
In this truly adaptable approach, designers begin by
defining the application environment and then work inward until

they reach a level that can be handled by available DBMSs.

An Adaptable Methodology
for Database Design

Nicholas Roussopoulos and Raymond T. Yeh, University of Maryland

Database designi has changed considerably since its in-
ception. A large part of the design used to deal with physi-
cal data allocation, load factors, and access methods of
secondarv storage. These aspects are no longer part of the
database desigin process because they are part of all com-
mici-ial database imanagenmenit systems and cainnot be
moldified. Most curreint database designs, and possibly all
tututie ones, swill stop at logical access path optimization
and use existiIg database systems ssith fixed physical de-
signs. Consequently, the emphasis sill be oIn design at the
iniotmoiation sVstem les el.
The desinimethod presented here is based on this sery

philosophx that database design must be done "from the
outside in." We must analyze the proposed system's en-
Viton1ment and proceed progressivelN inssard tossard the
computei- implementatioin of the application. In most
cases the analxst is then directly exposed to the require-
ncints, which is really the kev to a successful system
desini, if the svstem is to operate effectivelN ssithin a par-
ticular environment. Take, for example, a project that
automliates existinig manual procedures; the computer svs-
temii is a direct reflectioin of the current operations, that is,
ot the environment.
The paits of the database dcesien of most coincern to us

here are analyzing inforimiation pi-ocessing requirements,
con.stILucting a conceptual model that specifies these re-
qluirement.s, and deseloping and optimizing a logical ac-
cess path schemia. The underlying assumption in our ap-
procah to database design is that conceptual modeling can
be based o1 hows information flows betvseen an enterprise
aind its enivironment and among its conmponents. [One may
argue that some kind of model (possibly nlOt precise) has
alreads beeni conceised, and thtci-efore that conceptual

64

modeling has already begun before the information floss is
conceived. Regardless of hoss true this supposition may
be, our purpose here is to model the database, not to deal
sith how the human brain handles "chicken-or-the-egg"
problems!] We consider conceptual nmodeling as a tech-
nique for specifying, in a formal language, concepts and
ideas that can be interpreted bv other humans familiar
sith the context of the enterprise and its environment.

For this reason, we start with the environment of the
enterprise rather than the environment of the data process-
ing system. In many cases, the requirements of the data
piocessing system may be distorted by established prac-
tices, existing hardsvare and/or softsware, or personnel
resistance to system upgrading. Starting conceptual
modeling at the information system lesel rather than the
data processing level helps asoid these losw-level distor-
tions. Furthermore, the goals and requirements of this
level are more understandable to management. Hence,
manageirs are more apt to make coi-rect decisions.*

In our methodology, we also analyze the operational
behavior of the enterprise, wshich sve call system analysis,
the sord "system" referring to operational behavior, not
to the data processing system. Without a complete under-
standing of hos the enterprise operates, no effective
design can be developed either for current operations or
for future improvements.

*Sccril othcr des tti mtethodolocies start ft'-ont thc environmenttt and pt-o-tcedsl\Natd. Jctfersoit et al.'s datahbas dcsiciideparts Iroii tthc requlire-
ntenat analsis at thc corporate level shere martx of tfhc ilnteractions are he-
t5vecn thfc oigatnizition and its enviroitent. Kahn' also proceeds titooi
cotporate level reqtlireniienits to inftortiiatioit ttalnsaiss here again interac-
tions it ClttdC the ift'oriiatioit floss hetssweet tic envirotnmentt ,ind thie
o0ranitcition. nLAITI 3 tal1 also tincorporated thcsc kitds ot ititeracttiots
li1tt its q sttontttaires.

)4()It ()(I I 14 COMPUTER



Another main objective of the outside-in methodology
is to provide a framework for the use of well-understood
and proven techniques for both the analysis and the speci-
fication of the enterprise's objectives, requirements, and
design. We have incorporated established data flow tech-
niques,4'5 control flow specification techniques, 6-8 struc-
tured interviewing and questionnaire techniques,9 well-
understood data modeling techniques, 10-16 and logical op-
timization techniques. 17-20 Emphasis has been placed on
the understandability and the completeness of the require-
ments specification. All referenced approaches deal with
either database design or program design. This methodol-
ogy integrates techniques from both approaches because a
database system is neither just a schema (structural com-
ponent) nor just a set of transactions (procedural compo-
nent). It is a schema with transactions running against this
schema; consequently, the schema and the transactions
must be designed hand in hand.
A major advantage of this framework is that significant

design decisions are made explicit at the appropriate
design phase. For example, obtaining optimal physical
parameters, makes no sense if the logical design is ineffec-
tive. Similarly, obtaining optimal logical organization and
indexing makes no sense if the corresponding conceptual
schema is incorrect and violates the integrity of the data.
Again, a good conceptual schema is useful only if it cor-
responds to the right operational behavior of the enter-
prise within its environment. This framework and the
design decisions along with their specification are the im-
portant concepts of this proposal. The individual models
and techniques to obtain, specify, and document these
decisions can be chosen from the wide variety found in
literature.

Methodology overview

Our proposed modular methodology consists of four
phases: (1) environment and requirements analysis, (2)
system analysis and specification, (3) conceptual data
modeling, and (4) derivation of a logical access path
schema. A schematic diagram of the methodology is given
in Figure 1.
The objectives of the first phase are to understand the

actual state of the enterprise and to collect all the informa-
tion needed by the subsequent steps, including informa-
tion and data processing requirements. Information re-
quirements will be used in the conceptual data modeling
phase to generate the conceptual schema of the target
system. The data processing requirements will be passed to
the logical access path schema derivation phase in which
the logical optimization and the application programs are
designed.
The objective of the second phase is to identify the ap-

plications that will use the database. Using input from the
environment analysis phase, we obtain a good understand-
ing of the target system. The output is a set of "tasks" to
be performed during the database operation.
The objective of the third phase-conceptual data mod-

eling-is to translate the knowledge about the target sys-
tem collected in phases 1 and 2 into a formal representa-

tion-a conceptual data model. In this phase, designers
are concerned only with the characteristics of the
"entities" in the application environment and the relation-
ships among them. They should not be concerned with the
way they are represented in the computer.

In the last phase, we have several objectives: (1) to map
the conceptual schema into the organization's data model
structure, (2) to generate logical access paths of the tasks,
(3) to integrate all paths into another schema that models
their relationships and their cumulative usage weights, (4)
to optimize this access schema, and (5) to realize the tasks'
logical access paths against the optimized schema.
Numerous related papers have influenced our work.

Phases I and 2 have been influenced by the works of Burn-
stine, 3 Bubenko, 21 Chen, 22 Lum et al., 23 Tsichritzis and
Lochovsley, 24,25 Sheppard-Rund, 9 and Kahn. 2 Phase 3
is based mainly on our work on the semantic models of
databases that started with the semantic network model of
databases 12,26,27 and its continuation in providing a lan-
guage to support the design of conceptual schemata. 13
Approaches by Mylopoulos et al., 14 Weber, 28 Hammer
and McLeod,29 Chen,10 Sowa,30 Falkenberg,31 Smith
and Smith, 32 and Brodie33 can also be used in phase 3 as
can other semantic models. Phase 4 has been influenced by
Chang and Cheng, 34 Chang and Ke, 35 and Schkolnick. 18

Figure 1. Schematic diagram of the phases of the
database design methodology.

May 1984 65



Phase 1: Environment and
requirements analysis

In this phase, we investigate the information needs of
and activities within the enterprise and determine the
boundary of the design problem. Much of this phase in-
volves information collection. An overall model of the
enterprise as an information processing system is con-

structed. Since we are not attempting to model or disci-
pline the way humans conceive "understanding," we pro-

vide only a list of information sources on which this
understanding must be based and a list of things to be
generated. In other words, we specify the input and the
desired output of this phase, thus leaving the processing to
human ingenuity.

Information sources: phase 1 input. The basic tech-
nique for collecting information consists of reviewing doc-
uments, interviewing people, and analyzing questionnaires
to determine facts, policies, objectives, and constraints.
These information sources describe the current status of
the enterprise, possible inefficiencies, plans for the future,

and constraints that have to be satisfied in conducting
business.

Other sources of information include organization
charts, reports, forms, files, and software documentation
(if such documentation exists).

Functional specification: phase 1 output. In this step,
we establish a functional model of the enterprise by identi-
fying its major activities or functions and their relation-
ships. This functional model will take the form of an infor-
mation flow diagram.

Usually, the function associated with each operational
activity is too complex to comprehend and model using a
flat, single-level presentation. Therefore, we must usually
divide the functions into smaller units called tasks.

Identification of activities and tasks is important in the
design of the database system. If the system under design is
to support the activities of an established enterprise, an
organization chart can be used for identifying functions
and tasks. However, this process becomes more difficult if
(1) a new organization is to be established and its com-
ponents have not yet been identified or (2) a system is
designed to change part or certain aspects of an

Figure 2. Top-level information flow diagram.

66 COM PUTER



enterprise's activities. In these cases, we must use informa-
tion collected from the previously described information
sources to derive tasks.
The main activities of the enterprise, the interactions of

the external entities and the enterprise, and the interac-
tions of the main components can be described by a system
flow diagram like the one shown in Figure 2.* This flow
diagram, which is the goal of the first phase, contains (1)
the main activities of the system (PROCUREMENT, IN-
VENTORY, DISTRIBUTION), shown in the ellipses; (2)
the data processing functions (QUERY-PROCESSING,
REPORT-GENERATION), shown in circles; and (3) the
documents that carry the data between components of the
organization, shown in rectangles. (A document here is
merely a general information-recording medium for infor-
mation transfer. All messages, forms, files, inquiries, and
reports will be referred to as documents.) The boundary of
the system shows the interactions of the environment and
the enterprise. Clearly, Figure 2 describes not only data
flow but also control flow because many of these docu-
ments could be simple control messages that trigger tasks
in the organization.

Phase 2: System analysis and specification

In this phase, we start with the overall information-flow
diagram like that in Figure 2. Each activity is divided
hierarchically into more and more detailed tasks and sub-
tasks. The tasks should be reasonably independent so that
we will have a small number of task-task interfaces. Dur-
ing the division process, the (data) documents used by each
activity are also broken down into their component data
elements or subsets of data elements. The tasks are further
divided into subtasks until they become small enough to be
clearly understood, and the 1/0 data documents can be
conveniently expressed in terms of data elements that can-
not be further divided. A new data- and control-flow
diagram is developed using the tasks established through
this breakdown. The following tasks were obtained for the
Distribution activity through this process.

ENTER-NEW-PROJECT
ENTER-GRANT-ORDER
ORDER-PICKING
SELECT-SHIP-ROUTE
MAINTAIN-PROJ-TRANSACTION-RECORD
PROJECT-BILLING
Specifying tasks. For each task, the following attributes

need to be specified:

0

0

* events triggered during the task's performance, and
* error (anomaly) conditions of the task.
Among these attributes, the I/O specifications, task fre-

quency, and the operations performed are the ingredients
needed to emulate the task and construct the logical access
path schema for its optimization. The pre- and post condi-
tions, events triggered, and error conditions specify the
control and each task's interactions with the rest of the
system.
A standardized task form has been designed to assist

the responsible designer in extracting the important char-
acteristics, features, and attributes of each task. A sample
of this standardized form, which task performers and
designers can cooperate in filling out, is shown for the
Distribution activity (Figure 3).

This task allows the designer to analyze both existing ac-
tivities and those considered for implementation that have
not been divided into tasks and subtasks. Thus, starting
with the main activities of the enterprise, the designer can
specify all functional requirements in terms of this task
form.
The following rules of thumb can be used to decide

when a given task should be divided into subtasks:

the person in charge (task performer),
documents used and/or generated (1/0 documents),
procedure for carrying out the task,
frequency of the task,
conditions that specify the prerequisites for the task's
activation and the effects after its termination,

*To facilitate an understanding of our methodology, we have chosen a
model organization caDled the ABC Agency. The ABC Agency procures
products from vendors and retails them to government projects. Each ven-
dor can furnish several products, and products can exist in several versions
or models. Similarly, each product model can be fumished by several ven-
dors. A project may be located in several places. An order may be shipped
to any location, but the invoice is always sent to the project's home office.

Naturally, the ABC Agency is only one type of a wide variety of organiza-
tions. The steps in our methodology, however, can be broadly applied. Figure 3. Task form fllled for the Distribution activity.

May 1984 67



* Many performers are required to carry out the task
and each performer has different skills, or each can
carry out a part independently.

* Different levels of authorization exist for carrying out
different parts of the task.

* Different enabling conditions activate parts of the
task.

* Different frequencies and durations apply to dif-
ferent parts of the task.

* Input documents are not used uniformly within the
task.

* Different documents are used for different parts of
the task.

* Many diversified operations are carried out within the
task.

* Many subtasks are controlled by the task.
There are basically two ways of subdividing a task. In

the first, the new task is a subtask of the original task. In
this case, a "parent-child" relationship is established and
part of the responsibilities are transferred to the subtask.
However, control stays with the original task, which has to
wait for the subtask to terminate before it can terminate.
In the second type of subdivision, the new task is a "sib-
ling" of the original task. In this situation, the "parent"

Task-number:
Task-name:
Performer:
Authorization:
Purpose:
Enabling-conditions:
Description:

Frequency:
Duration:
Importance:
Maximum delay:
Input:

Output:

Use of documents:
Operations-pertormed:

Subtasks:

Error-conditions:

S-1-2 :
ENTER-GRANT-ORDER
Tomn Keener, Distribution Coordinator
Scott Farley
Enters orders in the database and grants orders
Arrival of ORDER-.FORM (03)
ORDER-FORMS (D3) are distributed and- recorded.
Balance of ordering project is checked: to determine
whether order should be granted. Order history is
generated every week.
300 per day
N/A
Very important
2 days
Documents: D3 (ORDER-FORM)

06 (PROJECT-BALANCE)
D5 (DAILY-ORDER-BATCH)

Documents: D6 (PROJECT-BALANCE)
05 (DAILY-ORDER-BATCH)
D4 (WEEKLY-ORDER-HISTORY)

All columns of 03, D6, D5
Upon receipt of D3, it is numbered and distributed.
Information on D3 is then entered into the database.
The balance of the ordering project (06) is updated
and checked. If the project balance does not exceed
its limit, the order is granted. Every morning all
granted orders of the previous day are batched in
(D5) together for a pickup. Every Friday D4 is
generated.
ORDER-FORMS-RECEIVE-DISTRIBUTE
ENTER-ORDER-INFO
UPDATE-PROF-BALANCE
INSUFFICtENT-BUDGET-HANDLING
ORDER-HISTORY-GENERATION
Operation of this task halts if the information of the
projects and products does not match with the
data in the database.

Figure 4. Task form filled for subtask ENTER-GRANT-ORDER.

of the original task assumes control, but the "sibling"
tasks are carried out independently.

During the "parent-child" task division, the input
documents of the original task are separated and split
among the subtasks. If parts of one or more documents
are needed for a subtask, then a new document is defined.
The new document will include all the necessary data
elements.

During the "sibling-sibling" task division, the original
task's input documents may need to be further divided, as
in the "parent-child" case, to account for splitting respon-
sibilities between the two. Some additional control
documents may have to be introduced for communication
among the tasks if they are required to pass data and/or
synchronize some activities.

Figure 3 shows a list of subtasks obtained for the
Distribution activity. By examining the input documents
of the Distribution activity, new tasks such as ENTER-
NEW PROJECT, ENTER-GRANT-ORDER, and OR-
DER-PICKING are identified. Further division may then
be necessary as the forms for tasks ENTER-GRANT-OR-
DER and ORDER-PICKING show. (Figures 4 and 5).

Specification of documents. From the I/0 specifica-
tions of the activities and tasks, we can obtain a list of the
documents (reports, files, data elements, inquiries to files,
forms, etc.). The list includes documents used within the
enterprise or documents discovered by the requirements
analysis. Messages received by the task performer during
task execution are also considered data documents. Below
is a partial document list for our sample enterprise:

Dl - PROJECT-RECORD
D2 NEW-PROJ-RECORD
D3 -ORDER-FORM
D4 -WEEKLY-ORDER-HISTORY
D5 DAILY-ORDER-HISTORY
D6 PROJ-BALANCE
D7 PROJ-INVOICE
D8 PRODUCTION-QUANT-ON-HAND
D9 PRODUCTS-TO-BE-SHIPPED
D10- SHIPPING-ROUTE
Dll - PAYMENT
D12 - ADJUSTMENT
D13- MONTHLY-STATEMENT
D14- EXCEEDING-LIMIT-PROJECT-LIST
etc.

Each document is then expressed in terms of data
elements. If a document is already being used, the data
elements constituting it are readily available. The newly in-
troduced documents must be divided into new or already
established data elements. Documents Dl through D4 and
their data elements are shown below

Document Dl PROJECT-RECORD
PROJ-NO
PROJ-NAME
CRDT-CODE
CRDT-LIMIT
PROJ-MAIN-LOC-NO (zip code)
PROJ-MAIN -LOC-ADDR
PROJ-BRANCH-LOC-NO
PROJ-BRANCH-LOC-ADDR

Document D2. NEW-PROJ-FORM
PROJ-NAME
PROJ-MAIN -LOC-NO

COMPUTER68



PROJ-MAIN-LOC-ADDR
PROJ-BRANCH-LOC-NO
PROJ-BRANCH-LOC-ADDR

Document D3: ORDER-FORM
ORD-NO
DATE-ENTERED
DATE-POSTED
PROJ-NO
PROJ-MAIN-LOC-NO
PROJ-BRANCH-LOC-NO
ITEM-LINE-NO
PROD-NO
PROD-MOD-NO
QUANT-ORDERED

Document D4: WEEKLY-ORDER-HISTORY
ORD-NO
DATE-POSTED
PROJ-NO
ITEM-LINE-NO
PROD-NO
PROD-MOD-NO
QUANT-ORDERED
PRICE

Specification of data usage. From the I/O specification
of tasks, and the document specifications, we can con-
struct two usage matrices. The first is the task-document
usage matrix, which specifies the task I/O in terms of
documents (Figure 6). The second usage matrix is called
the task-data element usage matrix and specifies task I/O
in terms of data elements (Figure 7). Note that the task-
data matrix is constructed from the task-document matrix
and the document specifications.
Both data usage matrices can be easily obtained from

the task forms and the document specifications. They can
also be automatically generated as a report, as PSL/PSA
does. 5

Specification of task flow diagrams. The task-document
usage matrix is now used to construct the task flow
diagram, a chart that shows the control and data flow
among the tasks in the system. Figure 8 shows the TFD of
the Distribution function.

Phase 3: Conceptual modeling

The goal of this phase is to translate the knowledge
about each activity, collected in the previous phases, into a
formal representation called a conceptual schema. This
data modeling refers only to the structural specification.
(The general term of conceptual modeling used in phases 1
and 2 included the procedural specification as well.)
During the conceptual data modeling phase, we are con-

cerned only with the conceptual entities used in each activi-
ty, their properties, and the conceptual relationships
among them. The physical or computerized representation
of the entities and their instances is irrelevant at this point.
To represent conceptual objects, then, we need a

computer-independent semantic model that
* can capture the meaning of the conceptual objects;
* has well-defined interpretation rules so that people

other than those in the design group (other designers
or users of the system) understand the intended
meaning; and

* has a friendly human interface with multiple repre-
sentations (text and graphical) and high-level opera-
tors that manipulate the conceptual schema.

A modeling language like the conceptual schema defini-
tion language, or CSDL, 13 is best suited for expressing
conceptual entities, their properties, and the relationships
among them. The language has been slightly extended to
offer two levels of syntax. The first is high-level syntax

Figure 5. Task form filled for subtask ORDER-PICKING.

ENTER- ENTER-
jjSK ~ NEW- GRANT- ORDER-

DOCUMENT PROJ ORDER PICKING

Dl - PROJECT-RECORD 0 _
D2 - NEW-PROJ-RECORD I _
D3 - ORDER-FORM I l
D4 - WEEKLY-ORDER-HISTORY 0
D5 - DAILY-ORDER-BATCH 0
D6 - PROJ-BALANCE

Figure 6. Task-document usage matrix. I and
output, respectively.

May 1984

0 represent input and

69



very similar to Chen's entity-relationship (E-R) model. 10
The second level of syntax is more detailed and is needed
for formal data definition. Both levels have a graphical
representation that helps designers to visualize the under-
lying semantic connections among conceptual objects. In
addition, the language's computer implementation pro-

vides a number of support facilities, such as data dic-
tionary facilities, display facilities, and zoom-in/zoom-out
facilities, which allow the designer to display the concep-

tual schema at different levels of detail. Such facilities are

important in modeling large and complex systems, where
unassisted manual modeling is tedious and error prone. A
detailed description of CSDL is given elsewhere. 13

Other modeling languages and/or modeling methodol-
ogies are suitable for this phase. The most notable are
Taxis, 14 D-graphs, 28 semantic database model (SDM), 29
E-R model, 10 aggregation-generalization, 32 conceptual
graphs, 29 and object-role model. 31 This list is by no
means exhaustive; many other models can also be used.

Discovering entities, properties, and relationships. Con-
ceptual data modeling consists of identifying the entities,
the properties, and the relationships (called EPRs here-
after) in the application. In general, we have no algorith-
mic methods for identifying EPRs, but we can use some

rules of thumb.
In the technique described here, we discover EPRs

merely by examining nouns, adjectives, and verbs in the
system's requirements. Nouns usually correspond to en-

tities, verbs to relations, and adjectives to properties. The
advantage of this technique is that the entities and rela-
tionships discovered in this way have meaning for the user

because they draw on concepts from the application
world. The disadvantage is that the naming process is very
subjective, and different designers may come up with dif-
ferent names for the same entities or relationships. Other
difficulties are the well-known dilemma of whether we

should use a relationship "ship," the entity "shipment,"
or both to model the concept of shipping. The same dif-
ficulties are encountered in all similar techniques. A some-

what structured way for discovering EPRs is to use the
document/data element specification as input (see Figures
6 and 7). The method can be used to discover the following:

* Unique code identifiers are usually introduced when
organizations refer repeatedly to instances of entities
(physical or abstract objects). In most cases, these
identifiers uniquely identify the objects even though
their names are not unique. For example, PROJ-NO
and ORDER-NO denote entities PROJECT and
ORDER.

* Properties can be discovered by asking the question:
"Does element A characterize B?" If so, then B is
usually an entity, and A is a property of B. For exam-

ple, ADDRESS characterizes PROJECT; NAME
characterizes PROJECT, etc.

* Structural relationships (part-of relationships) are
discovered by asking the question: "Is element D a

component of C?" If so, C is usually an entity, and
an is-part-of relationship is identified. For example,
LINE is-part-of ORDER. D can be either an entity by
itself or a property of C. MODEL-NO, PRODUCT-
NO, and QTY-ORD are all related to LINE by is-
part-of relationships.

* Is-a (-kind) relationships are discovered by classify-
ing data elements into generic types of entities; SHIP-
LOCATION is-a LOCATION, DATE-ORDERED
is-a DATE, etc. Both partners in these relationships
are entities.

* Events and actions that involve data elements indicate
general relationships among entities. For example,
the event ORDER-PLACEMENT indicates a rela-
tionship between PROJECT and ORDER; similarly,
the event FULFILLED-ORDERS indicates a rela-
tionship among the entities PROJECT, ORDER,
SHIP-LOCATION, and DATE.

* Numerical dependencies of the entities in relation-
ships are important; we must discover whether a rela-
tionship is one-one, one-many, or many-many. For
example, an ORDER may have multiple LINES but
each LINE has one PROD-NO and one QTY-ORD.

If we apply the preceding rules to our sample enterprise,
we get the following EPRs.

entities
PROJECT
ORDER
LOCATION
SHIP-LOCATION
PRODUCT
DATE

Figure 7. Task-data element usage matrix. I and 0 represent input and
output, respectively.

properties
LOCATION
ADDRESS
PROJ-BALANCE
SHIP-LOCATION
DATE-ENTERED
DATE-ORD

part -of-relationships
LINE
PROD-NO
OTY-ORD

characterizes
characterizes
characterizes
characterizes
characterizes
characterizes

is-part-of
is-part-of
is-part-of

is-a-kind relationships
SHIP-LOCATION is-a
DATE-ORD is-a

general relationships
ORDER-PLACEMENT relates

70

PROJECT
PROJECT
PROJECT
ORDER
ORDER
ORDER

ORDER
LINE
LINE

LOCATION
DATE

ORDER, PROJECT, and
SHIP-LOCATION

COMPUTER

ENTER- ENTER-
DATA T TASK NEW- GRANT- ORDER-
ELEMENT PROJ ORDER PICKING

PROJ-NO 0 10 0
PROJ-NAME 10
CRDT-CODE 0
CRDT-LIMIT 0
PROJ-MAIN-LOC-NO 10
PROJ-BRANCH-LOC-NO 10
PROJ-BRANCH-LOC-ADDR 10



FULFILLED-ORDERS relates PROJECT, ORDER,
SHIP-LOCATION,
and DATE

Note that after we discover the EPRs, we need to define
the dependencies between the data values. These could be
one-many or many-many. We especially need to define
data dependencies of relationships requiring numerical
quantification and arbitrary constraints, for example,
"Every agency must procure every product from at least
two suppliers."

Expressing EPRs in a multiple-level language. EPRs can
be graphically represented as shown in Figure 9. The nu-
merical quantifiers, can take the form[m} = at least m, [m]
= exactly m, [m] = at most m, and [all] = all instances.
These quantifiers are used to express m-n relationships

among entities and to define their constraints. For exam-
ple, in Figure 9, the quantifiers on the line between
ORDER-LINE and LINE show that each ORDER has at
least one LINE. Further, each LINE is in one-one cor-
respondence with PROD-NO and QTY-ORD through the
LINE-PROD-NO-QTY-ORD relationship.

Figure 8. A task flow diagram for the Distribution activity. A triangle represents the clock, and any connected task
is activated at a specific time and not by data passed to it by another task. Single-line arrows denote data flow, while
double-line arrows denote control flow. For example, the single arrow between D5: DAILY-ORDER-BATCH and
ORDER-PICKING means that D5 is used to carry information to the task, but does not activate it. The task, when ac-
tivated by some other means, uses D5 to carry out its job. The task MAINTENANCE-OF-PROJ-TRANSACTION-
RECORD, however, is activated whenever D7, DI1, or D12 is passed to it.

May 1984
71



This level of syntax is an extended version of Chen's
E-R model, 10 the difference being the addition of
numerical quantifiers. The implication of no numerical
quantifier is that any m-n relationship m - 1 and n .1, can
be satisfied between the related values. However, the first
level of syntax cannot express arbitrary quantified expres-
sions because the scope of the quantifiers is not repre-
sented. For these types of relationships, we must use a lan-
guage equivalent to first-order logic. Nevertheless, the pre-
ceding notation can express most common data relation-
ships.
The second level of syntax specifies the details of the

rectangles (relationships) and ellipses (entities). The
second-level syntax of the conceptual schema definition
language for some of the previously described EPRs is pre-
sented below. This level can be used to specify arbitrary
quantified expressions and to provide data dictionary fa-
cilities. Every entity, property, and relationship must be
defined by a "definitional frame," which fully specifies
the system's understanding of the entity, property, or rela-
tionship. The keyword concept is used to define an entity,
and the keyword frame to define properties and relation-
ships.

Concept PROJECT (x) primary denoted-by PROJ-NO
frame PROJ-DEFINITION

[x of-type INTEGER is-defined-by 10000 -x599999]
frame PROJECT-PROPERTIES

[x of-type PROJECT has-property:
[1] y of-type NAME

Figure 9. Graphical representation of entities, properties,
and relationships, or EPRs, where circles represent en-
tities and rectangles represent relationships and where
11I means at least one and and [11 means exactly one
EPR.

[1] z of-type LOCATION-NO
[1] w of-type ADDRESS
[1] u of-type PROJ-BUDGET-CODE
[1] v of-type PROJ-BUDGET-LIM
[1] r of-type PROJ-BALANCE
[1) s of-type SHIP-LOCATION-NO
[1] t of-type SHIP-ADDRESS]

frame ORDER-PLACEMENT
[all] x of-type PROJ-NO
[all] y of-type ORDER-NO
[1] z of-type SHIP-LOCATION;

order (agent:x, object:y, destination:z)]
A simpleframe provides scoping rules for the qualified

expressions. Compositeframes are built by applying stan-
dard logical operations such as conjunctions and disjunc-
tions. Typed variables such as x,y,z, are variables whose
type is explicitly specified. For example, y of-type AD-
DRESS denotes that y is a variable of type ADDRESS.
The numerical quantifiers are the same as those described
earlier. (A detailed description is given elsewhere. 13)

Other data languages and data dictionaries can be used
in place of the conceptual schema design language. How-
ever, CSDL offers two major advantages. First, it com-
bines both a data modeling language and data dictionary
report capabilities in the same notation. Second, the two
levels of syntax allow us to view the conceptual schema
specification from different perspectives: the abstract level
that provides an easier but more superficial perspective
and the expert level, which is equivalent to first-order logic
languages. The abstract level can be used by the nonexpert
to express concepts and ideas, while the expert level can be
used to define all the required details precisely. A new
abstract level can then be obtained by masking the details
of the second level and used again to verify the conceptual
schema developed by the experts.

Phase 4: Derivation of the logical
access path schema

In the final phase, we first generate the basic logical
schema for the target system's database and then optimize
it. The basic logical schema must explicitly or implicitly
cover all logical relationships expressed or implied by the
conceptual schema. A sequence of database accesses used
to generate all (either explicit or implicit) relationships is
called a logical accesspath. The collection of many LAPs
integrated into a unified schema that combines shared sub-
paths by adding their usage frequencies is called the LAP
schema. 20
The input for this phase consists of the conceptual sche-

ma obtained by the previous phase, task specifications,
document specifications, and usage matrices generated by
phase 2, system analysis.
From the conceptual schema, we extract the records and

the logical relationships among them and express them in a
data model. These relationships correspond to the rela-
tions-of the basic logical schema, which we call the enter-
prise logical base schema. Next, we generate the I/O data
requirements of each task by writing queries against the
ELBS. The data input requirements of a task are the quer-
ies; the data output requirements are either reports or up-

dates to the database. The LAPs of these queries are col-

COMPUTER72



lected and integrated into a schema, which is then opti-
mized for maximum efficiency on both retrieval and
updates. 19
The output of this phase consists of the LAP schema to

be maintained; the task emulations, which are at this point
the application programs of the database; and the con-
straints that must be considered to maintain data integrity.

Mapping to the enterprise logical base schema. Our ob-
jective here is to map the conceptual model onto other
data models, such as the relational or Codasyl models sup-
ported by commercial database management systems. We
can then use the resultant ELBS to define the logical access
paths of each task by emulating the tasks against the
ELBS.
The input to this step is the conceptual schema, ex-

pressed in the graphical notation described previously or in
equivalent notation. The mapping to the relational data
model is given below. A similar one has been done for the
Codasyl data model. 36 During this mapping, we need not
be concerned with issues of efficiency or redundancy. The
efficiency and the amount of redundancy allowed in the
obtained logical schema will be taken into account later
during optimization.

Entities. For every entity, a one-column table (unary
relation) is constructed. The name given to the relation is
the same as the name of the entity. The attribute name is
either the same as the entity name or the same as its data-
base denotation (such as PROJ-NO and SUPPLIER-NO,
if such denotation is available). In Figure 10, for example,
the entity PROJECT (lOa), is mapped onto the unary rela-
tion PROJECT (lOb). INTEGER is the domain over
which attribute PROJ-NO of relation PROJECT ranges.
Thus, we have an explicit representation of the domain.

Properties and relationships. Most relationships ex-
pressed in the conceptual schema are mapped onto other
relations. Property relationships are mapped onto two-
column (binary) relations. The name of such a relation is
the concatenation of the concept and property names. The
attribute names used are PROPERTY-OF and VALUE.
Take for example, the mapping of PROJECT-PROPER-
TIES in the CDSL second-level syntax.
Two things should be noted here. First is that the

dependencies (one-one, one-many, or many-many) are
constraints, so they are explicitly written in the attribute
box ofthe relations. The quantifier [1] denotes that there is
exactly one value of attribute VALUE for every value of
attribute PROPERTY-OF. PROPERTY-OF and VAL-
UE range over the domains PROJ-NO and NAME (or
LOCATION-NO, ADDRESS), respectively. Second,
whenever a concept is used to define a property and this
concept has some denotation, this system denotation is
used in the domain box of the relations; in Figure 11,
LOCATION-NO is used in the domains of PROJECT-
LOCATION rather than LOCATION.

For some property relationships, we are interested only
in the intension and not the extension. The intension of a
relationship is expressed using symbols and/or properties
that define the elements of the relationship. The extension,
on the other hand, is given in terms of the actual values

satisfying it. A relationship defined by intension can be
found in the frame PROJECT-DEFINITION

10001 - PROJ-NO
PROJ-NO < 99999.

One of its extensions is
10001 ! PROJ-NO = 10001 5 99999
10001 - PROJ-NO = 10002 . 99999
10001 - PROJ-NO = 10003 5 99999.

Clearly, for most applications we would not be interested
in storing such extensions. Instead we would like to in-
clude the intensions only and use them as the logical
schema integrity constraints, which are activated to
validate every new instance of PROJ-NO that enters the
system.
Another type of relationship in the conceptual schema is

expressed in the form of procedural attachments of
frames. For example, the "assign" procedural attachment
in the PROJECT-DEFINITION frame represents a pro-
cedure followed by the DISTRIBUTION-MANAGER in
assigning a PROJ-NO to a new project. In this case, the
manager examines the characteristics of the new project so

Figure 10. Mapping an entity.

lure 11. mapping a property relationsnip.

May 1984 73



that he can assign the PROJ-NO. Because these character-
istics are of no interest to the system or to the system's
users, they are hidden. Such assignments may be done, for
example, on the basis of the information about project
location, priority, and budget limits-notions that will not
be needed again by system users.
The preceding discussion has focused on property rela-

tionships. Another kind of relationship expressed in the
conceptual schema is the event relationship. These rela-
tions are mapped onto n-column relations. The name of
the event is used as the relation name. The domains of the
relation are the entities that participate in the relationship.
Attribute names are chosen from a relatively small set of
"roles" such as agent, recipient, object, source, destina-
tion, and time, which define the part each entity plays in

Figure 12. Mapping an event relationship. the relationship. Figure l2aisanexampleoftheeventrela-
tionship ORDER-PLACEMENT which is mapped onto a

synonymous relation (12b).

Emulating tasks. In this step, we obtain a query and an

update model, which respectively reflect the data input
and output requirements of each task. The result of the
task emulation step is a collection of logical local sub-
schemata, each of which is tailored to the data I/O re-
quirements of a task.

8 ^ hp(vi VA__7 v̂(vi ) ] _ Each task is emulated using the ELBS generated by the
previous step. In this emulation, the data input required by
each task (see the "input" line in the task form in Figure 3)
is expressed by queries against the ELBS. For example, if
information is needed about a project's location, a query

iis made against the PROJECT-LOCATION relation.
The term "query" implies a well-formed expression in a

relational query language. However, since every query in a
relational query language can be expressed by a relational

8i,Vi u(Vi, Vi algebraic expression, we assume that a query is a valid rela-
tional expression. Some queries are generica fthat is, they
produce a set of values, each of which may be the answer
to a simple query. For example, a query that specifies the
retrieval of projects located in New York generates as an
answer a set of projects (possibly empty). This result may,
in turn, be accessed by another application program to
process each of the New York projects individually.
The answers to generic queries, called views, are, in

in thetailnode.Double.ine arrowsdenote"project"reaions; that j general, virtual relations that have a form similar to a base
relation except that they may be stored differently. The
collection of these virtual relations, which corresponds to
the data input of a task, is nothing but a local logical

Vi ~~~~~~~~~~~subschema tailored to the needs of this task.
Updates are generated from the output specifications of

the task and are expressed in a data manipulation lan-
guage. Only updates to the base relations of the enterprise
logical base schema are allowed. Base relations are those
that cannot be derived by queries made against other rela-
tions. Updates to views are in general problematic because
some of these updates may not reflect valid updates to the
base relations. 373 Since the only view updates that can be

Figure 13. Graphical notation for the relational operators: (a) horizon, handled correctly are those that can be translated into setstal selector, (b) vertical selector, (c) join, (d) union, (e) intersection, (f) ofupdatestobaserelations,weconsideronlybaserelationdifference, and (g) Cartesian product. Single-line arrows (arcs) denote udts h ure n h pae banddrn"subset" relations; that is, the head node has tuples that are included udts h ure n h pae banddrn
in the tail node. Double-line arrows denote "project" relations; that is, each task's emulation and their usage frequencies are usedthe head node has as attributes a subset of the attributes of the tail to construct the query and update model, which is thennode. Links between arrows represent the derivations of views (dots), used to optimize the collection of logical access paths. In

74
COMPUTER



other words, the query and the update models are the com-
position of the data input and output requirements of all
the tasks. The task emulation step is divided into the
following substeps: (1) generate the data input require-
ments of each task, (2) compute the probabilities of all
queries, and (3) compute the update probabilities for the
base relations.

Generate the data input requirements ofeach task. Each
query made to generate data input requirements of a task
is represented by a query graph composed of view nodes.
A view node (or simply a view) is a representation of the
answer that corresponds to a relation derived by a query.
For example, the virtual relation EXCEEDING-BUD-
GET-PROJECT is a view node that corresponds to the
answer of the query "Give me the projects whose balance
exceeds their budget limit."
A graphical representation for query graphs is intro-

duced (Figure 13) in which each relational operator is
represented by one or two linked arcs (depending on
whether the operator is unary or binary). Any relational
query can be represented by such a query graph because
this set includes all relational operators. Figure 14 is a
query graph for local projects. Here, LOCAL-PROJECT
is a view obtained from PROJECT of ELBS by selecting
projects that are local (LOCAL - LOCATION
Washington, DC).

Compute the probabilities of query graphs. The global
probability of a query graph is the probability of executing
the corresponding query against the database from within
any task. These computed probabilities are then used dur-
ing optimization, a step required by any optimization
algorithm. 18,19,40
The technique for computing global capabilities uses the

frequency of each task found in the task forms and the
number of times each query graph is executed from within
each task. Weights indicating the importance of each task
or application can also be used as an alternative or in
addition.
Assume that there is a total of n tasks and m query

graphs. We use a simple computation matrix for obtaining
the global probabilities of all queries. Figure 15 is the task-
query frequency matrix, where the upper m x n portion
contains the frequencies of the query graphs within the
tasks. For example, aji (where 1 cjcm and 1 si5n) is
the number of times the query graph qj is executed from
within task ti. If qj is never made from within ti, then the
:orresponding entry is zero. The (m+ 1) row, shown in
the matrix as

m

E aji
j=1

is used to store the total number of query graphs made by
task ti. The (m + 2) row (labeled Ft ) contains the fre-
quencies of the task's activations. The (n + 1) column with
label pj stores the computed global probabilities of each
query graph. The following algorithm2O computes the
query graph probabilities by filling out the matrix in
Figure 15.

BEGIN
FOR i= 1 UNTIL n DO

BEGIN
qnum =0
FOR j=1 UNTIL m DO qnum=qnum+aj,
am+1,, =qnum

END
fRot =0
FOR j=1 UNTIL n DO ftot=ftot+am+2,i
FOR j=1 UNTIL m DO

BEGIN
psum =0

BEGIN
FOR i=1 UNTIL n DO

END psum=psum+(aji -. am+1,i)1(am+2 Rfot)
a1wn+i =psum

END
END

The first double loop in the algorithm fills out the
(m + 1) row. The second simple loop computes the total
number of tasks f tO. The last double loop computes the
global probability Psu,,,m of each query qj.

Figure 16 is the result of applying the algorithm to the
matrix in Figure 15. Note that the probabilities were com-
puted as if there were no updates against the database. In
real life, of course, queries and updates are intermixed ac-
tivities of each database system. Thus, the global prob-
abilities should be computed so that the updates are also
taken into account. To account for the influence of the
updates onto the probabilities of the queries, we can add
to the (m +1) row the number of updates done from

i-igure 14. A query grapn tor iocai projects.

ti t2 t3 to
a1____ __

q1 0 2 1 1
q2 1 0 0 0
q3 0W 1 0 0
q4 1 1 1 0
T qs -0 2 0 0 0
m

F, 1 2 1 3 7.

Figure 15. A task-query frequency matrix in which (q1
q 5) x (t1 ... t 6) contains the frequencies of query graphs
within the tasks. The remainder of the matrix is used to
store the total number of graphs made by task t1 and how
often the task is activated.

May 1984 75



within each task, assuming that the cost of retrievals and
updates is about the same. Or, before we add anything to
the (in + 1) row, we may want to multiply the number of
updates by a weight, depending on the cost of the updates
when they are compared with the retrieval queries.

Generate update probabilities. We can get the probabil-
ities of updates on base relations from task output. We
are not considering updates against views because studies
show that only a few view updates can be reflected into
valid sequences of valid updates on the base relations used
to derive the updated views. 37-39 We assume here that all
updates considered correspond to valid updates on base
relations and that they have been translated onto base
relation updates. The update probabilities uj (where
j 1,2,. . ., k) of base relations are computed in a man-
ner similar to that for queries. Figure 17 is an example of
a probability computation matrix for updates.- It differs
from the query matrix in that the first column of this
matrix corresponds to base relations rj rather than to
views. For example, in Figure 17, t4isk tI makes two up-
dates: one on the base relation r, and one on r3. Task t3
makes two updates on r2. Note that the task frequencies
for this example are the same as the ones on the query
computation matrix. The same algorithm described pre-
viously is used to fill out the rest of the computation ma-
trix as shown in Figure 18.

ti-<| t1 P2 t 3 t 4 j

qF 0 2 1 1 0.641
qq2 1 0 0 0 0.035
q 3 0 1 0 0 0.071
.q 4 1 1 1 0 0.177

q 5 2 0 0 0 0.071
m
Eoaji 4 4 2 1

Ft 1 2 1 3 7

Figure 16. Figure 15 matrix after applying an algorithm to
compute query graph probability.

Figure 17. Probability computation matrix for updates in
which the base relations are the first column rather than
views (Figures 15 and 16).

Integrating query graphs into a LAP schema. In this in-
tegration step, we use the query graphs generated by the
task emulation, the global probabilities, and the update
probabilities to generate a logical access path schema that
models the use of LAPs in the database. This schema is
based on database activities, (retrievals and updates)
found in the tasks, and integrates their logical access
paths by recognizing common subpaths and increasing
the weight of the shared subpaths. The schema provides a
comprehensive picture of LAPs and the cumulative use of
the shared subpaths and/or intermediate results. It is both
a model of the access requirements during database
design and a model for optimization during database
operation.

Integration is achieved when two query graphs are
merged to form a single one. During this merging, a sim-
ple algebra is defined that adds the probabilities of the
common views on the obtained LAP schema. When the
first two graphs have been merged, a third one is merged
with the first two, and so on until eventually all query
graphs have been merged into the final LAP schema.
(More rigorous descriptions of merging algorithms are
given elsewhere.20.41) Figure 18 shows query graphs for
(a) EXCEEDING-BUDGET-PROJECTS, (b) SHIPPED-
ORDERS, and (c) ORDERS-IN-PROCESS. Since 18a
and 18b have no common views, they remain discon-
nected after merging. Figure 19 shows the merging of
Figures 18a, b, and c. Note that the query probabilities of
the common view ORDERS have been added. In Figure
20, the query graph for "Orders in process for projects
exceeding their budgets" is shown. The graph is ob-
tained by making (1) two horizontal selections on PROJ-
ECTS and ORDERS to obtain EXCEEDING-BUDGET-
PROJECTS and ORDERS-IN-PROCESS and (2) a join
on the last two views on the attribute PROJ-NO. When
we merge this query graph with Figure 19, we get the
graph in Figure 21. As the figure shows, the probabilities
of accessing PROJECTS and EXCEEDING-BUDGET-
PROJECTS have been increased because they appear in a
number of query graphs. The more each view appears in
query graphs, the higher its probability of being sup-
ported in the optimal schema becomes.
A view (which does not correspond to a base relation)

may be affected by an update to any of the base relations
used in the derivation of the view. Since we assume that
the updates on base relations are independent, the update
probability u that a view may be affected by any update is
the sum of the update probabilities of all base relations
used in the derivation of the view. In Figure 21 we show
the update probabilities u. as they propagate from the
base relations to the views. The view ORDERS-IN-
PROCESS-FOR-PROJECTS-EXCEEDING-BUDGET
is affected by both updates in PROJECT and ORDERS
and thus its u probability is u I + u2. The graph obtained
by this step along with the retrieval and update probabil-
ities is the LAP schema of the database.

Optimizing the LAP schema. The goal of this step is to
enhance the execution efficiency of the frequently used
(or important) tasks by explicitly indexing the subsche-
mata they operate on. Clearly, not all of the subschemata

COMPUTER
76



should be indexed because a great deal of redundancy is
generated, costing both storage and update time.
A view in the LAP schema can either be supported by

an index to the base relation tuples that make up the
view's tuples or constructed on demand from the base
relations it is derived from. The construction is associated
with 1/0 and CPU cost-to be called the "cons" cost.
On the other hand, if an index is kept for the view, the
cons cost is avoided. In this case, however, storage is re-
quired for the index, and updates become more time con-
suming because the index needs maintenance.
A useful indexing policy is to retain all indexes until an

update is required. Consequently, an index is updated if it
corresponds to a frequently accessed view but dropped if
the view is infrequently accessed. In this manner, existing
indexes are used as cache memory aids. These aids do not
cost much overhead because they are created to answer
queries. The only overhead is for the recognition of such
cache indexes. The payoff can be significant because we
trade CPU time (required for the recognition/matching
algorithm) with extra I/O (required by the construction
cost of a view). Given that (1) certain logical access paths
among data expressed in some subschemata are used
more often than others, and (2) in general not all paths
should be indexed, we clearly need an optimization pro-
cess that decides which paths must be supported.
The optimization is based on the following elements:

* the set of the derived views;
* the sizes of the indexes for those views, when the

views are explicitly supported (cardinality times the
size of the pointer);

* the construction cost of the derived views assuming
that their index is not available;

* the probabilities of making queries against those
derived views;

* the update cost of the indexes; and
* the probabilities of the updates.
Estimates of these elements could be easily obtained

during the design in terms of upper bounds and complexi-
ty order of the algorithms. They are even more easily ob-
tained when the database is operational. In the latter case,
the index size and the construction cost of the index can
be measured by monitoring the execution of the views.
The same is true for the update cost, which can be
measured by executing the updates. Optimization would
then be based on actual costs of the index mechanism's
implementation, the operating system, the database
system, the buffering facilities, and all the other influenc-
ing parameters of the execution environment.
A cost model is needed to give us the cost of querying

views and updating indexes. First we define index alloca-
tion and the construction cost based on this allocation.
An index allocation A over a set of views V is a mapping
A : V - [0, 1)

where A(v) =1 means that view v has been indexed,
whereas Av=0 means the opposite. For simplicity, we
treat base relations as views (even though they are explicit-
ly stored) and assume that A (r) = 1 for all base relations
r. A construction cost function cons over a set of views V
is a mapping

cons: Vv 0

May 1984

where ve V is a derived view and f is the set of views or
base relations from which v can be constructed. Clearly,
more than one setfcan be used to construct a given view.
Note also that a base relation has no f set because by
definition base relations cannot be constructed from
others.

Figure 18. Query graphs for (a) EXCEEDING-BUDGET-PROJECTS, (b)
SHIPPED ORDERS, and (c) ORDERS-IN-PROCESS.

Figure 19. Merging of the three graphs In Figure 18. Note that 18a re-
mains disconnected from the others because it has no views In com-
mon with 18b and c.

Figure 20. Query graph for "orders In process for projects exceeding
their budgets."

77



The cost of answering a query that uses view v, given
index allocation A, is
C(V) =C, (V) ifA (v) =1

or
C(v) =min[cons(f,v) + EC(x)]

f xef
if A (v) =0

where C, (v) is the cost of retrieving the view from its in-
dex and is linear with size v . If cons (f, v ) is the cost
of constructing the index for v from its ancestors f, then
quantity

cons(f,v) + S C(x)
xef

reflects the cost required to first obtain all elements x inf
needed to construct v plus the construction cost of putting
together the elements offto construct v.
The cost of maintaining an index for view v during an

update of a base relation used in constructing this view is

UC(v) =c(v) ifA (v) = 1
or

UC(v) =0 ifA (v) =0
This cost reflects the cost c, of retrieving and updating the
view's index, if one is maintained for it; otherwise, it is
zero.
Both costs reflect results in term of I/O operations of

retrieving a view or modifying it. Similarly CPU time costs
can be used for CPU-bound systems.
We can now define different optimization functions:
(1) Find the best index allocation A on the views such

that the total cost of answering all queries is minimal. That
is

E PC(v)p +UC(v)uv]
is minimal subject to the constraint that the total storage
used for indexing does not exceed SLIMIT. That is

Figure 21. Merging of graphs in Figure 19 and Figure 20. Note that the
probability of accessing PROJECTS and EXCEEDING-BUDGET.
PROJECTS has increased because each appears in a number of query
graphs.

E v IA (v) 'SLIMIT
In the previous formula, p v is the probability of accessing
v, and uv the probability that v needs to be maintained
because of an update for a base relation.

(2) Find the best index allocationA such that for weights
w1 and w2

dwIC(v)pv + W2UC(V)U,l
is minimal

(3) Find the best index allocation A such that

EA(v) lvl
is minimal subject to the constraint that no query takes
more than TLIMIT time to answer; that is

EC(v) c TLIMIT
If I/O operation cost is used, TLIMIT can be estimated by
multiplying the cost by the time in milliseconds to do one
I/O operation.

(4) Find the best allocation A such that

EC(v)Pv
is minimal,

EUC(v)uv
is minimal, and

EA (v) v |cSLIMIT

Algorithms for obtaining the best index allocation for
any of these optimization functions are computationally
very difficult (NP-complete42). However, heuristics and
knowledge on the accessing provided by the logical access
path schema can help optimization. A heuristically
directed algorithm, which guarantees that whenever a
solution is reached, it is the optimal allocation for the LAP
schema, is described elsewhere. 19
We have now completed the last phase of the database

design methodology. At this point, we have obtained the
optimized logical access path schema and the application
programs (task emulations). Now the operational phase of
the database can begin.

We have presented a comprehensive step-by-step
methodology for an adaptable database design-adapt-
able because each phase can be facilitated by a number of
models and representation primitives.
Many of the tools and analysis techniques in the

methodology can be and have been automated. Others,
such as tools that help us to analyze objectives, con-
straints, policies, etc., or formal verifiers for consistency,
are more difficult to automate. To help solve these prob-
lems, we must rely on user-directed instead of system-
directed walkthroughs and/or specialized presentation
techniques and reports.
The design specification techniques used in this method-

ology are valuable for system maintenance, as well.
Changes in the environment and/or requirements can be
traced back to the specification (output) of each phase to
see the effects of these changes. Efficiency improvement
from statistical observations and/or changes in access
usage can be handled when deriving and optimizing a
logical access path schema.

78 COMPUTER



We have successfully used our methodology in a num-
ber of applications including the ABC Agency inventory
database, Naval Printing Office database, a Telephone
Answering Service Processing System, a Happy-Boozer
Bar database and a database to support an IFIP con-
ference. We found that the method is easy to teach to peo-
ple because the designer has the freedom to use familiar
models.
We have also been using the methodology in a class of

approximately 50 students taking their first undergraduate
database course. The students receive one to two lectures
for each phase (squeezed between regular lectures.) For
the course term project, the students teamed up in groups
of two to find the information requirements of an organi-
zation, designed the database system, and implemented it
on an available database management system. The only
step of the methodology not required in completing this
project was the optimization of the LAP schema. From
the approximately 20 designs and implementations on
each application, about five were excellent. Ten were good
designs with complete requirements and design specifica-
tions.
One of our initial hypotheses was that task emulation

would speed up implementation. The experiment with the
students verified this assumption. Task emulation helps to
ensure that the logical schema is complete, because if some
parts of the schema are not covered, some tasks cannot be
emulated. Also, each emulated task forms the skeleton of
the application program (transaction) that is to carry out
the task-the part that deals with the necessary I/O in-
teractions with the database. Therefore, very little work is
left to complete the implementation of the application
program. *

Acknowledgments

This work was supported in part by the Air Force Office
of Scientific Research contract F49620-83-KO018-AFOSR
to the University of Maryland. Computer support was

provided in part by the Computer Science Center at the
University of Maryland.

References

1. D. Jefferson, V. Lum, and D. Sheppard-Rund, "Corporate
Requirements Analysis," New Orleans Workshop Data
Base Design, 1978.

2. B. K. Kahn, "A Structured Logical Database Design
Methodology," Proc. NYU Symp. Database Design, 1978,
pp. 15-24.

3. D. C. Burnstine, "The Theory Behind BIAITI Business In-
formation Analysis and Integration Technique," BIAIT In-
ternational, 1979.

4. T. De Marco, Structured Analysis and System Specifica-
tion, Prentice-Hall, Englewood Cliffs, N.J., 1979.

5. D. Teichroew and A. Hershey, III, "PSLUPSA, A Com-
puter-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE Trans.
Software Engineering, Vol. SE-3, No. 1, Jan. 1977, pp.
71-79.

6. G. Myers, Structured/Composite Design, John Wiley &
Sons, New York, 1979.

I MACHINE VISION
IMAGE PROCESSING
RESEARCH AND
DESIGN ENGINEERS

The Environmental Research Institute of Michigan
(ERIM) has been a center for creative research
and development for over thirty years. We've
been a pacesetter in both image sensor and data
processing techniques. ERIM scientis's and engi-
neers have invented/developed holography, 3-D
laser scanning, synthetic aperture radar and
Cytocomputers.

New staff positions are available in machine
vision, image processing, pattern recognition,
algorithm development, intelligent machines and
robotics. The work includes the design and devel
opment of real-time laser-based image sensors,
image processing systems and alternative com
puter architectures for artificial intelligence.

The work environment is flexible and stimulating,
and those interested in "just a job" should not
apply. The most modern equipment is available
and we stress individual growth, initiative and de-
velopment. Leadership potential will be welcome.
The following positions are a few of those
available:

INTEGRATED CIRCUIT AND
COMPUTER DESIGN ENGINEERS
BS in Electrical or Computer Engineering and ex-
perience in hands-on digital circuit design and
construction required. MS desired. Specific ex-
perience should include high speed TTL or MOS
circuit and systems design along with program-
ming experience on mini/micro systems. MC
68000, industrial electronics packaging, video
circuit design, gate array or integrated circuit de-
sign helpful.

ALGORITHM DEVELOPMENT
AND SOFTWARE ENGINEERS
Candidates should have significant hands-on ex-
perience with invention, development and/or re-
finement of algorithms for real-time signal/image
processing. Software design on mini-micro sys-
tems, preferably using PASCAL; MC 68000, C,
VMS or UNIX would be helpful. A BS in Electrical
or Computer Engineering or Computer Science is
required. An MS or experience in image proces-
_sing is desirable.

United States citizenship requireo.
Compensation includes an attractive starting sal-
ary and a very comprehensive fringe benefits
package. Please send your resume to:

John J. Malik
Environmental Research
Institute of Michigan

\| 'tT1L, P.O. Box 8618
IM

Ann Arbor, Michigan 48107

An Equal Oooortunity Emoloyer

May 1984

,- I 11-. . I - ,[

T T * ' , 1- -1



7. E. Yourdon and L. Constantin, Structured Design,
Prentice-Hall, Englewood Cliffs, N.J., 1979.

8. M. W. Alford, "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE Trans.
Software Engineering, Vol. SE-3, No. 1, Jan. 1977, pp.
60-69.

9. D. Sheppard-Rund, Database Design Methodology-Parts
I and 11, Auerbach Data Base Management Series, port-
folios 23-01-01 and 02, 1977.

10. P. P. Chen, "The Entity-Relationship Model-Toward a
Unified View of Data," ACM Trans, Database Systems,
Vol. 1, No. 1, Mar. 1976, pp. 9-36.

11. J. R. Abrial, "Data Semantics," in Database Management,
North-Holland, Amsterdam, 1974, pp. 1-59.

12. N. Roussopoulos, "A Semantic Network Model of
Databases," Dept, of Computer Science, University of
Toronto, TR-104, PhD dissertation, 1976.

13. N. Roussopoulos, "CSDL: A Conceptual Schema Defini-
tion Language for the Design of Data Base Applications,"
IEEE Trans. Software Engineering, Vol. SE-5, No. 5, Sept.
1979, pp. 481496.

14. J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, "A
Language Facility for Designing Database-Intensive Ap-
plications," ACM Trans. Database Systems, Vol. 5, 1980,
pp. 185-207.

15. M. R. Gustafsson, T. Karlsson, and J. A. Bubenko, "A
Declarative Approach to Conceptual Information Model-
ing," Dept. of Information Processing & Computer
Science, The University of Stockholm, Syslab report 8,
1982.

16. J. Sowa, Conceptual Structures: Information Processing in
Mind and Machine, Addison-Wesley, Reading, Mass.,
1984.

17. M. Schkolnick, "Secondary Index Optimization," Proc.
ACM Sigmod, 1975, pp. 186-192.

18. M. Schkolnick, "Physical Database Techniques," NYU
Symp. Database Design, 1978.

19. N. Roussopoulos, "View Indexing in Relational Databases,"
ACM Trans. Database Systems, Vol. 7, No. 2, June 1982,
pp. 258-290.

20. N. Roussopoulos, "The Logical Access Path Schema of a
Database," IEEE Trans. Software Engineering, Vol. SE-8,
No. 6, Nov. 1982, pp. 563-573.

21. J. A. Bubenko, Jr., "Information Modeling in the Context
of System Development," Proc. IFIP, 1980, pp. 39541 1.

22. Entity-Relationship Approach to Systems Analysis and
Design, P. P. Chen, ed., North-Holland, Amsterdam, 1980.

23. V. Y. Lum et al., "The 1978 New Orleans Data Base Design
Workshop Report," Proc. Fifth Int'l Conf. Very Large
Data Bases, ACM Press, New York, 1979, pp. 328-350.

24. D. C. Tsichritzis and F. H. Lockovsky, "Designing the Data
Base," Datamation, Vol. 24, No. 28, 1978, pp. 147-151.

25. D. C. Tshichritzis and F. H. Lockovsky, Data Models,
Prentice Hall, Englewood Cliffs, N.J., 1982.

26. N. Roussopoulos and J. Mylopoulos, "Using Semantic Net-
works for Database Management," Proc., First Int'l Conf.
Very Large Databases, ACM Press, New York, 1975.

27. N. Roussopoulos "ADD: Algebraic Data Definition,"
Sixth Texas Conf. Computing Systems, University Press,
Austin, Tex., 1977.

28. H. Weber, The D-Graph Model of Large Shared Data
Bases: A Representation of Integrity Constraints and Views
as Abstract Data Types, IBM Research Report RJ1875,
IBM Corp. San Jose, Calif., Nov. 1976.

29. M. Hammer and D. McLeod, "Database Description With
SDM: A Semantic Database Model," ACM Trans.
Database Systems, Vol. 6, No. 3, Sept. 1981.

30. J. Sowa, "Conceptual Graphs for a Database Interface,"
IBM J. Research and Development, Vol. 20, No. 4, July
1976.

31. E. Falkenberg, "Concepts for Modeling Information," in
Modeling in Data Base Management Systems, G. M. Ni-
jssen, ed., North-Holland, Amsterdam, 1976.

32. J. M. Smith and D. C. P. Smith, "Database Abstractions:
Aggregation and Generalization," ACM Trans. Database
Systems, Vol. 2, No. 2, 1977.

33. M. L. Brodie, "The Application of Data Types to Database
Semantic Integrity," Information Systems, Vol. 5, 1980, pp.
287-296.

34. S. K. Chang and W. H. Cheng, "Database Skeleton and Its
Application to Logical Database Synthesis," IEEE Trans.
Software Engineering, Vol. SE4, No. 1, Jan. 1978, pp.
18-30.

35. S. K. Chang, and J. S. Ke, "Translation of Fuzzy Queries,"
IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. PAMI-1, No. 3, July 1979.

36. N. Roussopoulos and R. T. Yeh, Logical Database Design,
NBS final report, National Bureau of Standards, Washing-
ton, DC, Feb. 1982.

37. U. Dayal and P. A. Bernstein, "On the Updatability of
Relational Views," Proc. Fourth Int'l. Conf. Very Large
Databases, ACM Press, New York, 1978.

38. F. M. Bancilhon and N. Spyratos, "Update Semantics of
Relational Views," ACM Trans. Database Systems, Vol. 6,
No. 4, Dec. 1981, pp. 557-575.

39. A. M. Keller, "Updates to Relational Databases Through
Views Involving Joins," Second Int'l Conf. Databases,
Academic Press, New York, 1982, pp. 363-384.

40. K. Y. Whang, G. Wiederhold, and D. Sagalowicz,
"Separability: An Approach to Physical Database Design,"
Proc. Seventh Intl Conf. Very Large Databases, ACM
Press, New York, 1981, pp. 320-332.

41. R. Masri and G. Wiederhold "Data Model Integration
Using the Stuctural Model," Proc. ACM-Sigmod Conf.
Bernstein, ed., 1979, pp. 191-202.

42. K. M. Chandy, "Models of Distributed Systems," Proc.
Third Int'l Conf. Very Large Databases, ACM Press, New
York, 1977, pp. 105-120.

Nicholas Roussopoulos is an assistant pro-
fessor of computer science at the Universi-
ty of Maryland. His research interests in-

S:F l ~_ <H; clude database design and conceptual mod-
eling of information systems, distributed
databases, software engineering, and artifi-
cial intelligence. He has held positions at
the IBM Research Lab and the University
of Texas at Austin. Roussopoulos received
a BA in mathematics from the University

of Athens, and an MS and PhD in computer science from the
University of Toronto.

Raymond T. Yeh is professor of computer
sciences at the University of Maryland. He
has served as chairman of the Computer
Science Departments at the Universities of
Maryland and Texas at Austin. He was
also director of the Center for Information
Sciences Research at Maryland. Yeh re-
ceived a BS in electrical engineering, an
MA in mathematics, and a PhD in mathe-
matics from the University of Illinois. He is

the founding editor-in-chief of IEEE Transactions on Software
Engineering.

Questions about this article can be addressed to either author,
Dept. of Computer Sciences, University of Maryland, College
Park, MD 20742.

COMPUTER80


