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1 Introduction
PlanetLab is a research testbed that supports 428 experi-
ments on 276 sites, with 583 nodes in 30 countries. It has
lowered the barrier to distributed experimentation in net-
work measurement, peer-to-peer networks, content distri-
bution, resource management, authentication, distributed
file systems, and many other areas.

PlanetLab did not become a useful network testbed
overnight. It started as little more than a group of Linux
machines with a common password file, which scaled
poorly and suffered under load. However, PlanetLab was
conceived as anevolvablesystem under the direction of a
community of researchers. With their help, PlanetLab ver-
sion 3.0 has since corrected many previous faults through
virtualization and substantial performance isolation. This
paper is meant to guide those considering developing a
network service or experiment on PlanetLab by separat-
ing widely-held myths from the realities of service and
experiment deployment.

Building and maintaining a testbed for the research
community taught us lessons that may shape its contin-
ued evolution and may generalize beyond PlanetLab to
other systems. First, users do not always search out “best
practice” approaches: they expect the straightforward ap-
proach to work. Second, users rarely report failed at-
tempts: we learned of the perceived shortcomings de-
scribed in this paper through conversations, not through
messages to the mailing lists. Third, frustration lingers:
users hesitate to give another chance to a system that was
recently inadequate or difficult to use. These experiences
are especially challenging for an evolvable system, which
relies on user feedback to evolve so that more users can
be supported by features they desire.

We organize the myths in decreasing order of veracity:
those that are realities in Section 2, that were once true
in Section 3, and those that are false if best practices are
employed in Section 4. We summarize the discussion in
Section 5.

2 Realities
This section describes widely-cited criticisms of Planet-
Lab that are entirely true, and are likely to remain so even
as PlanetLab evolves.

Reality: Results are not reproducible

PlanetLab was designed to subject network services to
real-world conditions, not to provide a controlled envi-
ronment. By running a service for months or years, re-
searchers should be able to identify trends and understand
the performance and reliability their service achieves. An
experiment that runs for an hour will reflect only the con-
ditions of the network (and PlanetLab) during that hour.

Various aspects of a service can be meaningfully mea-
sured by applying simple rules-of-thumb. Avoid heavily-
loaded times and nodes: CoMon [5] tracks and publishes
current resource usage on each PlanetLab node. Secure
more resources for your experiment from a brokerage ser-
vice (see Section 3) if needed. Repeat experiments to gen-
erate statistically valid results. Finally, regard PlanetLab’s
ability to exercise a system in unintended ways, producing
unexpected results, as a feature, not a bug.

Reality: The network between PlanetLab sites does
not represent the Internet

No testbed, no simulator [2], and no emulator is inher-
ently representative of the Internet. The challenges for
researchers are to develop experiments that overcome this
limitation, perhaps by recruiting real users behind residen-
tial access networks, or, failing that, to interpret results
taking PlanetLab’s special network into account. The
challenge for PlanetLab is to evolve so that this limitation
is less severe, seeking new sites and new access links.

PlanetLab’s network is dominated by global research
and education network (GREN) [1] (Internet2 in the
United States). However, commercial sites have joined
PlanetLab and research sites have connected machines to
DSL and cable modem links: 26 sites are purely on the
commercial Internet. The question is, how does Planet-
Lab’s network connectivity affect research?

First, some experiments are suitable for the GREN.
Claims that a new routing technique can find better routes
than BGP are suspect if those better routes take advan-
tage of well-provisioned research networks that are not
allowed by BGP policy. However, claims that a service
can find the best available route might be accurate even
on the GREN: results obtained on the GREN are not nec-
essarily tainted.



Second, services for off-PlanetLab users and network
measurement projects that send probes off-PlanetLab ob-
serve the commercial Internet. Although most of Planet-
Lab is on the GREN, most machines also connect to the
commercial network or are part of transit ASes. The Plan-
etFlow auditing service [4] reports that PlanetLab nodes
communicate with an average of 565,000 unique IP ad-
dresses each day. PlanetSeer [10], which monitors TCP
connections between CoDeeN nodes at PlanetLab sites
and Web clients/servers throughout the Internet, observed
traffic traversing 10,090 ASes, including all tier-1 ISPs,
96% of the tier-2 ISPs, roughly 80% of the tier-3 and 4
ISPs, and even 43% of the tier-5 ISPs. Measurement ser-
vices like Scriptroute [7] can use the geographic diversity
of vantage points provided by PlanetLab to probe the In-
ternet without being limited by the network topology be-
tween PlanetLab nodes.

Finally, it is sometimes not the topology of the GREN,
but the availability of its very high bandwidths and low
contention that calls results into question. Researchers
can, however, limit the bandwidth their slices consume
to emulate a lower bandwidth link, via user-space mecha-
nisms (e.g., pacing the send rate) or by asking PlanetLab
support to lower the slice’s outgoing bandwidth cap.

Reality: PlanetLab nodes are not representative of
peer-to-peer network nodes
Typically, this is a comment about the high-bandwidth
network (see above). Sometimes it means that PlanetLab
is a managed infrastructure and not subject to the same
churn as desktop systems.

Although PlanetLab is not equivalent to a set of desk-
top machines—and it is not expected to scale to millions
of machines—it can contribute to P2P services. A “seed
deployment” on PlanetLab would show the value of a new
service and encourage end-users to load the service on
desktop machines. End System Multicast [3] instead uses
PlanetLab nodes as the “super nodes” of a P2P network.
PlanetLab can contribute a core of stable, managed nodes
to P2P systems.

3 Myths that are no longer true
Some who tried to use early versions of PlanetLab found
challenges that are no longer so daunting because Planet-
Lab has evolved.

Myth: PlanetLab is too heavily loaded
Although PlanetLab may always be under-provisioned
and load is especially high before conference deadlines,
this perception is misleading in two ways.

First, upgrades to the OS better tolerate high CPU load,
memory consumption, and disk access load. CPU cycles
are fairly distributed among slices rather than threads: a
slice with 100 threads receivesthe sameCPU allocation
as a slice with just one. A daemon polices memory con-
sumption, killing slices that use too much when memory

pressure is high; users now take greater care in configur-
ing programs that may have a heavy memory footprint to
avoid having them killed, which in turn has reduced mem-
ory pressure for everyone. Finally, an OS upgrade enables
disk access via DMA, rather than programmed I/O, im-
proving performance when the node is swapping.

Second, PlanetLab has two brokerage services, Sirius
and Bellagio, that perform admission control to a pool of
resources. Researchers can use these services to receive
more than a “fair share” of the CPU, for fixed periods of
time, during periods of heavy load.

CPU availability measurements.An experiment begun
in February 2005 supports the claim that PlanetLab has
sufficient CPU capacity. The experiment runs a spin-loop
on each PlanetLab node to sample the CPU available to a
slice; because of PlanetLab’s fair share CPU scheduler,
this measurement is more accurate than standard tech-
niques such as the load metric reported bytop . Figure 1
summarizes seven months of CPU availability measure-
ments. The three lines are the median, 25th, and 10th

percentiles of the available CPU across all nodes. The
median line shows that most nodes had at least 20% avail-
able: a slice on a typical PlanetLab node contends with
three to five other slices that are running processes non-
stop. The 25th percentile line generally stays above 10%,
indicating that fewer than one-fourth of the nodes had less
than 10% free. A slice can get nearly 10% of the CPU on
almost any node.

CPU time is also available immediately before confer-
ence deadlines as well. For example, during the week be-
fore the SIGCOMM deadline (February 1–8, 2005), 360
of the 362 running nodes (99%) had at least 10% available
CPU, averaged over the week; 328 of the 360 nodes (91%)
had at least 20% available. These results show somewhat
higher availability than in Figure 1. Some projects may
have refrained from using PlanetLab to leave resources
available to those running last-minute experiments.

Estimates of available CPU using other metrics are less
accurate. In Figure 2, we show the median capacities
(a) measured directly using spin loops, (b) estimated us-
ing the inverse of the load average (a load of 100 equals
1% CPU availability), and (c) estimated using the in-
verse of the number of active slices (meaning slices with
a runnable thread). The top line, the spin-loop measured
capacity, is significantly higher. The Unix-reported load
average is often misleading: the processors did have high
load (sometimes exceeding 100), but the CPU available to
slices is much greater because although slices that spawn
many processes increase the load average, their processes
compete only against each other for CPU. Likewise, not
all active slices use their entire quanta and so the active
slice count overestimates contention. The CoMon moni-
toring service now publishes the results of the spin-loop
tests to help users choose nodes by CPU availability.



Myth: PlanetLab cannot guarantee resources
Resource guarantees could not be given before version
3.0. Schedulers are now available to make resource guar-
antees, but PlanetLab does not yet have a policy about
what slices should receive them. Typically, continuously
running services on PlanetLab are robust to varying re-
source availability (and have not asked for guarantees),
while short-term experiments have the option of using one
of the brokerage services (see previous item) to gain suf-
ficient capacity for the duration of a run. Once we have
enough experience to understand what policies should be
associated with guarantees, or someone develops a ro-
bust market in which users can acquire resources, resource
guarantees are likely to become commonplace.

4 Myths falsified by best practices
The following four myths about PlanetLab are not true if
best practices are followed. Often these myths are caused
by mismatches between the behavior of a single, unloaded
Linux workstation, and the behavior of a highly-shared,
network of PlanetLab-modified Linux nodes. The first
three myths address problems using PlanetLab for net-
work measurement, the last, its potential for churn.

Myth: Load prevents accurate latency measurement
Because PlanetLab machines are loaded, no application
can expect that a call togettimeofday() right after
recv() will return the time when the packet was re-
ceived by the machine. The PlanetLab kernel scheduler
(Section 3) can isolate slices so that none are starved of
CPU, but cannot ensure that any slice will be scheduled
immediately upon receiving a packet.

Using in-kernel timestamping features of Linux, net-
work delay can be isolated from (most) processing delay.
When a machine receives a packet, the network device
sends an interrupt to the processor so that the kernel can
pull the packet from the device’s queue. At the point when
Linux accepts the packet from the device driver, it anno-
tates the buffer with the current time.1 The kernel will
return control to the current process for the remainder of
its quantum, but this timestamp is kept in the kernel and
made available in at least three ways:

1. The SIOCGSTAMP ioctl called after reading a
packet. Ping uses this ioctl, but Linux kernel com-
ments suggest the call is Linux-specific.

2. The SOTIMESTAMP socket option combined with
recvmsg() : ancillary data includes a timestamp.
The Spruce [8] receiver code uses this method, which
was introduced in BSD and is supported by Linux. It
is not widely documented, but can be run as a non-
root user.

3. The library behind tcpdump, libpcap. This may be
the most portable, but requires root, which is easy on
PlanetLab.Sentpackets are also timestamped [9].

1See: linux/net/core/dev.c:netifrx().
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Figure 3: Approaches to packet round-trip timing: applica-
tions can use gettimeofday before sending and after receiving;
closer to the device are kernel-supplied timestamps applied as
the packet is queued for transmission or received. The driver and
hardware also may delay packets on transmission and receipt.
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Figure 4: A cumulative distribution of the differences between
application-level timestamps and kernel-level timestamps when
sending (left) or receiving (right) in microseconds.

Do kernel timestamps matter?To collect samples of
application- and kernel-level timestamps, we modi-
fied traceroute to print the timestamps it collects via
gettimeofday() , then ran traceroute and tcpdump in
parallel to gain kernel-level timestamps for the same pack-
ets from 300 PlanetLab machines to three destinations,
collecting 40,000 samples for comparison. Figure 3 il-
lustrates where traceroute and the kernel annotate time-
stamps.

In Figure 4, we show the differences between
application- and kernel-captured timestamps when send-
ing probes and receiving responses. Although the time
betweengettimeofday() and when the packet is de-
livered to the network device is typically small (18�s me-
dian, 84�s mean), the time after the packet is received is
typically larger and more variable (77�s median, 788�s
mean). The larger median may represent the cost of the
intermediate system calls: in traceroute, it isselect()
that returns when the response packet is received. How-
ever, that 4% of samples are above 1 ms suggests con-
tention with other active processes. Further, the smallest
3% of samples between 20–30�s suggests that tools that
filter for the minimum round trip time, such as pathchar,
will have difficulty: 97% of the packets will not observe
minimal delay in receive processing.

Measurement tools downloaded from research Web
pages may not use kernel-level techniques to measure
packet timings; their results should be held with skepti-



cism until their methods are understood.

Myth: Load prevents sending precise packet trains

Sending packets at precise times, as needed by several
tools that measure available bandwidth, is more difficult.
If the process is willing to discard measurements where
the desired sending times were not achieved or when con-
trol of the processor is lost, then sending rate-paced data
on PlanetLab simply requires more attempts than on un-
loaded systems.

To determine how CPU load impairs precise send-
ing, we measure how often we can send precisely-spaced
packets in a train. Sent trains consist of eleven packets,
spaced either by 1 ms, to test spin-waiting, or 11 ms, to
test sleep-based waiting using thenanosleep() sys-
tem call (via theusleep() library call). We show how
often the desired gaps were achieved for 1 ms gaps in Fig-
ure 5 and 11 ms gaps in Figure 6. In all measurements,
10 gaps are used, and we measure how often the gaps are
within 3% of the target either for all 10 gaps or for any 5
consecutive gaps.

For both tests, at least five consecutive gaps have the de-
sired intervals in 80–90% of the trains. For the 11 ms test,
all 10 gaps had the correct timing 60–70% of the time.
The 1 ms test did not fare as well: all 10 gaps met their
target times in only 20–40% of the trains. For the shorter
(5-gap) chirp trains, the results are quite good: sending 10
packets is sufficient to discard less than 20% of the mea-
surements. For longer chirp trains, two to five times as
many probes may have to be sent, which may be tolerable
for many experiments.

Mechanisms for negotiating temporarily longer time
slices, or even delegating packet transmission scheduling
to the kernel, are being discussed. The latter might ad-
dress another source of concern for measurement exper-
iments: the packet scheduler used to cap bandwidth and
fairly share bandwidth among slices. The timestamps on
sent packets that a process can observe with libpcap are
accurate—the kernel timestamps packetsafter they pass
through the packet scheduler—and so can still be used to
discard bad results. However, the scheduler does limit the
kinds of trains that can be sent: it enforces a per-slice cap
of 10 Mbps with a maximum burst size of 30KB. Longer
trains sent at a faster rate are not permitted.

Myth: The PlanetLab AUP makes it unsuitable for
measurement

The PlanetLab user Acceptable Use Policy [6] states:

PlanetLab is designed to support network measurement experi-
ments that purposely probe the Internet. However, we expect all
users to adhere to widely-accepted standards of network etiquette
in an effort to minimize complaints from network administrators.
Activities that have been interpreted as worm and denial-of-service
attacks in the past (and should be avoided) include sending SYN
packets to port 80 on random machines, probing random IP ad-
dresses, repeatedly pinging routers, overloading bottleneck links

with measurement traffic, and probing a single target machine from
many PlanetLab nodes.

This policy is a result of experience with network mea-
surements on PlanetLab, and is designed to prevent net-
work abuse reports of the form “PlanetLab is attacking
my machine.” Here we elaborate on steps to conduct re-
sponsible Internet measurement on PlanetLab. The goal
of these practices is to make network measurements as
easy to support as possible by building a list of hosts that
“opt-out” of measurement without growing the list of Pla-
netLab sites that have asked to “opt-out” of hosting mea-
surement experiments.

Test locally and start slow. Do not use PlanetLab to send
traffic you would not send from your workstation. Use a
machine at your site first to discover any problems with
your tool before causing network-wide disruption. Mea-
surements from PlanetLab can appear to be a distributed
denial of service attack; starting with a few nodes can
limit how many sites receive abuse reports. Some intru-
sion detection systems generate automatic abuse reports;
an abuse report to every PlanetLab host is best avoided.

Software has bugs, and bugs can cause measurements
to be more intrusive than necessary. Bugs that have made
PlanetLab-supported tools unnecessarily intrusive include
faulty checksum computation in a lightweight traceroute
implementation and a reaction to unreachable hosts that
directed a great deal of redundant measurement toward
the same router. Such errors could have been detected
before deployment with local testing.

Even a correctly-implemented tool may require local
testing, because very little experimental data guides non-
intrusive measurement tool design: are TCP ACKs less
likely to raise alarms than SYNs? Should traceroute not
increment the UDP destination port to avoid appearing as
a port scan? How many probes are needed to distinguish
lossy links from unreachable hosts?

Starting slow could have avoided abuse report flurries
in March and October 2005. An experiment with an
implementation flaw generated 19 abuse reports from as
many sites, half on the first day, March 15. The experi-
ment ran for only 21 hours before being shut down, but
reports continued in for two weeks. A carefully-designed
experiment in October tickled two remote firewalls and
a local intrusion detection system for a total of 10 abuse
reports forwarded to PlanetLab support. The automated
responses from remote firewalls may have been avoided
by local testing of the destination address list. Many more
abuse reports were likely generated by the automated sys-
tems, but discarded by recipients as frivolous as they re-
ported a single ICMP echo request (ping) as an attack.

Alert PlanetLab support. Update your slice description
and send a message to PlanetLab support detailing your
intended measurement, how to identify its traffic, and
what you’ve done to try to avoid problems. First, sending



such a message shows that you, as an experimenter, be-
lieve you have put sufficient effort into avoiding abuse re-
ports. Second, describing your approach gives PlanetLab
staff and other interested people the chance to comment
upon your design. Finally, knowing the research goals
and methods can save PlanetLab staff time and ensures
prompt response to abuse reports.

Use Scriptroute. Scriptroute separates measurement
logic from low-level details of measurement execution. It
will prevent contacting hosts that have complained about
traffic, can prevent inadvertently invalid packets that trig-
ger intrusion detection systems, will limit the rate of traf-
fic sent, collects timestamps from libpcap, and schedules
probes using a hybrid between sleeping and busy-waiting.

Curtail ambition. It is tempting to demonstrate imple-
mentation skill by running a measurement study from
everywhereto everywhere, using many packets for accu-
racy, and using TCP SYN packets to increase the chance
of discovering properties of networks behind firewalls.
Resist! Aggressive measurement increases its cost for
only a marginal benefit to the authority of your result.

Myth: PlanetLab experiences excessive churn
Widespread outages on PlanetLab are fairly rare. Only
three times during the last two years have many PlanetLab
nodes been down for longer than a reboot: (1) all nodes
were taken off-line for a week in response to a security
incident in December 2003; the system was also upgraded
from version 1.0 to 2.0; (2) an upgrade from version 2.0 to
3.0 during November 2004 caused more churn than usual
for a two week period; and (3) a kernel bug in February
2005 took many nodes off-line for a weekend.

On the other hand, roughly 30% of PlanetLab’s nodes
are down at any given time. About one-third of these are
down for several weeks, usually because a site is upgrad-
ing the hardware or blocking access due to an AUP or
security issue. The remaining failed nodes are part of
the daily churn that typically sees 15–20 nodes fail and
as many recover each day. Major software upgrades that
require reboots of all nodes occur, but are infrequent.

PlanetLab as a whole has been remarkably stable. Fig-
ure 7 shows median node uptimes over 13 months. Of the
six sharp drops in uptime, four are due to testbed-wide
software upgrades requiring reboots. The longer upgrade,
to version 3.0, is shown starting at day 100. The kernel
bug, followed by an upgrade, is evident starting at day
170. Median uptimes are generally longer than 5 days,
and often 15 to 20 days—much higher than what would
be expected in typical home systems.

Since PlanetLab does experience churn, no users
should expect that the storage offered by PlanetLab nodes
is persistent and no users should expect that a set of ma-
chines, once chosen, will remain operational for the dura-
tion of a long-running experiment.

5 Summary
In this paper, we described realities of the PlanetLab plat-
form: it is not representative of the Internet or of peer-
to-peer networks, and results are not always reproducible.
We then described myths that linger despite being fixed:
PlanetLab’s notoriously high load poses less of a problem
today than it once did because there are resource broker-
age services and the operating system has been upgraded
to isolate experiments. Finally, we described challenges
that can often be addressed by following some best prac-
tices. PlanetLab is capable of substantial network mea-
surement, despite technical challenges in precise timing
and social challenges in avoiding abuse complaints. In
addition, many PlanetLab machines may fail or be down
at any time; being prepared for this churn is a challenge
for experimenters.

Our hope is that separating myth from reality will make
clear the features and flaws of PlanetLab as an evolving
research platform, enabling researchers to choose the right
platform for their experiments and warning them of the
challenges PlanetLab implies.
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Figure 1: Available CPU across PlanetLab nodes. Median percentage available CPU is red (upper), 25th percentile is green
(middle), and 10th is blue (lower).
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Figure 2: Median available CPU measurements using spin loops (blue, upper), load average (green, middle), and number of active
slices (red, typically lowest).
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Figure 5: Timing statistics for 1 ms (spin-based) chirp trains.
The green (upper) line indicates at least 5 consecutive gaps met
the target timings, while the blue (lower) line indicates all gaps
met the target.
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Figure 6: Timing statistics for 11 ms (sleep-based) chirp trains.
The green (upper) line indicates at least 5 consecutive gaps met
the target timings, while the blue (lower) line indicates all gaps
met the target.
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Figure 7: Median uptime in days across all PlanetLab nodes.
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