The Polynomial Complexity of Fully Materialized Coalesced
Cubes®

Yannis Sismanis
Dept. of Computer Science
University of Maryland
isis@cs.umd.edu

Abstract

The data cube operator encapsulates all possible
groupings of a data set and has proved to be an
invaluable tool in analyzing vast amounts of data.
However its apparent exponential complexity has
significantly limited its applicability to low di-
mensional datasets. Recently the idea ofdbe
alesced cubewvas introduced, and showed that
high-dimensional coalesced cubes are orders of
magnitudes smaller in size than the original data
cubes even when they calculate and store every
possible aggregation with 100% precision.

In this paper we present an analytical framework
for estimating the size of coalesced cubes. By us-
ing this framework on uniform coalesced cubes
we show that their size and the required computa-
tion time scalepolynomiallywith the dimension-
ality of the data set and, therefore, a full data cube
at 100% precision is not inherently cursed by high
dimensionality. Additionally, we show that such
coalesced cubes scale polynomially (and close to
linearly) with the number of tuples on the dataset.
We were also able to develop an efficient algo-
rithm for estimating the size of coalesced cubes
before actually computing them, based only on
metadata about the cubes. Finally, we comple-

Nick Roussopoulos
Dept. of Computer Science
University of Maryland
nick@cs.umd.edu

ment our analytical approach with an extensive
experimental evaluation using real and synthetic
data sets, and demonstrate that not only uniform
but also zipfian and real coalesced cubes scale
polynomially.

1 Introduction

The data cube operator is an analytical tool which pro-
vides the formulation for aggregate queries over categories,
rollup/drilldown operations and cross-tabulation. Concep-
tually the data cube operator encapsulates all possible mul-
tidimensional groupings and it is an invaluable tool to ap-
plications that need analysis on huge amounts of data like
decision support systems, business intelligence and data
mining. Such applications need very fast query response
on mostly ad-hoc queries that try to discover trends or pat-
terns in the data set.

However the number of views of the data cube increases
exponentiallywith the number of dimensions and most ap-
proaches are unable to compute and store but small low-
dimensional data cubes. After the introduction of the data
cube in [6] an abundance of research followed for deal-
ing with its exponential complexity. The main ideas can
be classified as either a cube sub-setting (partial materi-
alization) [7, 8, 18] or storing the full cube but with less
precision (approximation or lossy models) [1, 19]. How-
ever, all these techniques do not directly address the prob-

“This material is based upon work supported by, or in part by, the U.SJem of exponential complexity. Furthermore, all problems

Army Research Laboratory and the U.S. Army Research Office under Conyssociated with the data cube itself appear to be quite dif-
tract/grant number DAAD19-01-1-0494. Prepared through collaborative, PP q

participation in the Communications and Networks Consortium sponsoreé'cun’ from c_:omputlng it [2’ 4_’ 14, 21, 3, 12]’ storing it

by the U. S. Army Research Laboratory under the Collaborative Technoll9, 5], querying and updating it[13]. Even the problem of
ogy Alliance Program, Cooperative Agreement DAAD19-01-2-0011. TheObtaining estimates on the cube size —that appears simpler
U. S. Government is authorized to reproduce and distribute reprints fops a problem-— is actually quite hard and needs exponential
Government purposes notwithstanding any copyright notation thereon. memory and exponential processing per tuple with respect

Permission to copy without fee all or part of this material is granted pro- to the dimensionality [15] in order to obtain accurate re-
vided that the copies are not made or distributed for direct commercialsu|ts

advantage, the VLDB copyright notice and the title of the publication and .. .

its date appear, and notice is given that copying is by permission of the Cu”jemly the mOSt promsmg_approaches for hand"ng
Very Large Data Base Endowment. To copy otherwise, or to republishjarge high-dimensional cubes lie in the contextoélesced
requires a fee and/or special permission from the Endowment. data cubes[17], where we demonstrate that the size and the
Proceedings of the 30th VLDB Conference, required computation of the dwarf data cube, even when

Toronto, Canada, 2004 every possible aggregate is computed, stored and indexed,

is orders of magnitudes smaller than what expected. The whered is the number of dimension€,is the cardinal-
coalescing discovery [17], completely changed the percepity of the dimensions and is the number of tuples. This
tion of a data cube from a collection of distinct groupingsresult shows that, unlike the case of non-coalesced cubes
into a complex network of interleaved groupings that elim-which grow -in terms of size and computation time- ex-
inates bothprefix and suffix redundanciesit is these re- ponentially fast with the dimensionality, the 100% accu-
dundancies and their elimination that fuse the exponentiadlate and complete (in the sense that it contains all possible
growth of the size of high dimensional full cubes and dra-aggregates) coalesced representation only gpmlygiomi-
matically condense their store without loss in precision. ally fast. In other words, if we keep the number of tuples
To help clarify the basic concepts, let us consider an the fact table constant and increase the dimensionality
cube with three dimensions. In Table 1 we present suclef the fact table (by horizontally expanding each tuple with
a toy dataset for the dimensioSsore, Customer, and new attributes) then the required storage and corresponding

Product with one measurerice. computation time for the coalesced cube scales only poly-
nomially. The first form of the complexity shows that the
Store | Customer | Product || Price dimensionalityd is raised to log T which does not depend
S1 Cc2 P2 $70 ond and is actually quite small for real datasets
S1 C3 P1 $40 The second form of the complexity shows that the coa-
S2 C1 P1 $90 lesced size and corresponding computation time is polyno-
S2 C1 P2 $50 mial w.r.t to the number of tuples of the data $etwhich
is raised to }1/logyC (and is very close to 1 for very
Table 1: Fact Table for Cube Sales large real datasets In other words, if we keep the dimen-

) .) sionality of the fact table constant and start appending new
The size of the cube is defined as the number of the tug,jes “then the coalesced cube scales polynomially (and
ples it contains, which essentially corresponds to the U most linearly). These results change the current state of

of the tuples of all its 2views. The size of the coalesced the art in data-warehousing because it allows to scale up
cube is defined as the total number of tuples it contaifis, 5nq pe applicable to a much wider area of applications.

ter coalescing. For example, for the fact table in Table 1 In addition we extend our analysis to cubes with vary-

and the aggrega?e functidh= sumwe have_ a qupe size ing cardinalities per dimension and we provide an effi-
of 23 tuples, while the coalesced cube size is just 9 tu-

ples as depicted in Table 2. The redundancy of the CubC|ent polynomial —w.r.t to the dimensionality— algorithm

is elimi db ina th | d g I:SQ/hich can be used to provide close estimates for a coa-
Is eliminated by storing the coalesced areas just once. FQfg qaq cype size based only on these cardinalities without

example, the aggregate $70 appears in total of five IUpIe%ctuaII ; ; .
. y computing the cube. Such estimates are invalu-
(SYALL,C2,P2ALL) and (S1,ALL,P2), in the cube and able for data-warehouse/OLAP administrators who need

it is coalesced in just one tuple. Although [11, 20] at- 0 preallocate the storage for the cube before initiating its

tempt to exploit similar suffix redund_ancies, t_hey are base(iomputation. Current approaches [15] cannot be applied
on a bottom-up computation[3] which requires exponen-, ninn dimensional data cubes, not only because they re-

tial computation time; only Dwarf's computation algorithm quire an exponential amount of work per tuple and expo-

eliminates these Fedundaﬂc'es_frmh the required stor- nential amount of memory but mostly because they cannot
age and the required computation time. be extended to handle coalesced cubes.

H Coalesced ‘ f(Price) ‘ Although our algorithm is based on uniform and inde-

’ =2 endence assumptions, it provides very accurate results for
1 || (SLALL,C2,P2ALL) (SLALL,P2) $70 Eoth zipfian and rgal dataspets requiringas input only basic
2 || (SLALL,C3,PLALL) (S1,ALL,P1) $40 metadata about the cube —it's dimension cardinalities—.
3 (SLALLALL) $110 In particular in this paper we make the following contri-
4 (S2ALL,C1,P1) (S2,ALL,P1) $90 butions:
5 (S2ALL,C1,P2) (S2,ALL,P2) $50
6 (S2ALL,C1,ALL) $140 1. We formalize and categorize the redundancies found
7 (ALL,ALL,P1) $130 in the structure of the data cube into sparsity and im-
8 (ALL,ALL,P2) $120 plication redundancies
9 (ALL,ALL,ALL) $250

2. We provide an analytical framework for estimating the
Table 2: Coalesced Cube Tuples for= sum size of the coalesced cube and show that for uniform
data sets it scales only polynomially w.r.t to the num-

In this paper we provide a framework for estimating the ber of dimensions and number of tuples

size of a coalesced cube and show that for a uniform cube
the expected size and time complexity is:

1For example for a data set of 100 million tuples and a cardinality of
log T 41 10,000, log T =2
olT d°% -0 (d.-l-]_+]_/logdc) 2|.e., for a dimensionality of 30 and a cardinality of 5,000+ 1
(|0gCT)I 1/logyC~ 1.4

3. We complement our analytical contributions with anexample to prefixb, which appears to one fourth of the
efficient algorithm and an experimental evaluation us-views) we can reduce the amount of storage required to
ing both synthetic and real data sets and we show thadtore the tuples of the cube.
our framework not only provides accurate results for

zipfian distribution but most importantly that real co- | emma 1 The total number of tuples of the cube is not
alesced cubes scadeen bettethan polynomially due affected by prefix redundancy, only the storage required to
to implication redundancies. store each tuple is reduced.

Our work provides thdirst analytical and experimen-
tal results showing that a full (i.e. containing all possible ~ This lemma essentially says that the prefix-reduced cube
groupings and aggregates) and 100% accurate (no approﬁﬂ" suffers from the dimensionality curse, since we have to
imation) data cube is nahherently exponentiatboth in ~ deal with every single tuple of the cube. The benefits of the
terms of size and computation time— and that an effectivédrefix-reduction are therefore quickly rendered impractical
coalescing data cube model can reduce it to realistic valuegven for medium dimensional cubes.
Therefore, we believe it has not only theoretical but also
very practical value for data warehousing applications. 2.2 Suffix Redundancy

The remainder of the paper is organized as follows: In
Section 2 we differentiate between prefix and suffix redundn this section we formally define the suffix redundancy and
dancies and show that suffix redundancies are by far thwe give examples of different suffix redundancies.
most dominant factor that affects coalesced cubes. Sec-]
tion 3 categorizes suffix redundancies based on the spaREFINITION 1 Suffix Redundancyoccurs when a set of
sity of the fact table or the implications between values oftuples of the fact table contributes the exact same aggre-
the dimensions. In Section 4 we introduce the basic pardates to different groupings. The operation that eliminates
titioned node framework and we use it to analyze the coasuffix redundancies is call@alescing The resulting cube
lesced cube structure. In Section 5 we present an algorithi§ calledcoalesced cuband we refer to its tuples ama-
that can be used to estimate the size of a coalesced culfsced tuples
given only the cardinalities of each dimension. The related
work is presented in Section 6 and in Section 7 we show aEXAMPLE 1 Suffix redundancy can occur for just a sin-
evaluation on both synthetic and real data sets. Finally thgle tuple: In the fact table of Table 1, we observe that the
conclusions are summarized in Section 8. tuple:

(SLC2 P2 $70)

2 Redundancies contributes the same aggrega$¥0 to two group-bys:

In this section we formalize the redundancies found in the(Store,Customer) and (Customer). The corresponding tu-
structure of the cube and explain their extend and signifiples are:
cance.

| (Store,Customer) (Customer)|
2.1 Prefix Redundancy [(sIc1s$70) [(C2%70) |

[abe)
EXAMPLE 2 We must point out that suffix redundancy
(o) does not work only on a per-tuple basis, but most impor-

Cav) () tantly it extends tavhole sub-cubes, for example the sub-
"‘ cube that corresponds to the tuples:

G (S2C1P1 $90), (S2C1 P2 $50)

X contributes the same aggregates to sub-cubes of

(Store,Product), (Customer,Product), (Store), (Customer) :
Figure 1: Lattice for the ordering, b, c

This redundancy is the first that has been identified and ’ (Store,Product) (Customer,Product}
can be used to build indexes over the structure of the cube. (S2P1$90) (C1P1$90)
The idea is easily visualized in the lattice representation (S2P2$50) (C1P2$50)
of the cube. For example, in Figure 1, one can observe
that half the group-by’s share the prefix We can ex-
ploit this by just storing the corresponding values just once | (Store) [(Customer)]
and avoid replicating the same values over all views(prefix-] (2 $140) \ (C1 $140) \
reduction). By generalizing this to other prefixes (like for

The reason that whole sub-cubes can be coalesced f the redundancies. In the rest of the paper we will elabo-
the implication between values of the dimensions. In our rate using this visualization.
example,C1 implies 2, in the sense that customéd
only buys products from stor®. Dwarf is the only tech- 3.1 Sparsity Coalescing
nigue that manages to identify such whole sub-cubes as
redundant and coalesce the redundancy fomth storage
and computation timeyithout calculating any redundant
sub-cubes. For comparison, the condensed cube[20] can
only identify redundant areas only tuple-by-tuple, and QC-
Trees[11] have to compute first all possible sub-cubes and
then check if coalescing can occur.

Such suffix redundancies demonstrate that there is sig-
nificant overlap over the aggregates of different groupings.
The number of tuples of the coalesced cube, where coa-
lesced areas are only store once is much smaller than the
size of the cube, which replicates such areas over different “j “j\
groupings.

Tail Coalescing

DEFINITION 2 The size of a cube is the sum of the tuples
of all its views. The size of a coalesced cube is the total Coalesced Tuples
number of tuples after the coalescing operation.
Figure 3: Sparsity Coalescings

C T ‘ T
F |- Prefix-Only Reduction
3-8 Prefix-Suffix Reduction

g In Figure 3 we depict two types of suffix redundancies

i due to the sparsity of the dataset. Lets assume that a path
(P) leads to a sparse area and that for the pé&ehs and

(P X) there is only one tuple due to the sparsity of the cube.
We differentiate between two different types of coalescing
based on the nature of the p&h

10

10*

DEFINITION 3 Tail coalescinghappens on all group-
ings that have(P X) as a prefix, where patP x) leads

to a sub-cube with only one fact tuple and patddes not
follow any ALL pointers

Compression Ratio

101;) 15 20 25 30 EXAMPLE 3 In Figure 3, since there is only one tuple in
#Dimensions the area(P x...) then all the group-bys that hay® x) as
a prefix (i.e.(PxALL z..), (P xy ALL...) etc.) share the
Figure 2: Compression vs. Dimensionality same aggregate.

Prefix redundancy works in harmony with suffix redun- DEFINITION 4 Left coalescingoccurs on all groupings
dancy by eliminating common prefixes of coalesced arWith prefix(P ALL YY), where pathP ALL y) leads to a sub-
eas. A comparison between these redundancies is demofube with only one tuple. In this case, P folloatsleast
strated in Figure 2, where we depict the compression rati®€ALL pointer.

achieved by storing all the tuples of a cube exploiting in the

first case just the prefix redundancies and in the second bo{‘ﬁxp"\/”:’l‘E 4 Left coalescing complements tail coalesc-

prefix and suffix redundancies w.r.t to the dimensionality of "9 and in Figure 3 we depict the case WheRALL y. .)

: : dundant and corresponds @ x y...). The same is
the dataset. We used a dataset with a varying number of dis e
mensions, a cardinality of 10,000 for each dimension anc?bserved fofP ALL ALL 2 and (P ALL ALL 2).

a uniform fact table of 200,000 tuples. It is obvious that Areas with just one tuple (likéP x) and(P X)) therefore
in high-dimensional datasets the amount of suffix redunproduce a large number of redundancies in the structure of

dancies is many orders of magnitudes more important thghe cube. The difference between tail and left coalescing is
prefix redundancies. two-fold:

e Paths that tail coalesce have a prefix thags not fol-

low any ALL pointers while paths that left coalesce
In this section we categorize suffix redundanciespar- have a prefix that follows at least odd.L pointer -
sity and implication redundancies. We use the Dwarf the one immediately above the point where coalescing
model[17] in order to ease the definition and visualization happens-.

3 Coalescing Categories

e Tail coalescing introduces one coalesced tuple in theontains cells that get no tuples at all, gra@p contains
coalesced cube, while left introduces no coalesced tueells that get exactly one tuple, gro@p contains cells that
ples. each one gets exactly two tuples, etc.

In our analysis we consider these two types of coalesc- G, G, G, G,
ing (tail and left) and we show that their effect is so over- V ‘ ‘ ‘ ‘ ‘ ‘ ‘

whelming that the exponential nature of the cube reduces
into polynomial. Lm

3.2 Implication Coalescing - 1]

The sparsity-coalescing types defined in Section 3.1 work

only in sparse areas of the cube where a single tuple exists.

The implication-coalescingomplements these redundan- Figure 5: Node partitioned in groups where each cell in
cies by coalescingrhole sub-cubesFor example, for the groupG, gets exactly tuples

fact table in Table 1 we observe that impliesS2 -in the
sense that custom@l only buys products from®2. This
fact means thagverygrouping that involve€1 and<? is
essentially exactly the same with the groupings that involv
C1. This redundancy can be depicted in Figure 4.

Path P (12-) —T/C

P,(C,T) = e
(C-17
=R

[Proof: The probability that we will pick one item exactly
I- I I ztimes is:

] -] e = (] Jyea-1o -

_ (T> 1/CHC— 1) %/C (1 1/C)T

z

Lemma 2 From a collection of C items, if we uniformly
ick an item and repeat T times, then the probability that
e pick one item exactly z times is:

Figure 4: Implication Coalescing, whetd — 2

The implication coalescing is the generalization of left-where the quantity1 —1/C)T can be approximated by
coalescing when implications between the values of die=T/C and the binomia@) corresponds to the number of
mension occur. Such implications are very apparent inyitferent ways the product/C#(1— 1/C)T~Z can be writ-
real datasets and —since we do not consider those in oyg,
gnalysis— they_are the reason that in the experiments sec- By applying lemma 2 to the basic partitioned node we
tion weoverestimatehe size of the coalesced cube for real gt py substituting” = C:

data sets. . .
Lemma 3 A group G of a basic partitioned node, where

4 Basic Partitioned Node Framework zI: 0... Lh— 1, contains~ %e*l cells that get exactly z tu-

ples eac

In this section we formulate the coalesced cube structur

by first introducing théasic partitioned nodand then by ?Pm()f: The expected number of cells inside a gregips:

building the rest of the coalesced cube around it —by taking (c) c
into account both tail and left coalescing—. Although in this C-P(C,C)=C% 1y el
paper we focus on uniform datasets our framework is ap- (C-17 2
plicable to more general distributions by properly adjusting

. B e
the probability that is used in lemma 2. gﬁg?;ufiig (]ZIS atmost —1, and by definitioC =)

Assume a uniform fact table witth dimensions, where
each dimension has a cardinality ©fand that there are Lemma 4 The expected number of duplicate keys in a node
T = C tuples. For ease of analysis and without loss ofpointed by a cell in group &is zero.
generality we assume thafl : C = L!. The root node of
the corresponding coalesced cube is depicted in Figure
where the node has been partitioh@tto L groups. We re-
fer to such a node as thmsic partitioned nodeGroupGy

Proof: From lemma 3 we know that exactiytuples are
ssociated with each cell of gro@y and from the inde-

pendence assumption we have that the probability that a

key is duplicated for these tuples i with an expected

3for this analysis we relax the property of the dwarf, where the cellsnumber of duplicated ke}@/cz- Even forz=L -1, we
inside a node are lexicographically sorted expect(L —1)/(L!)? ~ 0 duplicate cells.]

P with at least one ALL pointer

G, G,
2
Left Coalescing One new Coalesced Tuple per root cell Left Coalescing One new Coalesced Tuple per root cell
Figure 6: Left-Coalesced partitioned node with=C
4.1 Left Coalesced Areas =Cd/e(1/2!+1/314+..)+1=

In this section we deal with areas of the coalesced cube =2 C-d+1

that are reachable through paths that follow ALL pointers.

These areas have the possibility of left coalescing and as

we'll show they are dominated by such redundancies. —— - T
In Figure 6 we show a basic partitioned node for a path

P that follows at least one ALL pointer and corresponds to [Leﬂ Coa]esced] [Leﬂ Coalesced}

a subset of the fact table with= C tuples. We refer to the area area

corresponding sub-cube kt-coalesced sub-cutand we

show that it introduces a “small” number of new coalesced [Lef‘ E;‘::'f“e“} [Le“ S;’e“f“ed]
tuples. For the purposes of this section we refer to the root Tuples: C

of the left-coalesced sub-cube as root. Since cells in group #Dims: d—1 \/

Go get no tuples, they offer no aggregates at all. Cells in

groupG; that get only a single tuple, left-coalesce to other Tuples: C
tuples in the structure and offer no aggregation. This is the #Dims: d-2

reason we differentiate between paths that follow at least
one ALL pointer and those which do not. Cells in groups Figure 7: Left-Coalesced partitioned node witk= CX
Gy, Gs,...,GL_; introduce only a single aggregate per cell.)

To help clarify this, consider a cell in groug,. Since Wekcan extend'our analysis to_ the general case where
there are two fact tuples associated with this cell (by def-] =" k=10gc T in the way that is depicted in Figure 7.
inition) there are two pathé® x) and (P X) that corre- ~ BY induction we prove that:
spond to these two tuples. Additionally, the p&follows
at least one ALL pointer, therefore tlexact same tuples
appear with another pat that does not follow any ALL
pointer, and therefore patif® x) and (P X >_coalesce to NLefy(T =CX.d,C) =
(Qx)and(Q X). The only aggregate that this sub-cube in- a1
troduces is the aggregate of these two tuples (located atthe _ . 5 N LefyT = ckld— i,C)+1=
leaf nodes). The same holds for all gro@@s Gs, ..., G 1 i;
and therefore the number of new coalesced tuples that a N d
left-coalesced sub-cube withdimensions and = C fact = aoCk<) + ch*i () +1
tuples introduces is (by using lemma 3): K i= k—i

Lemma 5 The number of new coalesced tuples that a left-
coalesced area introduces is:

NLeft(T =C,d,C)=a-C-d+1
whereao — (e—2) e. 4.2 Tail Coalesced Areas
[Proof: As depicted in Figure 6 a left-coalesced parti- In this section we deal with areas that are reachable through
tioned node introduces: paths that do not follow any ALL pointers. These areas
have less chances for left-coalescing but as will show the
dc/2let+c/3let+..)+1= amount of coalescing is still very significant.

P with no ALL pointers

Tail Coalescing

i

1 coalesced tuple 3 coalesced tuples L coalesced tuples
per root cell per root cell per root cell

LefiCoalescing ﬁ \ / ﬁ_] |ﬁ
N Y

Left Coalescing One new Coalesced Tuple per root cell

Figure 8: Tail-Coalesced partitioned node with=C

In Figure 8 we show a basic partitioned node which cor- — UL T
responds to a path thatdoes nofollow any ALL pointers

and that it corresponds to a subset of the fact table Witlrn Coalososd) (Tail Coalesced
T = C tuples. We refer to the corresponding sub-cube a mﬂj area
tail-coalesced sub-cuband we count the number of coa-

lesced tuples it introduces. As in the left-coalesced case, \ [Left f;oa,'esced} [Left f;‘oa}esced}
cells in groupGq that get no tuples offer no tuples at all. Tuples: ¢ - -
Cells in groupG; that get only a single tuple, offer just #Dimgf o \/
a single aggregate, due to tail coalescing. Cells in groups -

Gz, wherez=2,....L — 1 introducez+ 1 coalesced tuples,
the z tuples of the fact table plus their aggregation. The

number of coalesced tuples a tail-coalesced sub-cube with
d dimensions and = C fact tuples introduces is:

k-1
Tuples: C
#Dims: d-2

Figure 9: Tail-Coalesced partitioned node with= C*
NTail(T =C,d,C) =byC+aC(d—1)+1
4.3 Coalesced Size and Time Complexity
whereap = (e—2)/eandbg = (2e—2)/e.
[Proof: The new tuples under the root tail-coalescedThe analysis for the tail coalesced areas gives the total num-

node (ignoring the all cell) are: ber of coalesced tuples for the full coalesced cube with
dimensions, cardinalit per dimension and fact table
C/1!/e+C/3!l/e+C/4!/e+...=hC tuple¢. Lemma 6 gives that:

while the all cell points to a left-coalesced node with: dlosc T 1+1/logyC
aoC(d — 1) + 1 new tuples (as explained in Section 4.1)] #CoalescedTuples O <T(IogCT)!> =0 (T ‘)
We can extend our analysis to the general case where
T =CK k=log: T in the way that is depicted in Figure 9. with the surprising result that even if we consider only two
Using induction we prove that: out the three coalesces, the size of the coalesced cube is
only polynomial w.r.t to the dimensionality of the fact ta-

Lemma 6 The number of new coalesced tuples that a left.ble and polynomial (and very close to linear) w.r.t to the

coalesced area introduces is: number of tuples in the fact table.
_ ‘ Additionally, if we consider the number of nodes or
NTail(T =C"%,d,C) = cells, that are introduced in the coalesced structure, the ex-
. d—1 . _ pected complexity is multiplied by (i.e. the polynomial
=C-NTail(C¥1,d-1,C)+ ; NLeft(C* 1 d—i,C) = power increases by one), since we ne¢dnost dnodes
i=

and cellsignoring any prefix reductiomn order to repre-
«[r7d K d K sent each tuple. Therefore the expected complexity for the
—aC Kk> 1] " [(k_.) 1} b
|

3

4When we start creating the root node of the coalesced cube there is
no chance of left-coalescing, since nothing has been created

number of cells (or the full size of the structure) is:

dlogc T+1
#TotalCells=0O(T———
(logc T)!

Initially the algorithm is called with the tail coalescing
flag set to 1, since there is no chance for left-coalescing
(there are no tuples to coalesce to). In line 4 we check if
there is just one tuple in the subcube where tail or suffix
coalescing happens depending on the tail coalescing flag.

It is very important to point out that from the current |n lines 12- 19 we traverse the basic partitioned node by
algorithms that eliminate such suffix redundancies like [17 checking iteratively how many cells get one, two, three,

11, 20], only the suffix coalescing algorithm of Dwarf visits etc. tuples until all the available tuples for the subcube are
the cells of the structurust onceand therefore the time exhausted. The quantity:

complexity for constructing dwarfs is:

FactT,
(%)

e .mcC.eFact/mC

dlogc T+1
Dwarf ComputationTime= O (T)

(logc T)!
where FactT is the number of fact tuples for the current sub-

On the contrary, the a_Igorlthms In [11, 2.0] are based OHwarf and mC is the cardinality of the current dimension,
a bottom-up computation(3], which requires eXponent"""lreturns the number of cells that get exactly x tuples

computation time on the number of dimensions. The algorithm works in a depth-first manner over the
lattice and estimates recursively the number of coalesced
tuples that its sub-dwarf generates. For example, for a
three-dimensional cubabc the algorithm in line 21 starts

. . . I thedrill-down to all subcubes with prefia and recursively

In this section we extend our analytical contribution to the;; proceeds to those with prefab and finally reaches pre-
general case of varying cardinalities per dlmenS|onaI|tyﬁxesabQ by estimating appropriately the number of tuples

Algorithm 1 can be used to estimate the number of CO8that each subdwarf gets. When (lines 1-7) there are no more
lesced tuples for sparse uniform data sets given the card

5 Algorithm for Coalesced Cube Size Esti-
mation

nalities of each dimension.

Algorithm 1 NCT Algorithm - Num of Coalesced Tuples

Input: d: Number of Dimensions

1: if FactT=0then The running complexity of the algorithm is derived from
2 return O the basic partitioned node framework and is polynomial on
3 else ifFactT=1then the number of dimensions. It also requires memo(d)
4: return nc{here tail or left-coalescing happéns to accommodate the stack for performing a DFSItdi-
5: else ifd=0then mensions deep.
6: returnl
7: end if 6 Related Work
8: coalesced® 0
9: mC — Card[d] The data cube operator is introduced in [6] and its potential
10: zeroT« mC-eFact/mC has generated a flurry of research on a wide-variety of top-
11: oneT+« FactT/(mC—1)-zeroT ics. Its exponential complexity on almost every aspect first
12: if oneT> 1then guided to the rediscovery of materialized views and their
13 x«1 adaptation. For example view selection algorithms can be
14: while there are still fact tupledo found in [7, 8, 18]. However the general problem is shown
15: XT (FaXCtT)/(mel)X-zeroT to be NP-Complete [10] and even greedy algorithms are
16: coalescedT += NCT(d-1,Card,xTuples,H{¢xil or left- ~ polynomial in the number of views that need to consider
coalescing may happen hére which is actually exponential in the dimensionality of the
17: FactT -=xT datasets, rendering these approaches to a certain degree im-
18: X++ practical for high-dimensional datasets.
19: end while Estimating the size of the data cube given its fact table
20: else is only addressed in [15] by using probabilistic techniques,
21: coalescedT += NCT(d-1,Card,FactT/mC,ngJrill-down however that approach cannot be extended to work with
traversa} coalesced cubes.
22: end if The problem of just computing the data cube appears
23: coalescedT += NCT(d-1,Card,FactT.qyoll-up traversal egpecially interesting. Various techniques that try to bene-
with left-coalescing fit from commonalities between partitions or sorts, partial
24: return coalescedT

Card: array of dimension cardinalities
FactT: current no of fact tuples
nc: tail coalesce flag(0 or 1)

Himensions to drill-down (or a tail or left coalescing can be
identified), the drill-down over the subdwarfs with prefixes
in abc stops and the algorithmolls-up to the subdwarfs
with prefixesabin line 23 by setting the nC flag to 0 -since
now there is possibility of left-coalescing with the subcubes
in abc. The process continues recursively to all the views
of the lattice.

sorts and intermediate results are proposed in [2, 4, 14].

Other techniques that use multidimensional array represersionality, for a uniform dataset. The number of fact table
tations [21] suffer as well from the dimensionality curse.tuples was set to 100,000. We used two different cardi-
Techniques that try to exploit the inherent sparsity of thenalities of 1,000 and 10,000. We see that our analytical
cube like [3, 12] seem to perform better. approach provides extremely accurate results for large car-

Several indexing techniques have been devised for stodinalities. The reason that the error decreases as the cardi-
ing data cubes. Cube Forests [9], exploit prefix redundancyality increases is the approximation in lemma 3, where we
when storing the cube. In the Statistics Tree [5] prefix re-assume that — 1 ~ C. The second observation has to do
dundancy is partially exploited. Unique prefixes are storedwvith the scalability w.r.t. to the dimensionality. The quan-
just once, but the tree contains all possible paths (even nority log: T which determines the exponent dfis much
existing paths) making it inappropriate for sparse datasetsmaller in the case d = 10,000 and therefore this data
Cubetrees[13] use packed R-trees to store individual viewset scales better.
and exhibit very good update performance.

Recently compressed cubes are introduced which try to
exploit the inherent redundancies in the structure of the | 60 Bsimarcd c=1000
cube. In [20] the notion of &ase single tuplés intro- S e e 0 000
duced. Such a tuple is “shared” between different group- | |44 Actual C=10,000
bys and is similar to the coalesced tuples discussed in this
paper. However its applicability is limited since such tuples
are discovered one at a time. QC-trees[11] use a bottom-
up approach in discovering redundancies which checks if
every grouping is redundant or not with every other group-
ing that it is possible to coalesce with. Both Condensed
Cubes[20] and QC-Trees are based on BUCJ3] which re-
quires exponential computation time.

Dwarf[17] provides a much more efficient method for 10k; : L : L : A
the automatic discovery of all types of suffix redundan-
cies, since whole sub-cubes can be coalesmdre any rigyre 10: Size Scalability v.s. dimensionality for varying
re-computatiorand is therefore the only method where the -4 jinalities
computation time is also fused by the coalescing proper-
ties and is polynomial to the number of dimensions as this |n Figure 11 we depict the time scalability —w.r.t to
paper demonstrates. Dwarf additionally not only indexeshe dimensionality— required to compute and store the co-
the produced cube but is designed to work in secondarglesced cubes using the Dwarf approach for the uniform
memory and is the only method that provides for partialdatasets. We must point that the y-axis are logarithmic and
materialization and hierarchies[16]. that the graphs —for both #coalesced tuples and computa-

tion time— correspond to a polynomial scaling.

Uniform Distribution

=

&

100 k — -

#Coalesced Tuples

7 Experiments

In this section we provide an extensive experimental evalu- : ‘
ation of our approach based on synthetic and real data sets. w
We compare the results of our analytical approach with F (B8 Acual (C=10000)
actual results taken from our implementation of Dwarf.
The experiments were executed on a Pentium 4, clocked
at 1.8GHz with 1GB memory. The buffer manager of our
implementation was set to 256 MB.

Uniform Distribution

=

7.1 Synthetic Datasets

Computation Time (sec)

In this section we use the following formalism. The graph
entitled “Actual” in the legend corresponds to numbers
taken from our implementation, while the graph entitled , ‘ ‘ ‘ ‘ ‘
“Estim” corresponds to the estimates our analytical frame- s 10 15 2

work and algorithm provides. We use the symbtob refer))] -))

to the number of dimensions, to the cardinality ana to Figure 11: Computation Time Scalability v.s. dimension-

the zipfian parameter (skewness). ality for varying cardinalities

Zipfian Distributions In Figure 12 we depict the size
scalability w.r.t to the dimensionality for zipfian datasets
Uniform Distributions In Figure 10 we demonstrate how for various values for the zipfian parameterthat con-
the number of coalesced tuples scales w.r.t to the dimentrols the skew. The number of fact table tuples was set to

7.1.1 Scalability vs dimensionality

100,000. The cardinalities were again 1,000 and 10,000 Zipfian Distribution
respectively. We observe that our estimation algorithm ap- 100 ; ‘

proximates better the zipfian coalesced cube size for large E S0 et (1000 0.2y
values of cardinalities than it does for smaller values of car- [o e (10000 oo 2,
dinalitie®. On the other side, we observe that the skew

parameter affects more the dataset W@t 1,000 than the
dataset witlC = 10,000. The reason for these two observa-
tions is that the zipfian parameter directly affects the spar-
sity of the cube. For lower values of cardinalities the per-
centage of sparsity coalesces is significantly less than the
case of higher cardinality values. However it is evident that
the zipfian distribution scales polynomially and that our es-
timation algorithm can be used to get good estimates about]
zipfian coalesced cubes. We must point out that from the ‘ m ‘ i5 ‘ 20
graphs it can be derived that the zipfian distribution affects

the scalability —w.r.t to the dimensionality— in a multiplica- Figure 13: Computation Time Scalability v.s. dimension-
tive way. In other words, it increases the complexity factorality for varying cardinalities and zipf parameters

but not the polynomial power.

100 4

Computation Time (sec)

Figures 14 and 15.
In this series of experiments our estimation algorithm,

e e Lo e s] although based on a uniform assumption, provides very ac-
[| &—© Actual (C=1,000 a=0.4)

[00 Actual (C=1.000 2=02) 1 curate results over all the range of the parameters (cardinal-
Estimated (C=1,000

o e o000 o) b ity, number of dimensions, skewness) that we experimented

38 Actual (C=10,000 a=0.2)

F| v—= Estimated (C=10,000) on.

Zipfian Distribution

Uniform Distribution

10M g]

[GO Actual (d=5 C=1,000)
100 k - r 581 Actual (d=5 C=10,000)
F 3 [&= Estim (d=5 C=1,000)
=4\ Estim (d=5 C=10,000)
<4< Actual (d=10 C=1,000)
7 Actual (d=10 C=10,000)
P—p> Estim (d=10 C=10,000)
-—F Estim (d=10 C=1,000)

#Coalesced Tuples

z
-

100k |-

Figure 12: Size Scalability v.s. dimensionality for varying
cardinalities and zipf parameters

#Coalesced Tuples

>
=~

DA
1 e

In Figure 13 we depict that the scalability of the required .
computation time for varying dimensionalities, cardinali- i
ties and skew parameters is again polynomial. We observe
that the skew parameter affects proportionally the compuFigure 14: Size Scalability v.s. #Tuples for varying cardi-
tation time as it affects the coalesced cube size. nalities

Scalability vs #TuplesIn Figures 14, 15 and 16 we de-
pict the coalesced size scalability w.r.t to the number of tu-
ples for uniform and Zipfian datasets for a variable num-7.2 Real Datasets

ber of dimensions, cardinalities and skew. We observe thaII—'orthis experiment we use areal eight-dimensional data set
in all cases both the number of coalesced tuples and the. P 9

computation time scale almost linearly w.r.t to the num-2'ven to us by an OLAP company. The data set has vary-

ber oftuples in the fact table. We must poin that a valuegt) TS O TR, T S SO RO
C = 10,000 for the cardinality offers more chances for Y

. . ; and study its effect on the accuracy. For this experiment
sparsity coalescing and therefore the required storage a
time is lower than the case 6f= 1,000. The skewness of rg%Jﬁqcr;g?zlzSh?hdem:r’a?;tgrzl%S]Q 222;W?0r2i§zweéoizanaf
the zipfian distributions affects sparsity coalescing in a neg“Pro'ection” denoteg the name of the datg sJet col .I
ative way and increases the corresponding coalesced cube J !

size and computation time. For completeness we also d d:ﬁ;ﬁ?éso;fdggceﬁZm;nas?gnc?.!]ugnuriafg'\?vihggsictﬂﬁgzg.
pict the required computation time for the same cubes i ’ 9 P

imates of our approach compared with the actual numbers
5This behavior is observed (to a lesser degree) for uniform datasets d&KeN, When the dwarf is computed a_-nd Stored-_'_n Figure 20
well we depict —for completeness— the time scalability w.r.t the

100 k

#Coalesced Tuples

Zipfian Distribution (d=5)

E |- Actual (C=1,000 a=0.4) A
[| A--A Actual (C=10,000 a=0.4) s
F | <4 Estim (C=1,000)

L | v Estim (C=10,000)

OG-0 Actual (C=1,000 a=0.2)
3-8 Actual (C=10,000 a=0.2)

L L
10k 100 k

Uniform Distribution

1000 —— T

GO Actual (d=5 C=1,000)
EH1 Actual (d=5 C=10,000) §
&— Actual (d=10 C=1,000) -
A—A Actual (d=10 C=10,000) 3

Computation Time(sec)

0.1

|
100 k

0.08 il
I 10k

Figure 15: Size Scalability v.s. #Tuples for varying cardi- Figure 17: Computation Time Scalability v.s. #Tuples for
nalities and zipf parameters

Zipfian Distribution (d=10)

varying cardinalities (uniform)

Zipfian Distribution

- 1000 £ —— T
E | 3O Actual (d=5 C=1,000 a=0.2)
©--© Actual (C=1,000 a=0.2) [| B-8 Actual (d=5 C=10,000 a=0.2)
3-43 Actual (C=10,000 a=0.2) /a [| &—© Actual (d=5 C=1,000 a=0.4)
&--© Actual (C=1,000 a=0.4) © 100E | A-A Actual (d=5 C=10,000 a=0.4)
8 IME A--A Aa_ual (C=10,000 a=0.4) 7 &2 E | << Actual (d=10 C=1,000 a=0.2)
=, £ | Estim (C=1,000) A) [| v Actual (d=10 C=10,000 a=0.2) g
= v— Estim (C=10,000) b g [| >— Actual (d=10 C=1,000 a=0.4) g
= := 10 | 4 Actual (d=10 C=10,000 a=0.4) / E
] ol ~ &
D g F -
2 2 [
& 100k = L —
5 L E
= = E E
o o p
@) g I]
H =}
0.1 <
O E 3
10k |
F Z L] 0.01 | |
1k 10k 100 k 1k 10k 100 k

Figure 16: Size Scalability v.s. #Tuples for varying cardi- Figure 18: Computation Time Scalability v.s. #Tuples for
nalities and zipf parameters varying cardinalities and zipf parameters

but present a large number of implications between values
of their dimensions.

dimensionality of the real datasets.

| Projection] d | Cardinalities \
5 1300,2307,2,2,3098

6 1300,2307,3098,130,561,693
7 | 1300,2307,2,3098,130,561,69
8 | 1300,2307,2,2,3098,130,561,693

8 Conclusions

We have presented an analytical and algorithmic frame-
work for estimating the size of coalesced cubes, where suf-
fix redundancies diminish the number of aggregates that
need to be stored and calculated. Our analytical framework
although it uses only sparsity coalescing, derives the sur-
We observe a very interesting pattern. As the dimen-prising result, that a uniform coalesced cube grows —both
sionality increases our approagterestimatescreasingly the required storage and the computation time— polynomi-
more the coalesced size. The reason is that our approaetly w.r.t to the dimensionality. This result changes the es-
currently handlesonly sparsity coalescingand ignores tablished state that the cube is inherently exponential on the
the implication coalescinghat is very apparent in high- number of dimensions and extend the applicability of data
dimensional data sets. As the dimensionality increasewarehousing methods to a much wider area. We were also
such implications increase and complement the sparsitgble to device an efficient algorithm for estimating the size
implications reducing even further the coalesced size. Thisf a coalesced cube based only its dimensions’ cardinali-
observation is in contrast to what happens with zipfianties and demonstrated that it provides accurate results for a
datasets, which affect the sparsity of the coalesced cube wvide range of distributions. In addition we have demon-
a negative wayvithout creating any implications between strated —using real data— that real coalesced cubes scale
the dimensions. However real datasets are not only skeweelven bettethan our analysis derives. The reason is that the

oOw>»
w0

Table 3: Real data set parameters

#Coalesced Tuples

Figure 19: Size Scalability v.s. dimensionality for real dat

set

Computation Time (sec)

Figure 20: Time Scalability v.s. dimensionality for real
data set

400 k
200 k

100k

r] Algorithm for Improving the Performance of Ad-hoc

N _ g OLAP Queries. IMDOLAP, 2000.

1 [6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.

M- B Data Cube: A Relational Aggregation Operator Gen-

eralizing Gro up-By, Cross-Tab, and Sub-Totals. In

3 ICDE, pages 152-159, New Orleans, February 1996.

IEEE.

i [7] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ull-

, man. Index Selection for OLAP. IKCDE, pages

_ 208-219, Burmingham, UK, April 1997.

[8] V. Harinarayan, A. Rajaraman, and J. Uliman. Imple-

L menting Data Cubes Efficiently. I8IGMOD, pages
205-216, Montreal, Canada, June 1996.

a [9] T.Johnson and D. Shasha. Some Approaches to Index
Design for Cube Forest®ata Engineering Bulletin
20(1):27-35, March 1997.

[10] H.J. Karloff and M. Mihail. On the Complexity of the
View-Selection Problem. I#®ODS pages 167-173,
Philadelphia, Pennsylvania, May 1999.

[11] L. Lakshmanan, J. Pei, and Yan Zhao. QC-Trees: An
Efficient Summary Structure for Semantic OLAP. In
SIGMOD, pages 64-75, San Diego, California, 2003.

[12] K. A. Ross and D. Srivastana. Fast Computation of
Sparse Datacubes. VDB, pages 116-125, Athens,
Greece, 1997.

[13] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.
Cubetree: Organization of and Bulk Incremental Up-
dates on the Data Cube. 8iIGMOD pages 8999,
Tucson, Arizona, May 1997.

[14] S. Sarawagi, R. Agrawal, and A. Gupta. On comput-
ing the data cube. Technical Report RJ10026, IBM
Almaden Research Center, San Jose, CA, 1996.

[15] A. Shukla, P. Deshpande, J. Naughton, and K. Ra-
masamy. Storage estimation for multidimensional ag-
gregates in the presense of hierarchies. VUDB,
pages 522-531, Bombay, India, August 1996.

1M}
800k

A B C D

© =
S 3
T

IS IS
S S
T T

S

B C

A

effects of implication coalescing complement the results of16] Y- Sismanis, A. Deligiannakis, Y. Kotidis, and
sparsity coalescing that we have presented here. N. Roussopoulos. Hierarchical dwarfs for the rollup

cube. INDOLAP, 2003.
[17] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and

References Y. Kotidis. Dwarf: Shrinking the PetaCube. BIG-

MOD, pages 464-475, Madison, Wisconsin, 2002.

[1] S. Acharya, P. B. Gibbons, and V. Poosala. Con-[18] D. Theodoratos and T. Sellis. Data Warehouse Con-

(2]

3]

[4]

gressional Samples for Approximate Answering of figuration. InVLDB, pages 126-135, Athens, Greece,
Group-By Queries. IrSIGMOD, pages 487-498, August 1997.
Dallas, Texas, 2000. [19] J.S Vitter, M. Wang, and B. lyer. Data Cube Approxi-

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, mation and Histograms via Wavelets.@tKM, 1998.
J .F. Naughton, R. Ramakrishnan, and S. Sarawag{20] Wei Wang, Hongjun Lu, Jianlin Feng, and Jeffrey Xu

On the computation of multidimensional aggregates. Yu. Condensed Cube: An Effective Approach to Re-
In VLDB, pages 506-521, 1996. ducing Data Cube Size. I€DE, 2002.

K. Beyer and R. Ramakrishnan. Bottom-Up Compu-[21] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
tation of Sparse and Iceberg CUBEs. $hiGMOD, array-based algorithm for simultaneous multidimen-
pages 359-370, Philadelphia, PA, USA, 1999. sional aggregates. BIGMOD, pages 159-170, 1997.

P.M. Deshpande, S. Agarwal, J.F. Naughton, and

R. Ramakrishnan. Computation of multidimensional The views and conclusions contained in this document are those of the

aggregates. Technical Report 1314, University Ofal.lthors and should .not b.e interpreted as representing the official policies,
) . . either expressed or implied, of the Army Research Laboratory or the U. S.

Wisconsin - Madison, 1996. Government.

[5] Lixin Fu and Joachim Hammer. CUBIST: A New

