
Nearest Neighbor Queries �

Nick Roussopoulos Stephen Kelley Fr�ed�eric Vincent

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

A frequently encountered type of query in Geographic

Information Systems is to �nd the k nearest neighbor

objects to a given point in space. Processing such queries

requires substantially di�erent search algorithms than those

for location or range queries. In this paper we present an

e�cient branch-and-bound R-tree traversal algorithm to �nd

the nearest neighbor object to a point, and then generalize it

to �nding the k nearest neighbors. We also discuss metrics

for an optimistic and a pessimistic search ordering strategy

as well as for pruning. Finally, we present the results of

several experiments obtained using the implementation of

our algorithm and examine the behavior of the metrics and

the scalability of the algorithm.

1 INTRODUCTION

The e�cient implementation of Nearest Neighbor (NN)
queries is of a particular interest in Geographic Informa-
tion Systems (GIS). For example, a user may point to a
speci�c location or an object on the screen, and request
the system to �nd the �ve nearest objects to it in the
database. Another situation where NN query is useful
is when the user is not familiar with the layout of the
spatial objects. In the case of an astrophysics database,
�nding the nearest star to a given point in the sky could
involve multiple unsuccessful searches with varying win-
dow sizes if we were to use a more traditional 2D range
query. Another even more complex query that could be
handled by an NN technique is to �nd the four nearest
stars which are at least ten light-years away.
The versatility of k nearest neighbors search increases

substantially if we consider all variations of it, such as
the k furthest neighbors, or when it is combined with

�This research was sponsored partially by the National Science

Foundation under grant BIR 9318183, by ARPA under contract

003195 Ve1001D, and by NASA/USRA under contract 5555-09.

Proceedings of the 1995 ACM-SIGMOD Intl. Conf. on

Management of Data, San Jose, CA.

other spatial queries such as �nd the k NN to the East of
a location, or even spatial joins with NN join predicate,
such as �nd the three closest restaurants for each of two
di�erent movie theaters.

E�cient processing of NN queries requires spatial
data structures which capitalize on the proximity of
the objects to focus the search of potential neighbors
only. There is a wide variety of spatial access methods
[Same89]. However, very few have been used for NN.
In [Same90], heuristics are provided to �nd objects in
quadtrees. The exact k-NN problem, is also posed
for hierarchical spatial data structures such as the PM
quadtree. The proposed solution is a top-down recursive
algorithm which �rst goes down the quadtree, exploring
the subtree that contains the query point, in order
to get a �rst estimate of the NN location. Then
it backtracks and explores remaining subtrees which
potentially contain NN until no subtree needs be visited.
In [FBF77] a NN algorithm for k-d-trees was proposed
which was later re�ned in [Spro91].

R-trees [Gutt84], Packed R-trees [Rous85], [Kamel93],
R-tree variations [SRF87], [Beck90] have been primarily
used for overlap/containment range queries and spatial
join queries [BKS93] based on overlap/containment. In
this paper, we provide an e�cient branch-and-bound
search algorithm for processing exact k-NN queries for
the R-trees, introduce several metrics for ordering and
pruning the search tree, and perform several experi-
ments on synthetic and real-world data to demonstrate
the performance and scalability of our approach. To
the best of our knowledge, neither NN algorithms have
been developed for R-trees, nor similar metrics for NN
search. We would also like to point out that, although
the algorithm and these metrics are in the context of
R-trees, they are directly applicable to all other spatial
data structures.

Section 2 of the paper contains the theoretical
foundation for the nearest neighbor search. Section 3
describes the algorithm and the metrics for ordering
the search and pruning during it. Section 4 has the
experiments with the implementation of the algorithm.
The conclusion is in section 5.



2 NEAREST NEIGHBOR SEARCH

USING R-TREES

R-trees were proposed as a natural extension of B-
trees in higher than one dimensions [Gutt84]. They
combine most of the nice features of both B-trees and
quadtrees. Like B-trees, they remain balanced, while
they maintain the exibility of dynamically adjusting
their grouping to deal with either dead-space or dense

areas, like the quadtrees do. The decomposition used in
R-trees is dynamic, driven by the spatial data objects.
And with appropriate split algorithms, if a region of
an n-dimensional space includes dead-space, no entry in
the R-tree will be introduced.
Leaf nodes of the R-tree contain entries of the form

(RECT; oid) where oid is an object-identi�er and is
used as a a pointer to a data object and RECT is
an n-dimensional Minimal Bounding Rectangle (MBR)

which bounds the corresponding object. For example,
in a 2-dimensional space, an entry RECT will be of
the form (xlow ; xhigh; ylow ; yhigh) which represents the
coordinates of the lower-left and upper-right corner of
the rectangle. The possibly composite spatial objects
stored at the leaf level are considered atomic, and are
not further decomposed into their spatial primitives,
i.e. quadrants, triangles, trapezoids, line segments, or
pixels. Non-leaf R-tree nodes contain entries of the form
(RECT , p) where p is a pointer to a successor node in
the next level of the R-tree, and RECT is a minimal
rectangle which bounds all the entries in the descendent
node.
The term branching factor (or fan-out) can be used to

specify the maximumnumber of entries that a node can
have; each node of an R-tree with branching factor �fty,
for example, points to a maximum of �fty descendents
or leaf objects. To illustrate the way an R-tree is de�ned
on some space, Figure 1 shows a collection of rectangles
and Figure 2 the corresponding tree. Performance
of an R-tree search is measured by the number of
disk accesses (reads) necessary to �nd (or not �nd)
the desired object(s) in the database. So, the R-tree
branching factor is chosen such that the size of a node
is equal to (or a multiple of) the size of a disk block or
�le system page.

2.1 Metrics for Nearest Neighbor Search

Given a query point P and an object O enclosed in
its MBR, we provide two metrics for ordering the
NN search. The �rst one is based on the minimum
distance (MINDIST) of the object O from P. The
second metric is based on the minimumof the maximum
possible distances (MINMAXDIST) from P to a face
(or vertex) of the MBR containing O. MINDIST and
MINMAXDIST o�er a lower and an upper bound on
the actual distance of O from P respectively. These
bounds are used by the nearest neighbor algorithm to

N

M

L

K

J

I

H

D

E

F
G

C

B

A

Figure 1: Collection of Rectangles

E F G H I J K

A B C

D L M N

Figure 2: R-tree Construction



order and e�ciently prune the paths of the search space
in an R-tree.

De�nition 1 A rectangle R in Euclidean space E(n)
of dimension n, will be de�ned by the two endpoints S

and T of its major diagonal:

R = (S; T )

where S = [s1; s2; : : : ; sn] and T = [t1; t2; : : : ; tn]

and si � ti for 1 � i � n:

Minimum Distance (MINDIST) The �rst metric
we introduce is a variation of the classic Euclidean
distance applied to a point and a rectangle. If the point
is inside the rectangle, the distance between them is
zero. If the point is outside the rectangle, we use the
square of the Euclidean distance between the point and
the nearest edge of the rectangle. We use the square
of the Euclidean distance because it involves fewer and
less costly computations. To avoid confusion, whenever
we refer to distance in this paper, we will in practice be
using the square of the distance and the construction of
our metrics will reect this.

De�nition 2 The distance of a point P in E(n) from a

rectangle R in the same space, denotedMINDIST (P;R),
is:

MINDIST (P;R) =
nX
i=1

jpi � rij
2

where

ri =

(
si if pi < si;

ti if pi > ti;

pi otherwise.

Lemma 1 The distance of de�nition 2 is less than or

equal to the square of the minimal Euclidean distance

from P to any point on the perimeter of R.

Proof: If P is inside R, then MINDIST = 0 which is
less than or equal to the distance of P from any point
on the perimeter of R. If P is on the perimeter, again
MINDIST = 0 and so is equal to the square of minimal
Euclidean distance of P from its closest point on the
perimeter, namely itself.
If P is outside R and j coordinates, j = 1; 2; : : : ; n�1

of P satisfy sj � pj � tj, then MINDIST measures the
square of the length of a perpendicular segment from
P to an edge, for j = 1 or to a plane for j = 2, or
a hyperface for j � 3. If none of the pj coordinates
fall between (si; ti), then MINDIST is the square of the
distance to the closest vertex of R by the way of selecting
ri.
Notice that computing MINDIST requires only linear

in the number of dimensions, O(n), operations.

De�nition 3 The minimum distance of a point P from

a spatial object o, denoted by k(P; o)k, is:

k(P; o)k = min(
nX

i=1

jpi � xij
2;

8X = [x1; : : : ; xn] 2 O):

Theorem 1 Given a point P and an MBR R enclosing

a set of objects O = foi; 1 � i � mg, the following is

true:

8o 2 O;MINDIST (P;R) � k(P; o)k

Proof: If P is inside R, then MINDIST = 0 which is
less than the distance of any object within R including
one that may be touching P. If P is outside R, then
according to lemma 1, 8X on the perimeter of R,
MINDIST (P;R) � k(P;X)k.
MINDIST is used to determine the closest object to P

from all those enclosed in R. The equality in the above
theorem holds when an object of R touches the circle
with center P and radius the square root of MINDIST.
When searching an R-tree for the nearest neighbor

to a query point P , at each visited node of the R-tree,
one must decide which MBR to search �rst. MINDIST
o�ers a �rst approximation of the NN distance to every
MBR of the node and, therefore, can be used to direct
the search.
In general, deciding which MBR to visit �rst in order

to minimize the total number of visited nodes is not that
straightforward. In fact, in many cases, due to dead
space inside the MBRs, the NN might be much further
than MINDIST, and visiting �rst the MBR with the
smallest MINDIST may result in false-drops, i.e. visits
to unnecessary nodes. For this reason, we introduce a
second metric MINMAXDIST. But �rst, the following
lemma is necessary.

Lemma 2 The MBR Face Property: Every face (i.e.

edge in dimension 2, rectangle in dimension 3 and

`hyperface' in higher dimensions) of any MBR (at any

level of the R-tree) contains at least one point of some

spatial object in the DB. (See �gures 3 and 4).

Proof: At the leaf level in the R-tree (object level),
assume by contradiction that one face of the enclosing
MBR does not touch the enclosed object. Then, there
exists a smaller rectangle that encloses the object which
contradicts the de�nition of the Minimum Bounding
Rectangle. For the non-leaf levels, we use an induction
on the level in the tree of the MBR. Assume any level
k � 0 MBR has the MBR face property, and consider an
MBR at level k+ 1. By the de�nition of an MBR, each
face of that MBR touches an MBR of lower level, and



MBR Level iMBR Level i+1

MBR Level i+1

Each edge of the MBR at level i is in contact

with a graphic object of the DB. (The same 

property applies for the MBRs at level i+1)

Figure 3: MBR Face Property in 2-Space

Enclosing MBR

Enclosed MBRs or Objects

Figure 4: MBR Face Property in 3-Space

therefore, with a leaf object by applying the inductive
hypothesis.

Minimax Distance (MINMAXDIST) In order to
avoid visiting unnecessary MBRs, we should have an
upper bound of the NN distance to any object inside
an MBR. This will allow us to prune MBRs that
have MINDIST higher than this upper bound. The
following distance construction (called MINMAXDIST)
is being introduced to compute the minimum value of
all the maximum distances between the query point
and points on the each of the n axes respectively. The
MINMAXDIST guarantees there is an object within the
MBR at a distance less than or equal to MINMAXDIST.

De�nition 4 Given a point P in E(n) and an MBR

R = (S, T) of the same dimensionality, we de�ne

MINMAXDIST(P,R) as:

MINMAXDIST (P;R) =

min
1�k�n

(jpk � rmkj
2 +

X
i6=k

1�i�n

jpi � rMij
2)

where:

rmk =

�
sk if pk �

(sk+tk)

2
;

tk otherwise.
and

rMi =

�
si if pi �

(si+ti)

2
;

ti otherwise.

This construction can be described as follows: For
each k select the hyperplane Hk = rmk which contains
the closer of the two faces of the MBR orthogonal
to the kth space axis. (One of these faces has
Hk = Sk and the other has Hk = Tk). The point
Vk = (rM1; rM2; : : : ; rMk�1; rmk; rMk+1; : : : ; rMn), is
the farthest vertex from P on this face. MINMAXDIST
then, is the minimum of the squares of the distance to
each of these points.

Notice that this expression can be e�ciently imple-
mented, in O(n) operations by �rst computing S =P

1�i�n jpi � rMij
2, (the distance from P to the fur-

thest vertex on the MBR), then iteratively selecting the
minimumof S�jpk�rMkj

2+ jpk�rmkj
2 for 1 � k � n.

Theorem 2 Given a point P and an MBR R enclosing

a set of objects O = foi; 1 � i � mg, the following prop-

erty holds: 9o 2 O; k(P; o)k �MINMAXDIST (P;R):



Proof: Because of lemma 2, we know that each
MBR's face is touching at least one object within the
MBR. Since the de�nition of MINMAXDIST produces
an estimate of the NN distance to an object touching
its MBR at the extremity of one of its faces, this
guarantees that MINMAXDIST is greater than or equal
to the NN distance. On the other hand, a point object
located exactly at the vertex of the MBR at distance
MINMAXDIST would contradict the proposition that
one could �nd a smaller distance than MINMAXDIST
as an upper bound of the NN distance.

Theorem 2 says that MINMAXDIST is the minimum
distance that guarantees the presence of an object O in
Rwhose distance fromP is within this distance. A value
larger or equal to MINMAXDIST would always `catch'
some object inside an MBR, but a smaller distance could
`miss' some object.

Figures 5 and 6 illustrate MINDIST and MIN-
MAXDIST in a 2-Space and 3-Space respectively.

   =0 

MBR

Query Point

MINDIST

MINDIST

MINDIST MINDIST

MINMAXDIST

MINMAXDIST

MINMAXDIST

MINMAXDIST
MBR

MBR

MBR

Figure 5: MINDIST and MINMAXDIST in 2-Space

Query Point: P

MINMAXDIST(P,R)
Rectangle: R

MINDIST(P,R)

Figure 6: MINDIST and MINMAXDIST 3-Space

3 Nearest Neighbor Algorithm for

R-trees

In this section we present a branch-and-bound R-tree
traversal algorithm to �nd the k-NN objects to a given
query point. We �rst discuss the merits of using the
MINDIST and MINMAXDIST metrics to order and
prune the search tree, then we present the algorithm
for �nding 1-NN and �nally, generalize the algorithm
for �nding the k-NN.

3.1 MINDIST and MINMAXDIST for

Ordering and Pruning the Search

Branch-and-bound algorithms have been studied and
used extensively in the areas of arti�cial intelligence and
operations research [HS78]. If the ordering and pruning
heuristics are chosen well, they can signi�cantly reduce
the number of nodes visited in a large search space.

Search Ordering: The heuristics we use in our
algorithm and in the following experiments are based on
orderings of the MINDIST and MINMAXDIST metrics.
The MINDIST ordering is the optimistic choice, while
the MINMAXDIST metric is the pessimistic (though
not worst case) one. Since MINDIST estimates the
distance from the query point to any enclosed MBR or
data object as the minimum distance from the point to
the MBR itself, it is the most optimistic choice possible.
Due to the properties of MBRs and the construction
of it, MINMAXDIST produces the most pessimistic
ordering that need ever be considered.

In applying a depth �rst traversal to �nd the NN
to a query point in an R-tree, the optimal MBR visit
ordering depends not only on the distance from the
query point to each of the MBRs along the path(s)
from the root to the leaf node(s), but also on the
size and layout of the MBRs (or in the leaf node
case, objects) within each MBR. In particular, one
can construct examples in which the MINDIST metric
ordering produces tree traversals that are more costly
(in terms of nodes visited) than the MINMAXDIST
metric.

This is shown in �gure 7, where the MINDIST metric
ordering will lead the search to MBR1 which would
require of opening up M11 and M12. If on the other
hand, MINMAXDISTmetric ordering was used, visiting
MBR2 would result in an smaller estimate of the actual
distance to the NN (which will be found to be in M21)
which will then eliminate the need to examine M11 and
M12. The MINDIST ordering optimistically assumes
that the NN to P in MBR M is going to be close
to MINDIST (M;P ), which is not always the case.
Similarly, counterexamples could be constructed for any
prede�ned ordering.
As we stated above, the MINDIST metric produces

most optimistic ordering, but that is not always the



Q
u
e
r
y
 
P
o
i
n
t

The NN is somewhere in there.

M11

M12

M21
M22

MBR1

MBR2

1. MINDIST ordering: if we visit MBR1 first, we have to visit M11, M12,
MBR2 and M21 before finding the NN.

2. MINMAXDIST ordering: if we visit MBR2 first, and then M21,
when we eventually visit MBR1, we can prune M11 and M12. 

Figure 7: MINDIST is not always the better ordering

best choice. Many other orderings are possible by
choosing metrics which compute the distance from the
query point to faces or vertices of the MBR which are
further away. The importance of MINMAXDIST(P,M)
is that it computes the smallest distance between point
P and MBR M that guarantees the �nding of an object
in M at a Euclidean distance less than or equal to
MINMAXDIST(P ,M ).

Search Pruning: We utilize the two theorems we
developed to formulate the following three strategies to
prune MBRs during the search:

1. an MBR M with MINDIST(P,M) greater than the
MINMAXDIST(P,M') of another MBR M' is dis-
carded because it cannot contain the NN (theorems
1 and 2). We use this in downward pruning.

2. an actual distance from P to a given object O
which is greater than the MINMAXDIST(P,M) for
an MBR M can be discarded because M contains a
object O' which is nearer to P (theorem 2). This is
also used in upward pruning.

3. every MBR M with MINDIST(P,M) greater than
the actual distance from P to a given object O is
discarded because it cannot enclose an object nearer
than O (theorem 1). We use this in upward pruning.

Although we specify only the use of MINMAXDIST
in downward pruning, in practice, there are situations
where it is better to apply MINDIST (and in fact
strategy 3) instead. For example, when there is no dead
space (or at least very little) in the nodes of the R-tree,
MINDIST is a much better estimate of k(P;N )k, the
actual distance to the NN than is MINMAXDIST, at
all levels in the tree. So, it will prune more candidate
MBRs than will MINMAXDIST.

3.2 Nearest Neighbor Search Algorithm

The algorithm presented here implements an ordered
depth �rst traversal. It begins with the R-tree root node
and proceeds down the tree. Originally, our guess for
the nearest neighbor distance (call it Nearest) is in�nity.
During the descending phase, at each newly visited non-
leaf node, the algorithm computes the ordering metric
bounds (e.g. MINDIST, De�nition 2) for all its MBRs
and sorts them (associated with their corresponding
node) into an Active Branch List (ABL). We then
apply pruning strategies 1 and 2 to the ABL to remove
unnecessary branches. The algorithm iterates on this
ABL until the ABL is empty: For each iteration, the
algorithm selects the next branch in the list and applies
itself recursively to the node corresponding to the MBR
of this branch. At a leaf node (DB objects level),
the algorithm calls a type speci�c distance function for
each object and selects the smaller distance between
current value of Nearest and each computed value and
updates Nearest appropriately. At the return from the
recursion, we take this new estimate of the NN and
apply pruning strategy 3 to remove all branches with
MINDIST (P;M ) > Nearest for all MBRs M in the
ABL.
See Figure 8 for the pseudo-code description of the

algorithm.

3.3 Generalization: Finding the k Nearest

Neighbors

The algorithmpresented above can be easily generalized
to answer queries of the type: Find The k Nearest
Neighbors to a given Query Point, where k is greater
than zero.
The only di�erences are:

� A sorted bu�er of at most k current nearest neigh-
bors is needed.

� The MBRs pruning is done according to the distance
of the furthest nearest neighbor in this bu�er.

The next section provides experimental results using
both MINDIST and MINMAXDIST.

4 Experimental Results

We implemented our k-NN search algorithm and de-
signed and carried out our experiments in order to
demonstrate the capability and usefulness of our NN
search approach as applied to GIS type of queries. We
examined the behavior of our algorithm as the number
of neighbors increased, the cardinality of the data set
size grew, and how the MINDIST and MINMAXDIST
metrics a�ected performance.
We performed our experiments on both publically

available real-world spatial data sets and synthetic data
sets. The real-world data sets included segment based



RECURSIVE PROCEDURE
nearestNeighborSearch (Node, Point, Nearest)

NODE Node // Current NODE
POINT Point // Search POINT
NEARESTN Nearest // Nearest Neighbor

//Local Variables
NODE newNode
BRANCHARRAY branchList
integer dist, last, i

// At leaf level - compute distance to actual objects
If Node.type = LEAF
Then

For i := 1 to Node.count
dist := objectDIST(Point, Node.branchi.rect)
If (dist < Nearest.dist)
Nearest.dist := dist
Nearest.rect := Node.branchi.rect

// Non-leaf level - order, prune and visit nodes
Else

// Generate Active Branch List
genBranchList(Point, Node, branchList)

// Sort ABL based on ordering metric values
sortBranchList(branchList)

// Perform Downward Pruning
// (may discard all branches)
last = pruneBranchList(Node, Point, Nearest,

branchList)

// Iterate through the Active Branch List
For i := 1 to last

newNode := Node.branchbranchListi

// Recursively visit child nodes
nearestNeighborSearch(newNode, Point,
Nearest)

// Perform Upward Pruning
last := pruneBranchList(Node, Point, Nearest,
branchList)

Figure 8: Nearest Neighbor Search Pseudo-Code

TIGER data �les for the city of Long Beach, CA and
Montgomery County, MD, and observation records from
the International Ultraviolet Explorer (I.U.E) satellite
from N.A.S.A. Our examples will be from the Long
Beach data, which consists of 55,000 street segments
stored as pairs of latitude and longitude coordinates.
For the synthetic data experiments, we generated test
data �les of 1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K and
256K points (stored as rectangles) in a grid of 8K by
8K. The points were unique and randomly generated
using a di�erent seed value for each data set. We then
generated 100 equally spaced query points in the 8K by
8K space.
We built the R-tree indexes by �rst presorting the

data �les using a Hilbert [Jaga90] number generating
function, and then applying a modi�ed version of
[Rous85] R-tree packing technique according to the
suggestion of [Kamel93]. The branching factor of both
the terminal and non-terminal nodes was set to be
approximately 50 in all indexes.
In Figure 9 we see the average of 100 queries for

each of several di�erent numbers of nearest neighbors
for both the MINDIST and MINMAXDIST ordering
metrics applied to the Long Beach data. We generated
three uniform sets of querys of 100 points each based on
regions of the Long Beach, CA data set. The �rst set
was from a sparse (few or no segments at all) region of
the city, the second was from a dense (large number of
segments per unit area), and the third was a uniform
sample from the MBR of the whole city map. We then
executed a series of nearest neighbor queries for each of
the query points in each of these regions and plotted the
average number of nodes accessed against the number
of nearest neighbors.

Long Beach, CA  Map

MINMAX Dense

MINMAX Map

MINMAX Sparse

MINDIST Map

MINDIST Sparse

MINDIST Dense

Pages Accessed

No. of Neighbors
8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Figure 9: MINDIST and MINMAXDIST Metric Com-
parison

For this experiment we see that graphs of the MIN-
MAXDIST ordered searches were similar in shape to the
graphs of the MINDIST ordered searches but the num-
ber of pages accessed was consistently, approximately
20% higher. MINMAXDIST performed the worst in
dense regions of the various data sets which was not
surprising. It turned out that in all the experiments



we performed comparing the two metrics, the results
were similar to this one. Since this occurred with both
real world and (pseudo) randomly distributed data, we
surmise that for spatially sorted and packed R-trees,
MINDIST is the ordering metric of choice. So, for the
sake of clarity and simplicity, the rest of the �gures will
show the results of the MINDIST metric only.
Figure 10 shows the results of an experiment using

synthetic data. We ran and averaged the results from
the 100 equally spaced query points for 25 di�erent
values of k NN (ranging from 1 to 121) on the 1K, 4K,
16K, 64K and 256K data sets. We graphed the results as
the (average) number of pages (nodes) accessed versus
the number of nearest neighbors searched for.

Nearest Neighbor Scalability - Synthetic Data

256K-Points

64K-Points

16K-Points

4-K Points

1-K Points

Pages Accessed

No. of Neighbors

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Figure 10: Synthetic Data Experiment 1 Results

From the experimental behavior, we can make two
observations. First, as the number of nearest neighbors
increased the number of pages accessed grew in a linear
ratio with a (small) fractional constant of proportional-
ity. Since all the synthetic data sets were created with
the same node cardinality (approximately 50), the de-
gree of similarity of the curves strongly suggests that
this is the dominant term in the components of the con-
stant of proportionality (at least in spatially ordered
data sets). Second, as the data set size grew, the aver-
age number of page accesses grew sublinearly and clus-
tered in three distinct groupings (producing a banded
pattern) as the number of neighbors increased. The fact
that the 4K, 16K and 64K curves were so close to each
other gave us the insight to run the next experiment.
In the experiment of Figure 11, we examined the

correlation between the increase in the size of the
data set with the number of nodes accessed for a
limited number of nearest neighbor queries. We plotted
the number of pages accessed against the logarithm
(base 2) of the data set size in terms of kilobytes (so
log2(256K) = 8) for each of 1, 16, 32, 64 and 128 nearest
neighbor queries. We noticed in this graph the curves
appeared to be piecewise linear step functions. We then
examined the height of the R-trees and observed that
the steps appear at the points where the height of the
tree increases. The 1K R-tree index has a depth of 1,
the 2K index has a depth of 2, the 4K, 8K, 16K, 32K

Database Size Scalability - Synthetic Data

128-Neighbors

64-Neighbors

32-Neighbors

16-Neighbors

1-Neighbor

Pages Accessed

Log(2) (Size in KB)

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.00 2.00 4.00 6.00 8.00

Figure 11: Synthetic Data Experiment 2 Results

and 64K data sets have a depth of 3, and the 128K and
the 256K data sets have a depth of 4.
This is an important observation because it shows

that the algorithm behaves well for ordered data sets
and the cost of NN increases linearly with the height of
the tree.

5 CONCLUSIONS

In this paper, we developed a branch-and-bound R-tree
traversal algorithmwhich �nds the k Nearest Neighbors
of a given query point. We also introduced two metrics
that can be used to guide an ordered depth �rst spatial
search. The �rst metric, MINDIST, produces the
most optimistic ordering possible, whereas the second,
MINMAXDIST, produces the most pessimistic ordering
that ever need be considered. Although our experiments
have shown that MINDIST ordering was more e�ective
in the case where the data were spatially sorted,
other orderings or more sophisticated metrics using a
combination of them are possible and might prove useful
in the case where the R-tree was either not constructed
as well or subject to (many) updates. Nonetheless,
these two metrics were shown to be valuable tools in
e�ectively directing and pruning the Nearest Neighbor
search.
We implemented and thoroughly tested our k-NN

algorithm. The experiments on both real and synthetic
data sets showed that the algorithm scales up well
with respect to both the number of NN requested and
with size of the data sets. Further research on NN
queries in our group will focus on de�ning and analyzing
other metrics and how to characterize the behavior of
our algorithm in dynamic as well as static database
environments.

6 ACKNOWLEDGEMENTS

We would like to thank Christos Faloutsos for his
insightful comments and suggestions.



References

[Beck90] Beckmann, N., H.-P. Kriegel, R. Schneider
and B. Seeger, \The R*-tree: an e�cient and
robust access method for points and rectangles,"
ACM SIGMOD, pp 322-331, May 1990.

[BKS93] Brinkho�, T., Kriegel, H.P., and Seeger, B.,
\E�cient Processing of Spatial Joins Using R-
trees," Proc. ACM SIGMOD, May 1993, pp. 237-
246.

[FBF77] Friedman, J.H., Bentley, J.L., and Finkel,
R.A., \An algorithm for �nding the best matches
in logarithmic expected time," ACM Trans. Math.
Software, 3, September 1977, pp. 209-226.

[Gutt84] Guttman, A., \R-trees,: A Dynamic Index
Structure for Spatial Searching," Proc. ACM SIG-
MOD, pp. 47-57, June 1984.

[HS78] Horowitz, E., Sahni, S., \Fundamentals of
Computer Algorithms," Computer Science Press,
1978, pp. 370-421.

[Jaga90] Jagadish, H.V., \Linear Clustering of Objects
with Multiple Attributes," Proc. ACM SIGMOD,
May 1990, pp. 332-342.

[Kamel93] Kamel, I. and Faloutsos, C., \Hilbert R-
Tree: an Improved R-Tree Using Fractals," Proc.
of Int. Conference of Information and Knowledge
Management CIKM, 1993, pp. 490-499.

[Rous85] Roussopoulos, N. and D. Leifker, \Direct
Spatial Search on Pictorial Databases Using Packed
R-trees," Proc. ACM SIGMOD, May 1985.

[Same89] Samet, H., \The Design & Analysis Of Spatial
Data Structures," Addison-Wesley, 1989.

[Same90] Samet, H., \Applications Of Spatial Data
Structures, Computer Graphics, Image Processing
and GIS," Addison-Wesley, 1990.

[SRF87] Sellis T., Roussopoulos, N., and Faloutsos,
C., \The R+-tree: A Dynamic Index for Multi-
dimensional Objects," Proc. 13th International
Conference on Very Large Data Bases, 1987, pp.
507-518.

[Spro91] Sproull, R.F., \Re�nements to Nearest-
Neighbor Searching in k-Dimensional Trees," Al-
gorithmica, 6, 1991, pp. 579-589.


