
 16

 15

Figure 7: Spatial Join in PSQL

 14

Figure 6: Spatial Select in PSQL

 13

Figure 5: Spatial Select in PSQL

 12

[SeFaRo87]

Sellis, T., Roussopoulos, N., Faloutsos, C., “The R+tree: A Dynamic Index for Multi-
Dimensional Objects,” Proceedings of the 13-thInternational Conference on Very Large Data
Bases, Brighton, England, September 1-4, 1987.

 11

6.0 Conclusions

We believe that spatial queries supported by GIS and alphanumeric queries provided by RDBMSs
should be integrated into a common language which provides a uniform interface to both, but
their representation and processing must be clearly distinguished. In this paper we described
PSQL, a modest GIS system for ORACLE. PSQL allows both spatial objects to be represented,
stored and queried in their analog form, as well as offering the user to do direct query
formulation and manipulation on the alphanumeric database.

.Spatial search and spatial joins are supported by variations of R-trees, which are excellent search
devices for spatial objects and their relationships in multi-dimensional space. The main features
of the PSQL software package are that it requires no modification to the ORACLE databases and
that it is very easy to use.

7.0 References

[Gutt84]

Guttman, A.,“R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM
SIGMOD, Boston, Massachusetts, June 1984.

[FaSeRo87]

Faloutsos, C., Sellis, T., Roussopoulos, N.,“Analysis of Object Oriented Spatial Access
Methods,” Proceedings of theACM-SIGMOD International Conference on Management of Data,
San Francisco, May 28-30, 1987.

[RoKeVi]

Roussopoulos, N., Kelley, S., Vincent, F., “Nearest Neighbor Queries”,Proceedings of the
ACM-SIGMOD International Conference on Management of Data, San Jose, May 22-25, 1995

[RoLe85]

Roussopoulos, N., Leifker, D., “Direct Spatial Search on Pictorial Databases Using acked
R-Trees,” Proceedings of theACM-SIGMOD International Conference on Management of Data,
May 28-31, 1985, Austin Texas.

[RoSeFa88]

Roussopoulos, N., Faloutsos, C., Sellis, T., “An Efficient Pictorial Database System for
PSQL,” IEEE Trans. on Software Engineering, Vol. 14, No 5, May 1988, pp. 639-650.

 10

The next query illustrates a qualified selection from the Long Beach database using a constant
region specification:

select street_name, street_type
from lbeach_map
where street_name < ’M’

 and lbeach_map(LBeach) overlaps
 rect(’-118.280’, ’33.750’, ’-118.200’, ’33.850’);

The output of the above query is shown in Figure 6.

5.2.2 Spatial Join Queries

Spatial joins are an important and potentiallyvery expensive class of queries. Records from the
relations are joined if they all satisfy the underlying spatial operation conditions. The following
query illustrates the spatial join of the Long Beach street relation with the one on the fictitious
political wards:

select street_name, length
from lbeach_map, wards
where ward_num < 7

 and lbeach_map(LBeach) containedby
rect(wards(ward_num,long1,lat1,long2,lat2));

The output of the above query is shown in Figure 7.

As can be seen, spatial joins allowspatial overlays or the synthesis of information stored in mul-
tiple tables, yet referring to the same spatial objects. We are currently implementing similar over-
lays to include bitmaps as well as spatial objects.

5.2.3 Nearest Neighbor Queries

A frequently encountered type of query in Geographic Information Systems is to find the k near-
est neighbor objects to a given point in space. Processing such queries requires substantially dif-
ferent search algorithms than those for location or range queries [RoKeVi].

Our system implements an efficient branch-and-bound R-tree traversal algorithm to find the near-
est neighbor object to a point, and then generalize it to finding the k nearest neighbors.It also uses
metrics for an optimistic and a pessimistic search ordering strategy as well as for pruning.

select street_name,street_type

from lbeach_map

where lbeach_map(LBeach) nearest point(’-118.19’, ’33.78’);

 9

5.1.3 Dropping an R-tree Index from PSQL

To drop a spatial index from PSQL we added the following syntax to the standard SQL drop state-
ment:

drop rindex <index-name>

where <index-name> is the name of the R-tree index to be dropped.

5.2 Data Manipulation in PSQL

PSQL supports both select and update statements of SQL. Update statements are captured and
decomposed into a sequence of single tuple modifications which are then passed to ORACLE. If
the ORACLE transactions complete normally, the equivalent R-tree modifications are passed to
the R-tree Index System. The select statement has been extended to accept spatial expressions in
the target list and the where clause qualification:

select <target-list>
from <relation-list>
where <qualification>

where

<qualification>=<spatial-expression> | <regular-SQL-expression>

<spatial-expression> = <spatial-operand> <spatial-operator> <spatial-operand>

<spatial-operand> = <table-name>(<index-name>) | <table-name>(loid, <spatial-attribute-list>) |
<object-type>(<table-name>(loid, <spatial-attribute-list>)) | <object-type>(<spatial-
value-list>) <spatial-operator> = overlaps | contains | containedby | overlay

A spatial expression is a predicate consisting of a spatial operator and two spatial operands and
may be specified in a PSQL statement whenever a non-spatial predicate might be found in a stan-
dard SQL statement- e.g. in the where clause of aselect, insert, delete, or update statement.

5.2.1 Spatial Search Queries

The following query illustrates a spatial selection. It selects observation information from the
NASA IUE database which are spatially restricted to a fixed ellipitical region and restricted by
date to more recent observations.

select loid, camera, image_sequence_number
from iue
where yr_observation > 85 and

iue(IUE) overlaps
ellipse(‘8764230’, ‘2669370’, ‘3894940’, ‘2444830’);

The output of the above query is shown in Figure 5, at the end of this paper.

 8

R-trees use rectangles in 2-D space, parallelepipeds in 3-D space, and hyper-parallelepipeds in
higher dimensions to index the underlying search spaces. Since some of the PSQL data types may
partially overlap with the space of the above spatial objects, special purposeclipping functions are
used by the spatial operators to discover overlap and containment. These clipping functions are
applied after the search on all the returned by the R-tree objects.

For illustration purposes, we will use three spatial relations stored in an ORACLE database. The
first relation is a street network from the US Census Bureau which stores all the street segments of
the Long Beach California area. The data type is segment. The spatial attributes are the longitude
and latitude of the end-points. The second relation stores Wards (fictitious political units) in the
Long Beach area and it is of type rectangle. The third relation is from an Astrophysics database
used for the NASA International Ultraviolet Explorer project. It stores observations of stars in the
sky whose coordinates are given by Right Ascension (RA) and Declination (DEC). This is a point
data type. Their schema are:

LBEACH_MAP (NODE1, NODE2, STREET_ID, LENGTH, FILE_NO, STREET_NAME, STREET_-
TYPE, CLASS_CODE, L_LEFT, H_LEFT, L_RIGHT, H_RIGHT, PL_LEFT, PL_RIGHT,
SOUNDX, DIR_CODE, LONGIT1, LATIT1, LONGIT2, LATIT2)

WARD (WARD_NUM, WARD_NAME, LONG1, LAT1, LONG2, LAT2)

IUE (LOID, OID, PID, RA,DEC, MAGNITUDE, EBV_TYPE, MAG_1000, SPECTRAL_TP, LUMINOC-
ITY, OBJECT_CLASS, FES_MODE, ES_COUNTS, CAMERA, IMAGE_SEQUENCE_ DIS-
PERSION, APERTURE, LARGE_APERTURE_STATUS, EXPOSURE_LENGTH,
YR_OBSERVATION, DAY_OBSERVATION, HR_OBSERVATION, MIN_OBSERVATION,
ACQUISITION_STATION, STATUS_NOTE, YR_PROCESSING, DAY_PROCESSING, COM-
MENTS)

5.1.2 Creating an R-tree Index from PSQL

To enable the user to create an R-tree index based upon some set of spatial attributes of his or her
data, we added the following syntax to the standard SQL create statement:

create rindex [unique] <index-name> of type <object-type> on <table-name>(loid,<spatial-
attribute-list>)

<object-type>= point | hseg | segment | ect | circle | ellipse | polygon

<spatial-attribute-list>= <spatial-attribute1>, <spatial-attribute2>[,...]

where <index-name> may be any legal identifier in SQL and <table-name> is the name of the
relation in ORACLE on which a spatial index is to be built. If loids uniquely identify the table
row, the unique keyword will make the access more efficient. The number of spatial attributes in
the spatial attribute list depends upon the spatial object type - i.e. the point object type requires 2
attributes be specified in a 2-dimensional index whereas rect requires 4 attributes be specified.
The following are examples of rindex creation:

create rindex IUE of type point on iue(loid,ra,dec)

create unique rindex LBeach of type segment on lbeach_map(street_id, longit1, latit1, longit2, latit2);

 7

down the search from h to hN, whereh is the height of the tree. Clearly, the dynamic splits of R-
trees, may cause some degradation on the performance of the search.

It has been shown, that zero overlap and coverage is only achievable for data points that are
known in advance and, that using a packing technique for R-trees, search is dramatically
improved [RoLe85]. In the same paper it is shown that zero overlap is not attainable for region
data objects. A variation of the basic R-trees are theR+trees [SeFaRo87] which avoid overlap at
the leaf level at some small extra cost in the overall space requirements. This achieves less tra-
versals of paths from the root to the leaf but slightly higher heights in the trees. Detailed compari-
son of these variations are beyond the scope of this paper but can be found in [SeFaRo87] and
[FaSeRo87].

5.0 The Language of PSQL

PSQL was introduced to cope with the problem of having to learn a specialized GIS language to
do spatial searches in the databases. Since no standards have been accepted for GIS, almost any
implementation of such a system has its own query language intertwined with graphical inter-
faces. This makes it very difficult to learn. The biggest asset of PSQL is that an SQL-trained data-
base user would be able to learn the spatial search extensions in a matter of minutes and use it
right away. The other premise of it is that, since PSQL is a superset of SQL, generic SQL queries
to the database would be recoginized as such and passed directly to the underlying RDBMS
where they would be handled appropriately. The user can execute all his or her queries and
updates within the domain of one application; both spatial and non-spatial types.

5.1 Data Definition in PSQL

5.1.1 Spatial Domains & Relations

The relational model requires that relations be defined over a set of domains each of which has
one or another form of an alphanumeric data type. PSQL extends the definition of relations over
spatial domains using an abstract data type approach.

Every domain in PSQL is an abstract data type. The spatial comparison operators and functions
defined on each spatial domain hide from the user the low level implementation details which deal
with the encoding of the low level representation of the domain. The advantage of this approach is
that the representation of a domain can change (e.g. increase the resolution of images)without
affecting the relations defined over them. In the sequel, domain and data type of the domain are
used interchangeably.

Currently, PSQL supports seven basic spatial domains: points, line segments, horizontal line seg-
ments (useful for modelling duration of events on a time line), circles, ellipses, rectangles, and
polygons. Segments and polygons are considered as objects whose internal representation and
discretization is not explicitly modeled by the relational primitives of PSQL, but using special
purpose external data structures appropriate for each domain. In addition to these basic spatial
domains, PSQL also supports all the alphanumeric types supported by SQL.

 6

(LOIDs) as it is for the case of ORACLE) or Tuple IDentifiers (TIDs) which are direct pointers to
the internal storage of the RDBMS.

Non-leaf R-tree nodes contain entries of the form

(RECT, p)

wherep is a pointer to a successor node in the next level of the -tree, andRECT is a minimal rect-
angle which bounds all the entries in the descendent node. The termbranching factor (also called
fan-out) can be used to specify the maximum number of entries that a node can have; each node
of an R-tree with branching factor four, for example, points to a maximum of four descendents
(among non-leaf nodes) or four objects (among the leaves). To illustrate the way an R-tree is
defined on some space, Figure 3 shows a collection of rectangles and Figure 4 the corresponding
R-tree built for a branching factor of 4.

In considering the performance of R-tree searching, the concepts ofcoverage andoverlap
[RoLe85] are important. Coverage is defined as the total area of all the MBR’s of all leaf R-tree
nodes, and overlap is defined as the total area contained within two or more leaf MBR’s. Obvi-
ously, efficient R-tree searching demands that both overlap and coverage be minimized. Minimal
coverage reduces the amount of dead space covered by the leaves and eliminates at a very high
level in the R-tree, fruitless searches in such space. Minimal overlap seems to be even more criti-
cal than minimal coverage. For a search window falling in the area ofN overlapping leaves, in the
worst case,N paths from the root to each of the overlapping leaves have to be followed slowing

D

A

F

E
J

K

B

G

C

M
L

N

H I

A B C

D E F G H I J K L M N

Figure 3: Some rectangles organized in an R-tree

Figure 4: The Corresponding R-Tree

 5

Figure 2: The X Interface of PSQL

 4

between ORACLE and the R-tree Index System provided by the Interoperability Services main-
tains open a connection to ORACLE and uses buffering techniques for improving performance.

Overall, this connection performs quite well despite the indirection and the heavy overhead of
exporting from ORACLE values for the spatial search and then importing to it LOIDs for the final
processing. The reason is that the high search performance of the R-tree indexes offsets by far the
cost of searching combined attribute B-tree indexes in ORACLE, especially in higher dimensions.
Incorporation of PSQL (i.e. PSQL extensions to the SQL parser and R-tree Index System) inside a
host environment, offers an order of magnitude higher performance as it has been demonstrated in
a prototype DBMS in which tuple identifiers are used in place of LOIDs.

3.0 The X-Interface

The X -Interface provides a front-end to the PSQL software and adds GIS capabilities. The user
interface is depicted in Figure 2. The interface provides a text window for specifying PSQL que-
ries, (bottom -most window in Figure 2), a message window, placed just above the text query win-
dow, a graphics window for 2-dimensional query input/output, placed above the message window,
and a window dedicated for ORACLE output (displayed overlayed). The spatial input/output win-
dow has its own menu driven language for object/query drawing, searching, zooming, etc. The
searching capability on the underlying space can be used to assist the formulation of the query by
doing spatial searches without having to submit a query to ORACLE.

4.0 R-trees: An Efficient Spatial Index

R-trees are index devices for multi-dimensional space. Their main advantages are: a) they main-
tain themselves balanced for fast and uniform access cost, b) they dynamically adjust the space in
a way that avoids “dead-space” (i.e. space containing no objects) and excessive “overlap” of
objects, and c) they provide a natural and high levelobject oriented search as opposed to low
level grid oriented search. The storage organization of R-trees is similar to B-trees and provides
disk buffering and main memory page caching for arbitrary size files.

The decomposition used in R-trees is dynamic, driven by the spatial data objects. Therefore, if a
region of an n-dimensional space includes dead-space, no entry in the R-tree is introduced. Leaf
nodes of the R-tree contain entries of the form

(RECT, oid)

whereoid is an object-identifier and is used as a a pointer to a data object andRECT is an n-
dimensional minimal rectangle (called Minimal Bounding Rectangle or MBR) which bounds the
corresponding object. For example, in a 2-dimensional space, an entryRECT will be of the form

(xlow, xhigh, ylow, yhigh)

which represents the coordinates of the lower-left and upper-right corner of the rectangle. The
possibly non-atomic spatial objects stored at the leaf level are considered atomic, as far as the
search is concerned, and, in the same R-tree, they are not further decomposed into their spatial
primitives, i.e. into quadrants, line segments, or pixels. Note thatoids can be either logical

 3

passed to ORACLE for execution. Updates to ORACLE tables which have spatial index(s) built
on them are converted into sequences of ORACLE and R-tree operations on single tuples. The
ORACLE operation is performed first, followed conditionally by the equivalent R-tree operation.

The R-tree Index System includes functions for creating an R-tree, loading an unpacked R-tree,
packing an R-tree, searching an R-tree with one or more search-windows, inserting one or more
entries into an R-tree, deleting one or more entries from an R-tree, and some additional functions
to gather and report statistics of the various operations.

 Figure 1 The PSQL Software Architecture

As was mentioned above, the interactions between the R-tree Index System and the host environ-
ment of ORACLE is achieved through Logical Object IDentifiers (LOIDs). Each spatial object is
defined by its coordinates and a unique LOID. To create an R-tree, thecreate rindexfunction first
obtains from ORACLE the LOIDs and their location (coordinates) in the space they occupy. The
R-tree loading function then creates an R-tree which uses its own external and internal storage
structures. To search for spatial objects within a search window, the window and the name of the
R-tree is passed to the search function which returns the list of LOIDs of the objects located inside
(or partially inside) the search-window. The returned LOIDs are imported to and used by ORA-
CLE for retrieving any additional attributes of the qualified objects. Thisdirect connection

ORACLE
RDBMS

R-TREE
INDEX

DBMS Pro-C Index Engine Interface

INTEROPERABILITY SERVICES

GIS Interface

PSQL Parser

X-INTERFACE

USER

 2

sentation layer is needed so that spatial objects and their spatial relationships can be presented in
their analogobject-oriented form and not their internal RDBMS encoding.

This paper describes the implementation of PSQL [RoSeFa88] on ORACLE. PSQL is an exten-
sion of SQL which allows the creation and use of multi-dimensional spatial indexes, and direct
specification of spatial queries that invoke spatial searches and spatial joins.

 We have been using variations and extensions of R-trees for spatial indexes.R-trees were first
introduced by Guttman in [Gutt84] and improved through better compaction techniques by Rous-
sopoulos and Leifker in [RoLe85]. They are based on B-trees, but extended for multi-dimensional
space. Their most frequent application is in 2-dimensional spaces where they provide better per-
formance than ordinary B-trees. In fact, in some systems, B-tree indexes on 2-dimensional
attributes confuse the query optimizer and make the search a lot slower than even a sequential
scan of all the records. On the other hand, R-trees have been shown to be one of the fastest sec-
ondary index methods for 2-dimensional searches and very unique in maintaining performance
characteristics in higher dimensions.

Although many spatial access methods exist, most of them are not very useful because they
require that a) the data files get reorganized in the format that these structures can operate, and b)
these methods cannot be incorporated with existing commercial systems which are closed or with
in-house systems that are very hard to extend. Reorganizing existing data is totally impractical not
solely because of the high conversion cost, but for other technical (consistency maintenance) and
political reasons. Therefore, one of the strictest requirements is that the spatial data remain in the
original storage and format structures.

The software architecture of PSQL is presented in section 2. The X-interface of PSQL is
described in section 3. R-trees are described in section 4. The language of PSQL and examples in
it are presented in section 5. Section 6 contains the conclusions.

2.0 The PSQL Software Architecture

The architecture of the PSQL Software is depicted in Figure 1. It consists of four major compo-
nents all connected through the Interoperability Services Layer which provides the connectivity
between the other components.

The X Interface provides a front-end to the PSQL software with modest GIS capabilities. The dot-
ted line around it indicates that it is optional and that queries can be directed to the PSQL Parser
either from an I/O channel, or from another GIS front-end able to converse PSQL.

The PSQL parser enables the user to perform queries using the full expressive capability of SQL
and the spatial expression extensions of PSQL combined with the power of the ORACLE
RDBMS. The parser intercepts all user input and diverts to ORACLE all standard ORACLE SQL
statements which require no spatial search nor updates to tables which have spatial indexes. State-
ments requiring spatial search are preprocessed using the R-tree Index System. This preprocess-
ing involves searching the R-trees, producing and importing to ORACLE the list of logical
identifiers (LOIDs) satisfying the spatial search condition and, finally, modifying the initial query
to an equivalent one based on the imported identifiers. The converted SQL statement is then

 1

PSQL: AN INEXPENSIVE GIS SOLUTION FOR ORACLE

Nick Roussopoulos, Steve Kelley

Advanced Communication Technology Inc.
1209 Goth Lane

Silver Spring, MD 20905

ABSTRACT

This paper describes the ORACLE implementation of PSQL, a query language that allows spatial
search and GIS capabilities on ORACLE databases. Spatial search and spatial joins are supported
by variations of R-trees, which are excellent storage and retrieval devices for spatial objects and
their relationships in multi-dimensional space. Other excellent features of the PSQL software
package are that it requires no modification to the ORACLE databases and interoperates with
ORACLE on a direct and interactive connection.

1.0 Introduction

Relational databases have mostly dealt with alphanumeric data types, (i.e. numerals and strings),
and numeric or string comparison operators. Extensions to incorporate abstract types are emerg-
ing in the newer releases of commercial database systems. However, spatial operators and Geo-
graphic Information Systems (GIS) functionality are still not available.

There are several approaches for extending a Relational Data Base Management System
(RDBMS) to include GIS functions. One is to have a GIS front-end as a presentation layer, and
have a commercial RDBMS for storing and exporting the data to the GIS through a gateway. This
is an expensive solution because the GIS requires the whole presentation data be imported to its
own internal data structures before it can be used. Incremental access to an ORACLE database
and efficient spatial search to select a portion of the database cannot be utilized by gateway soft-
ware. The other approach is to expect the RDBMS vendors incorporate a GIS in future releases.
This is an even less viable solution because of the diversity of GIS requirements and functionality.

 A third, and middle of the road approach, is to build an intermediate layer of software which can
interact with both the RDBMS and the front-end GIS package at a deeper than gateway level and
provide both spatial search and efficient buffering on the underlying RDBMS.

Our approach is the middle of the road one. We believe that spatial relationships must be stored in
an RDBMS and efficiently searched using multi-dimensional indexing in a manner similar to
alphanumeric searches. The user should interact with both the RDBMS in its native language,
SQL, and with the GIS in a similar and native language for manipulating spatial objects. The pre-

