 L 1 M to
reflect the cooling process of vapor data.

The contents of
I

are modified once every cycle, the end
of which is identified by a vapor item specially assigned
as a placeholder. Once this placeholder is broadcast, the
server re-evaluates the state of data and updates the queue
accordingly. In this adaptation process, described in detail
in the next section, it pinpoints vapor items that should be
demoted to liquid, and liquid items that need to be promoted
to vapor. Vapor items selected for demotion are marked, so
that after their next broadcast they will be removed from
the queue. New vapor items are placed on the tail of queue.
Finally, the (new) item on the tail of

I
is assigned as the

next placeholder. The result is a repetitive broadcast scheme
with evolving size and content.

An integral part of the hybrid delivery scheme is the
indexing of the air-cache. Since clients are expected to se-
lect between the two data delivery paths, the server needs
to make them aware of items forthcoming in the broadcast
channel. Here, we have adopted a simple technique that
uses the signature of

I
(i.e. the list of data identifiers in the

queue) as an index that is broadcast interleaved with the
data. The clients examine the index and decide whether to
wait for the required item to arrive or to make an explicit
request for it. The broadcast frequency of the index can be
adjusted to trade overhead for the maximum time clients
are willing to wait before making the decision. Note that,
depending on the size and the number of vapor items, it is
possible that this simple indexing scheme will yield con-
siderable overhead. For such cases, we plan to investigate
more elaborate indexing schemes, such as bit-vectors or the
schemes proposed in [IVB94a] and [IVB94b].

3.3 Adaptation Based on Marginal Gains

In this section, we present the algorithm that adapts the
contents of the broadcast. As we already mentioned, in the
adaptation process, the server needs to make two kinds of
decisions: (a) which of the vapor data have cooled down
enough to be demoted to liquid, and (b) which of the liquid
data have become hot enough to be promoted to vapor. A
straightforward approach of establishing absolute temper-
ature thresholds cannot be applied because the state of an
item depends also on the aggregate workload, i.e. the rel-
ative temperature of the other items. To account for that,
we have developed an algorithm that makes these decisions
based on the expected marginal gain of each possible action.

Let us first present how the expected marginal gain is
computed when considering an item 	 for promotion to va-
por state or demotion to liquid. Note that in both cases it
is computed similarly except for the sign of the involved
quantities. Therefore, to avoid duplication in the presen-
tation, we use the variable N which takes the value ? 1 if
the item 	 is vapor and considered for demotion to liquid,
and O 1 if it is liquid and considered for promotion to va-
por. The computations are based on the model described in
Section 2.1. The only difference is that now we also take
into account the overhead of broadcasting the index. The
additional variables used here are the aggregate request rate
for liquid data Λ P , the aggregate request rate for vapor data
Λ Q , the number of vapor items

� Q , and the size of each
index entry R . The expected overall marginal gain S�! is
given by the weighted average of the marginal gains S�! "�$&1:2
and S�! "�$&%'% where, if we define S Λ Q �TNU
�� , we have:

S&!#"�$&132V�WN �<O>K 2 � Q OXNYM�R
2 �

S�! "�$&%'% �>! "�$&%'% S Λ Q
� ? Λ P OZS Λ Q

d
[

Λ
\

V
]

R
es

po
ns

e
T

im
e {

{

{

{

ΛV
]

θ

Tpush^T
Tpull^

dT
[

dT
[

push^

dT
[

pull^

Figure 3: Marginal gains

Figure 3 depicts these computations graphically. Ideally,
the system should try to reach and operate at the minimum
point of the curve ! . However, it turns out that in practice
this is not the best thing to do. This is explained by the
fact that to the left of this minimum point the response time
grows very fast. As a result, under a dynamic workload it is
very probable that even a small change can have a very bad
effect on the system. Therefore, operating at or too close
to the minimum can make the system very unstable. This
was indeed verified by our experiments[SRB97]. Instead,
we have to force the system to operate in a suboptimal area
to the right of the minimum, safely avoiding instability.
We achieve this by establishing some small (but not zero)
threshold _ 0 for the angle _��C`ba#� * 1 cedc Λ f .

The actual algorithm that updates the contents of the
vapor queue

I
consists of three simple steps: First, it de-

motes to liquid all vapor data with temperature lower than
the hottest liquid item. Then, using the respective marginal
gains, it continues demoting vapor items in increasing order
of temperatures while _hgi_ 0. Last, it takes the opposite
direction, and as long as _j;k_ 0, it promotes liquid data to
vapor in decreasing order of temperature. Note that if at
least one vapor item is demoted in the second step, then no
liquid item will be promoted in the third step. Also, it is
possible that vapor items that get demoted in the first step
will be re-promoted in the third. If data items are sorted by
their temperatures,2 the complexity of this algorithm is in
the order of the number of items that change state.

Figure 4 illustrates an example of how the algorithm
works. We assume that initially items A, B, C, D, E, F, and
G are vapor, items H and I are liquid, and that
�lZmn
 9 m

poqmi
�r6ms
�tums
�vwmi
�x<ms
py�ms
�z . In this case,

R
es

po
ns

e
T

im
e

Λ
{

V

Demote

Promote

AB
C
|

D
EF

G
} H

G
} I

Figure 4: Example execution of the adaptive algorithm

Server Clients~

≈ ≈

Liquid

Vapor�

t0

t1

t3

t4

t5

t2

(a)

Server Clients�

≈≈

Vapor

Vapor

Liquidt0

t1t2

t4
�

t3

t5

t6

t7

(b)

Figure 5: Demotion (a) without, and (b) with probing

the algorithm firsts demotes A, B, C, D, E, F, and G since
their temperature is lower than that of the liquid H. Then, it
detects that there is no further gain by demoting more items
so it skips the second step. At the third step it promotes
three items, H, G, and I (G was demoted in the first step).

3.4 Temperature Probing

A potential weakness in what has been described so far is
the artificial cooling of vapor data. It was introduced for the
sole purpose of giving the server a chance to re-evaluate the
temperature of vapor data regularly, Thus, it is not expected
to reflect the actual evolution of data demand, and may very
well result in a situation where a very hot item is demoted
to liquid. Should that happen, the server will be swamped
with hundreds or thousands of requests for that item. Even
though the adaptive algorithm will eventually correct this
by re-promoting the item, the reaction time lag may be big
enough to cause serious performance degradation.

This is better explained in Figure 5a where we present
the time line of events after a decision to demote a hot
vapor item at time ` 0. This decision is reflected in the next
broadcast of the index which reaches the clients at ` 1. From
that point on, all the requests for that item are directed to
the server. If the item is still hot, the server decides re-
promote it to vapor at ` 3, and includes it at the next index
broadcast, received by the clients at ` 4. But, considering
data transmission and server inertia delays (i.e. the time to
re-promote the item), the interval between ` 1 and ` 4 could be
substantial. Theshaded area in the figure represents the total
request load that this wrong decision may generate. The
cumulative penalty of consecutive improper demotions can
be heavy enough to make the system practically unusable.

This section introduces temperature probing as a way of
preventing any disastrous effects by premature demotions
of vapor data. The algorithm that we propose remedies
potential errors by a “double clutch” approach, which is
illustrated in Figure 5b. Soon after the decision to convert
an item from vapor to liquid at ` 0, and before it is actually
heated up by misses, the item is re-promoted at time ` 2.
This creates a controllably small time window (from ` 1

2In [SRB97] we discuss how to maintain the order with low overhead

N
�

0
�

C�
HS

A
�

Figure 6: HotColdUniform distribution
N
�

C�0
�

HS
A
2
�

Figure 7: Gaussian distribution

to ` 3) that limits the expected number of client requests
for the demoted item, but still can provide the server with
concrete information about the actual demand. In effect,
through a small number of misses, we give the server the
opportunity to probe for the actual temperature of the data,
before committing to its decision. After the re-promotion
of the item at ` 2, the server waits for requests generated
during the period � ` 1 L�` 3 � in order to re-evaluate the item’s
actual temperature. Due to network inertia,we delay this re-
evaluation at least until ` 5. Finally, depending on the result
of the probing, the item is either demoted or reinstated to
the broadcast queue with corrected temperature at ` 6.

A critical factor for this double-clutch approach is the
probing interval � ` 0 Le` 2 � . If it is too short, hardly any requests
will be generated to help the server in the re-evaluation. If
it is too long, it essentially defeats its purpose. There-
fore, it should be selected very carefully, and should prefer-
ably be dynamically adjusted to the intensity of the work-
load. For these reasons, we found that a very good se-
lection can be based on the average request rate of vapor
data. More specifically, we set the probing time to be
ProbingFactor � � f

Λ f , where � f
Λ f is inverse of the average

temperature of vapor data. Essentially, with this demand-
adjusted probing window, the ProbingFactor determines
the expectednumber missesgeneratedper probe, and allows
the system to explicitly control the total probing overhead.

4 Experiments and Results

4.1 Simulation Model

In order to establish the potential of hybrid data delivery and
investigate the involved trade-offs, we have built a simula-
tion model of the proposed system. For our experiments,
we assumed that the provided information is a collection of
self-identifying data items of equal size (e.g. disk pages).
Clients generate requests for data which are satisfied either
by the broadcast or the server upon explicit request. Under
this assumption, we have modeled all the client popula-
tion as a single module that generates the total workload, a
stream of independent requests for data items. The exact
number of clients is not specified but instead it is implicitly
suggested by the aggregate request rate. For the data access
pattern we used two different distributions: HotColdUni-
form and Gaussian (Figures 6 and 7). The first one is only
used as an ideal case where there is a clearly defined hot-
spot in the database. The second is more realistic, but at the

same time it allows explicit customization through the same
four parameters: the aggregate request rate RR, the aggre-
gate request rate for cold data A, the width of the hot-spot in
terms of data items HS, and the center of the hot-spot C. In
order to create the effect of dynamic workloads, the value
of these parameters can vary in the course of an experiment.
For example, by changing the value of C we can simulate
workloads with moving hot-spots.

For the server we have used a simple data server model,
enhancedwith a transmitter capableof broadcasting, and the
functionality required to implement our adaptive algorithm.
Although it is modeled in detail through several parameters
(e.g. cache size, I/O characteristics, etc.), the presentation
and interpretation of our results is based only on one pa-
rameter, the system’s pull capacity � , which corresponds
to the maximum rate at which requests can be serviced.
Depending on the experiment setup, this is determined by
(a combination of) the processing power of the server, the
available bandwidth, and the size of the data. For the net-
work, since we want to capture hybrid environments, we
need to specify the characteristics of three communication
paths: (1) the broadcast channel, (2) the downlink from the
server to the clients, and (3) the uplink from the clients to the
server. For simplicity, we assume that all clients use similar
but independent paths for establishing point-to-point con-
nections with the server. The downlink on the other hand
is a shared resource that is used for all server replies. The
broadcast channel is considered a separate channel with a
fixed specially allocated bandwidth. We must also note that
in our study so far we have ignored communication errors.

4.2 Static Workloads

For the first set of experiments we used static workloads,
even though they cannot demonstrate the system’s adap-
tiveness. The reason is that they can provide a solid base
for comparison, since for those we can easily determine the
optimal behavior of a hybrid delivery system. Actually, the
graphs in this section include two baselines for comparison.
The first, marked “Theory”, represents the theoretically op-
timal, based on the the model of Section 2.1. For the second,
marked “PerfectServer”, we used a stripped version of our
server which does not adapt, but instead, broadcasts period-
ically the optimal set of data, obtained through exhaustive
search. For static workloads, the line “PerfectServer” is the
ultimate performance goal of our system.

0

1

2

3

4

10 30 300 3000

A
vg

. R
es

p.
 T

im
e

(s
ec

)

Request Rate (reqs/sec)

Theory
PefectServer

Adaptive
Pure Pull

Figure 8: HotColdUniform

0

1

2

3

4

10 30 300 3000

A
vg

. R
es

p.
 T

im
e

(s
ec

)

Request Rate (reqs/sec)

Theory
PerfectServer

Adaptive
Pure Pull

Figure 9: Gauss, Fixed hot-spot

0

1

2

3

4

10 30 300 3000

A
vg

. R
es

p.
 T

im
e

(s
ec

)

Request Rate (reqs/sec)

Theory
PerfectServer

Adaptive

Figure 10: Gauss, Expanding hot-spot

For the experiments presented in this section we have as-
sumed that both broadcast and downlink rates are 12Mbps,
while the uplink is 28.8Kbps. These could correspond to
a hybrid architecture like the DirecPC[Hug]. The database
consists of 10000 items, each 50KB in size. For this data
size, the broadcast and the downlink capacities are roughly
30 items per second. Assuming enough computing power
at the server, this is also the system’s pull capacity � . For
the workload, we vary its volume from light (RR ;��)
to very heavy (RR � 100 �X�) to show the behavior of
the system in different scales. We intend to demonstrate
that, under the assumptions discussed in Section 2.2, our
approach performs close to the optimal, and exhibits very
high scalability. A significant performance property of this
system is that response time depends only on the size of the
hot-spot, and not on the intensity of the workload.

First, we present the results we obtained under the ideal
HotColdUniform workload distribution. In Figure 8, we
show the average response time as a function of the request
rate RR. The size of the hot-spot HS remained constant (100
items) for all values of RR in order to highlight the above
mentioned property. For contrast, we include the perfor-
mance of the pure pull system which, as expected, cannot
accommodate workloads higher than its capacity (� 30 re-
quests/sec). On the other hand, it is evident that the hybrid
delivery approach can scale to workloads at least 100 times
heavier (note that the horizontal axis is in logarithmic scale).
Even for large values of RR, response time remains prac-
tically constant. Moreover, under this ideal separation of
hot and cold data, our approach performs optimally, match-
ing both the theoretically minimum response time and that
of the perfect server. As RR grows, most of the requests
become air-cache hits, and therefore, the average response
time is dominated by the performance of the hits. Obvi-
ously, this depends only on the size of hot-spot size, and is
roughly equal to half the time it takes to broadcast it. The
load incurred by air-cache misses is maintained below the
pull capacity, consistently yielding sub-second responses.

Next, in order to test our system under more realistic
workloads, where the boundaries of the hot-spot are not

clearly defined, we performed a set of experiments using
the Gaussian distribution. All the workload and system
parameters are the same as in the previous case. How-
ever, now we present results obtained under both fixed and
expanding hot-spot sizes. For increasing values of RR, a
fixed hot-spot was achieved by increasing accordingly the
skewness of the distribution (i.e. decreasing its standard
deviation); for the expanding hot-spot we used a constant
standard deviation. Figure 9 shows the performance under
a fixed hot-spot, where again we see that even for large
workloads the response time remains very small. However,
this time there is a small, yet distinguishable, discrepancy
between our system and the optimal. The reason is that our
system selected to broadcast, on the average, a few more
items over what both the theoretical model and the “Per-
fectServer” suggest as optimal. This is an artifact of the
threshold _ 0 (Sec. 3.3) which urges the adaptive algorithm
to slightly favor broadcasting. Contrary to the previous
case, the algorithm now detects, outside the optimal va-
por set, items hot enough to be considered for promotion.
Figure 10 presents the results for the same experiment, but
with expanding hot-spot. From the two baselines, we can
see that the optimal vapor set—and consequently the opti-
mal response time—is indeed growing with RR. But, even
in this case our system scales very well, in the sense that it
manages to follow the optimal performance very closely.

4.3 Tuning Parameters

In Section 3, we introduced three important tuning parame-
ters, namely _ 0 , CoolingFactor, and ProbingFactor. While
the first is used just to keep the system at a safe distance
awayfrom instability, the other two areessentially the knobs
that control its adaptiveness and overhead. Here, we con-
centrate on the effects of the latter two parameters. For _ 0,
we have established from previous experiments that a good
a selection is such that c�dc Λ f �Z`ba#�(_ 0
 0 � 1 [SRB97].

Temperature probing was introduced to prevent the detri-
mental consequences of early demotions of vapor items, but
the probing window needs to carefully selected; if it is either
too small or too big, it is essentially the same as no probing

0

1

2

3

4

0 5 10 15 20 25 30

A
vg

. R
es

p.
 T

im
e

(s
ec

)

ProbingFactor

PerfectServer
CoolingFactor 0.8
CoolingFactor 0.9

Figure 11: Effects of probing

at all. In Section 3.4, we defined the probing window to be
dynamically adjusted by the ProbingFactor and the average
request rate for vapor items. This way, we directly control
the number of expected misses per probe, i.e. for a Probing-
Factor=4 we get an average of 4 requests per probe. The
CoolingFactor (Sec. 3.1) is also very related to probing, and
must be carefully selected as well. A small value causes the
temperature of vapor data to drop quickly, yielding frequent
probing and high overhead in terms of probed misses. But,
on the positive side, a small value also allows the system to
adapt faster to changes in the demand. Large values have
the opposite effect; they cause less probing but hinder the
adaptiveness of the system.

Figure 11 shows how the ProbingFactor affects the sys-
tem’s performance, for two different values of the Cooling-
Factor. For this experiment, and the rest of the experiments
presented hereafter, we used the Gaussian access pattern
with RR=500 requests/sec and HS=100 items. The first
thing we note is that, without probing (ProbingFactor=0),
the system cannot recover from the incorrect demotions,
and the response time grows arbitrarily large. But even a
very small number of probed misses (
 2) are sufficient to
correct the temperatures of vapor data, thus allowing the
system to operate close to the optimal. As the Probing-
Factor increases further, so does the volume of the probed
misses. The rate at which this happens depends on the
frequency of the probing (i.e. the CoolingFactor) and the
number of items being probed (i.e. the number of vapor
items). Beyond some point, the overhead of probed misses
becomes too big for the server to handle, leading again to
very slow responses. In other words, with a very large Prob-
ingFactor, probing causes the problem that it was supposed
to solve in the first place. Naturally, this happens earlier
when probing is more frequent (CoolingFactor=0.8).

4.4 Dynamic Workloads

For the last set of experiments, we used dynamic workloads
in order to evaluate the adaptiveness of our system in cases
when the focus of the clients’ demand changes. Such a
change was modeled as an elimination of a hot-spot and a
generation of a new one in another (randomly selected) part

of the database. This process was not instant, but instead
it was taking a transient period of TP minutes to complete.
Every new hot-spot persisted for Duration minutes. For
easier interpretation of the results, all the hot-spots were
similar, and the total workload remained constant.

In Figure 12 we present the obtained results as a function
of Duration. The workload in these graphs is more dynamic
on the left side, since with smaller Duration changes oc-
cur more often. We used two different values of TP for
comparing fast (white marks, TP=2min) and more gradual
(black marks, TP=5min) changes. Also, we give results
for two values of the CoolingFactor (CF=0.9 and CF=0.8)
which determines the adaptation speed of the system. For
better comprehension of the results, we graph the total av-
erage response time (Fig. 12a), the average response time
for pulled data (Fig. 12b), and the average number of va-
por items (Fig. 12c). For all these experiments, we used
ProbingFactor=5 and `ba#�(_ 0=0.1.

Themost significant observation is that the system adapts
very well to changing access patterns (Fig. 12a). Even on
the left side where changes occur very frequently, the re-
sponse time remains small. It most cases, performance
lies within 1 sec of that achieved under the static work-
load (Fig. 9). This means that the server is very effective
in detecting shifts in the clients demand, and thus can react
promptly. As expected, the system adapts and performs bet-
ter with a smaller CoolingFactor. But, an unexpected result
shown in Figure 12a is that the system appears to perform
better under more abrupt changes (TP=2min). However,
this will be justified in the following where we discuss how
the system is affected by dynamic workloads.

Changing hot-spots have a performance impact on both
the pull (Fig. 12b) and the push (Fig. 12c) part of the system.
First, an item that suddenly becomeshot can generate a large
number of requests before the server is able to react and
append it to the air-cache. The cumulative effect of these
requests may cause significant build-up in the server’s input
queue, and therefore increase the average response time
for pulled data. This build-up is worse when the changes
are faster and more frequent. Indeed, in Figure 12b we
see that the average pull response time increases when the
changesoccur more often (left side) and when new hot-spots
are heating up faster (white marks). Second, in transient
periods the server actually perceives two hot-spots, the old
and the new. Thus, in order to meet the demand during
those periods, it has to expand the vapor set to include them
both. This explains why in Figure 12c the average number
of vapor items increases as the Duration decreases. With
decreasing Duration, the transient periods make up more
and more of the total time. As a result, the server appears
to be broadcasting, on the average, more data. Note that
for Duration=TP=5min the workload is continuously in
transient state and the server almost always detects two
hot-spots. As a result, the size of vapor set is close to
double that of the static case. We also observe that this

0

1

2

3

4

5

6

0 10 20 30 40 50 60

A
vg

. R
es

p.
 T

im
e

(s
ec

)

Hot-spot Duration (min)

CF 0.9 - TP 5 min
CF 0.8 - TP 5 min
CF 0.9 - TP 2 min
CF 0.8 - TP 2 min

(a)

0

1

2

3

4

5

6

0 10 20 30 40 50 60

A
vg

.
P

ul
l R

es
p.

 T
im

e
(s

ec
)

Hot-spot Duration (min)

CF 0.9 - TP 5 min
CF 0.8 - TP 5 min
CF 0.9 - TP 2 min
CF 0.8 - TP 2 min

(b)

120

140

160

180

200

220

240

0 10 20 30 40 50 60

A
vg

. N
um

. V
ap

or
 It

em
s

Hot-spot Duration (min)

CF 0.9 - TP 5 min
CF 0.8 - TP 5 min
CF 0.9 - TP 2 min
CF 0.8 - TP 2 min

(c)
Figure 12: Dynamic Workload

phenomenon is worse with longer transient periods (black
marks) as the server spends more time broadcasting both
hot-spots. Since, in these experiments, the averageresponse
time is dominated (� 90%) by broadcast accesses, this also
explains why the system appears to perform better under
more abrupt changes (TP=2min).

Finally, here we can also notice the effects of the Cool-
ingFactor to the adaptiveness of the system. On one hand,
the smaller value (CF=0.8) harms the pull response time
since it causes more frequent probing and, thus, more
misses (Fig. 12b). But, on the other hand, it limits un-
necessary broadcasting and reduces the “double hot-spot”
phenomenon since it allows the server to detect faster loss
of interest for vapor data (Fig. 12c). Consequently, the
CoolingFactor should be selected as small as it causes tol-
erable probing overhead. Note that the probing overhead
can be estimated (and controlled) by the CoolingFactor, the
ProbingFactor, and the number of vapor items. Also, it is
even possible to employ a self-tuning strategy for the sys-
tem. In other words, the system can monitor the workload
behavior and the results of its previous actions to learn how
it should be operating more efficiently. As an example, if
after a series of probings the outcome is always the same,
it may be good idea to increase the CoolingFactorand sam-
ple less frequently. Overall, one of the strongest features
of this approach is that, with a proper combination of two
parameters, we can explicitly control fairly accurately the
adaptiveness of the system, the effectiveness of the probing,
and the incurred overhead.

5 Related Work

The idea of broadcasting or pushing data from some in-
formation source to a large number of receivers is being
studied for more than a decade. Early work was done in the
context of teletext and videotex systems[AW85, Won88],
community information services[GBBL85, Gif90], as well
as specialized database machines[HGLW87, BGH � 92].
More recently, with the proliferation of wireless com-
munication and mobile computing, it has gained much
more research[IB94, FZ96] and commercial attention

(e.g. [Poi, Air]). In terms of research, the focus has been
mostly in optimized broadcast schedules[AAFZ95, ST97],
optimized techniques for data retrieval from a broadcast
channel[AAFZ95, AFZ96], and power efficiency consider-
ations for mobile environments[IVB94b, IVB94a].

Hybrid data delivery was first employed in the Boston
Community Information System[Gif90] which combined
broadcast and interactive communication to provide up-to-
the-minute information to an entire metropolitan area. A
prototype was built and was field-tested for a period of
two years by about 200 users. The major conclusions of
this experiment were that users valued both components
of the hybrid architecture, and that this approach is indeed
a very economic way to building large scale information
systems. A hybrid teletext-videotex architecture was pro-
posed in [WD88]. Their approach involved only broadcast
delivery, but for both periodically pushed and upon-request
pulled data with some ad hoc partition of the data into two
groups. The same combination of delivery modes was con-
sidered in [AFZ97]. In particular, they augmented the push-
only architecture of broadcast disks[AAFZ95], by allowing
clients to explicitly request data for expeditious delivery
through the same broadcast channel. In that work, they
explore the efficacy of a back-channel in a broadcast-only
environment and discuss the involved trade-offs.

Even closer to out work, are the adaptive techniques pro-
posed in [IV94] and [DCK � 97]. [IV94] proposes an algo-
rithm that, based on fairly static accessprobabilities,assigns
data and bandwidth to broadcast and on-demand delivery
modes in a way that limits the maximum expected response
time below a predefined threshold. Last in [DCK � 97], they
consider mobility of users between cells of a cellular net-
work, and propose two variations of an adaptive algorithm
that statistically selects data to be broadcast based on user
profiles and registrations in each cell.

6 Conclusions

In this paper, we described an adaptive technique for hybrid
data delivery that takes advantage of broadcast channels for
massive data dissemination and unicast channels for data

demand not satisfied by the former. We first discussed
how� broadcast and unicast can work synergistically to yield
high data service rates, and then presented an algorithm
that, based on marginal gains and broadcast probing, con-
tinuously adapts the broadcast content to match the hot-spot
of the database. We showed that the hot-spot can be accu-
rately obtained by monitoring the “broadcast misses” and
therefore no other implicit knowledge on the actual usage
of the broadcast data is necessary. This is one of the major
distinctions between the work presented here and all other
broadcast schemes which are dependent on accurate, com-
prehensive, but not readily available statistics on workload
access patterns.

Our simulation experiments have demonstrated both the
scalability and versatility of the proposed technique. Under
the assumption that the server’s capacity is sufficient for
servicing the demand for cold data, it performs very close to
the optimal. An important result of is that the performance
of this hybrid system depends only on the size of the hot-
spot, and not on the volume of the workload. We have
also shown that this adaptive scheme performs very well
even under dynamic, rapidly changing workloads. The
adaptation speed and the incurred overhead can be explicitly
tuned as desired.

We believe that these results have far reaching implica-
tions, as they suggest an effective way of deploying large
scale wide area information systems. Therefore, there is
a lot of interesting work to be done in the near future.
We are currently exploring many different issues includ-
ing client querying, dealing with data of various sizes,
multi-frequency broadcasting, efficient indexing schemes,
overlapping data broadcast, forecasting for prefetching, and
“on-time” data delivery.

Acknowledgments

We would like thank Michael Franklin, Björn T. Jónsson,
Flip Korn, Yannis Kotidis, Alexandros Labrinidis, and
Christos Seretis for their invaluable help. Björn’s semi-
automatic results compiler proved to be a great time saver.

References
[AAFZ95] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.

Broadcast Disks: Data Management for Asymmetric Commu-
nications Environment. In Proc. ACM SIGMOD Conf., pages
199–210, May 1995.

[AFZ96] S. Acharya, M. Franklin, and S. Zdonik. Prefetching
from Broadcast Disks. In Proc. of the 12th Intl. Conf. on Data
Engineering, pages 276–285, February 1996.

[AFZ97] S. Acharya, M. Franklin, and S. Zdonik. Balancing
Push and Pull for Data Broadcast. In Proc. ACM SIGMOD
Conf., pages 183–194, May 1997.

[Air] AirMedia. AirMedia Live. www.airmedia.com.
[AW85] M.H. Ammar and J.W. Wong. The Design of Teletext

Broadcast Cycles. Perfomance Evaluation, 5(4):235–242, De-
cember 1985.

[BG96] G. Bell and J. Gemmell. On-ramp Prospects for the
Information Superhighway Dream. CACM, 39(7), July 1996.

[BGH � 92] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. C. Lee,
W. Mansfield, J. Raitz, and A. Weinrib. The Datacycle Archi-
tecture. CACM, 35(12):71-81, Dec 1992.

[DCK � 97] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Ku-
mar. Adaptive Broadcast Protocols to Support Efficient and
Energy Conserving Retrieval from Databases in Mobile Com-
puting Environments. In Proc. of the 13th International Con-
ference on Data Engineering, pages 124–134, April 1997.

[FZ96] M. Franklin and S. Zdonik. Dissemination-Based Infor-
mation Systems. IEEE Data Engineering Bulletin, 19(3):20–
30, September 1996.

[GBBL85] D. Gifford, R. Baldwin, S. Berlin, and J. Lucassen.
An Architecture for Large Scale Information Systems. In Proc.
of the 10th ACM Symposium on Operating System Principles,
pages 161–170, December 1985.

[Gif90] D. Gifford. Polychannel Systems for Mass Digital Com-
munications. CACM, 33(2):141-151, Feb. 1990.

[HGLW87] G. Herman, G. Gopal, K. Lee, and A. Weinrib. The
Datacycle Architecture for Very High Throughput Database
Systems. In Proc. ACM SIGMOD Conf., May 1987.

[Hug] Hughes Network Systems. DirecPC. www.direcpc.com.
[IB94] T. Imielinski and B.R. Badrinath. Wireless Mobile Com-

puting: Challenges in Data Management. CACM, 37(10):18–
28, October 1994.

[IV94] T. Imielinski and S. Vishwanathan. Adaptive Wireless
Information Systems. In Proc. of SIGDBS Conf., Tokyo, Japan,
October 1994.

[IVB94a] T. Imielinski, S. Viswanathan, and B.R. Badrinath. En-
ergy Efficient Indexing on Air. In Proc. ACM SIGMOD Conf.,
pages 25–36, May 1994.

[IVB94b] T. Imielinski, S. Viswanathan, and B.R. Badrinath.
Power Efficient Filtering of Data on Air. In Proc. EDBT Conf.,
pages 245–258, March 1994.

[KB96] R. Katz and E. Brewer. The Case for Wireless Overlay
Networks. In SPIE Multimedia and Networking Conference,
San Jose, CA, January 1996.

[Kha97] B. Khasnabish. Broadband To The Home (BTTH): Ar-
chitectures, Access Methods and the Appetite for it. IEEE
Network, 11(1):58–69, Jan./Feb. 1997.

[OOW93] E. O’Neil, P. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm For Database Disk Buffering. In
Proc. ACM SIGMOD Conf., pages 297–306, May 1993.

[Poi] PointCast, Inc. PointCast Network. www.pointcast.com.

[RD90] J. Robinson and M. Devarakonda. Data Cache Manage-
ment Using Frequency-Based Replacement. In ACM SIGMET-
RICS Conf., pages 134–142, May 1990.

[SRB96] K. Stathatos, N. Roussopoulos, and J.S. Baras. Adaptive
Data Broadcasting Using Air–Cache. In 1st Intl. Workshop on
Satellite-based Information Services, November 1996.

[SRB97] K. Stathatos, N. Roussopoulos, and J.S. Baras. Adaptive
Data Broadcast in Hybrid Networks. Technical Report 97-40,
Institute for Systems Research, Univ. of Maryland, Apr. 1997.

[ST97] C.J. Su and L. Tassiulas. Broadcast Scheduling for Infor-
mation Distribution. IEEE INFOCOM’97, Apr. 1997.

[WD88] J. Wong and H.D. Dykeman. Architecture and Perfor-
mance of Large Scale Information Delivery Networks. In 12th
Intl. Teletraffic Congress, Torino, Italy, 1988.

[Won88] J. Wong. Broadcast Delivery. Proceedings of the IEEE,
76(12):1566–1577, December 1988.

