Nearest Neighbor Queries

Nick Roussopoulos Stephen Kelley Frederic Vincent

University of Maryland May 1995

Problem / Motivation

Given a point in space, find the k NN

- classic NN queries (find the nearest 5* French restaurants)
- bounded queries (gas stations between 10 and 15 mile range)
- spatial joins combined with NN
 (3 NN restaurants to each movie theater)
- useful to formulate queries when exact location specification is hard

 (astrophysics)
- combined with other geographic relationships and spatial predicates (5 NN cities west of Mississippi, (NN houses on lots larger than 2 acres)
- Furthest Neighbors and other distance ordering functions

R-trees

Need for Formalization of NN Queries

- No formalism for NN search
- No metrics for ordering and pruning the search
- R-trees only for overlap/containment queries
- R-tree based spatial joins used only overlap/containement predicates

The MBR Face Property

<u>Lemma:</u> Every face of any MBR contains at least one point of an actual spatial object

The MBR Face Property in 3-d

NN Metrics

MINDIST(P,R): the shortest distance from P to R

Theorem: Any object O in R has distance from P that is at least as large as MINDIST

 MINMAXDIST(P,R) the minimum over all dimensions distance from P to the furthest point of the closest face of the R

<u>Theorem</u>: There exists at least one object within R with distance <= to MINMAXDIST

MINDIST(P,R) <= NN(P) <= MINMAXDIST(P,R)

MINDIST & MINMAXDIST

MINDIST & MINMAXDIST in 3-d

NN Branch-and-Bound Algorithm

Ordering search alternatives

- MINDIST is the most optimistic
- MINMAXDIST is the most pessimistic ever needed be considered

Pruning search alternatives

- downward pruning: an MBR R is discarded if there exists an R' s.t.
 MINDIST(P,R) > MINMAXDIST(P,R')
- downward pruning: an object O is discarded if there exists an R s.t.
 ACTUAL-DIST(P,O) > MINMAXDIST(P,R)
- upward pruning: an MBR R is discarded if an object O is found s.t.
 MINDIST(P,R) > ACTUAL-DIST(P,O)

MINDIST vs MINMAXDIST Ordering

MINDIST leads the search to MBR1 which finds the NN in M13 and prunes MBR2 before visiting it

MINDIST vs MINMAXDIST Ordering

Generalization to k NN

- Keep a sorted buffer of at most k NN
- Pruning is applied according to the furthest NNs in the buffer
- Extra pruning based on additional predicates

IMPLEMENTATION

- Extended PSQL syntax
- Uses our version of high performance R-trees
- Also runs on top of ORACLE / INGRES

50 NN in LBeach

100 NN in LBeach

Range Query

Spatial Join with Elliptical Cells

EXPERIMENTS

- TIGER data sets of Long Beach, CA and Montgomery County, MD
- International Ultraviolet Explorer (IUE)
- Synthetic data sets 1K-256K points
- Data sets were sorted according to their Hilbert order and Rtrees were packed using [Rous+Leif1985],[Kame+Falo1993]
- Achieved the "maximum" performance for R-tree overlap, containment and NN searches

Comparisons

- Optimistic vs pessimistic ordering
- Scalabilty in the number of NN
- Scalability in the size of the index

Optimistic vs. Pessimistic Ordering & Scalability in NN - Long Beach Map

Size Scalability - Synthetic Data

Size Scalability - Synthetic Data

CONCLUSIONS

- Branch-and-bound NN search algorithm
- Formalized and provided metrics for directing NN search
- The optimistic MINDIST metric performed better in our experiments but this is related to the construction of the Rtrees
- Generalized and displayed the versatility of k NN search