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Abstract

The goal of the Network Weather Service is to provide accurate forecasts of dy-
namically changing performance characteristics from a distributed set of metacom-
puting resources. Providing a ubiquitous service that can both track dynamic per-
formance changes and remain stable in spite of them requires adaptive programming
techniques, an architectural design that supports extensibility, and internal abstrac-
tions that can be implemented efficiently and portably. In this paper, we describe
the current implementation of the NWS for Unix and TCP/IP sockets and provide
examples of its performance monitoring and forecasting capabilities.
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1 Introduction

Increasingly, high-quality networks have made it possible for users to employ
widely dispersed computational and data resources. While the pervasiveness of
the world wide web illustrates one obvious example, almost all computational
constituencies have come to expect that some form of network connectivity
will be attached to all potentially useful resources.
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With ubiquitous connectivity comes the ability to choose between otherwise
equivalent resources based on their perceived performance. For example, stu-
dents sharing resources in the computer science department at UCSD fre-
quently try to choose the most lightly loaded server for their activities. How-
ever, it is not the current load on each system that interests them but, rather,
an estimate of what the load will be in the near future when they execute
a program. They use information available from the system (e.g. Unix load
average, the number of users currently logged in, who those users are, what
programs are currently running, etc.) to predict what performance will be
delivered to their program.

In this paper we describe the latest implementation of the Network Weather
Service (NWS), a distributed, generalized system for producing short-term
performance forecasts based on historical performance measurement. The goal
of the system is to dynamically characterize and forecast the performance de-
liverable at the application level from a set of network and computational
resources. Such forecasts have been used successfully to implement dynamic
scheduling agents for metacomputing applications [26,3], and to choose be-
tween replicated web pages [1].

Implementing the NWS to operate in a variety of metacomputing and dis-
tributed environments, each with its own dynamically changing performance
characteristics, has illuminated the utility of adaptive programming tech-
niques, distributed fault-tolerant control algorithms, and an extensible sys-
tem architecture. We focus on the role of these methodologies in building and
deploying the system.

The next section discusses the design goals for, and the overall architecture
of, the current NWS implementation. The remaining sections of the paper
describe the function of the system’s core component processes and how they
combine to form a generalizable service for managing dynamically chang-
ing performance information. Section 3 describes naming and persistent state
management that the system uses internally, Section 4 describes performance
monitoring facilities used by the system, Section 5 describes the forecasting
features that are currently supported, and Section 6 details the programming
and web interfaces that are available. In Section 7, we focus on some of the
adaptive control and fault-tolerance mechanisms implemented throughout the
system. Section 8 discusses related efforts, and in Section 9 we summarize the
work and discuss future research goals.



2 System Architecture

The design of previous NWS implementations [31,30,29] focused on providing
the functionality necessary to investigate the effectiveness of dynamic schedul-
ing in local, medium, and wide-area computational settings [26,3]. These im-
plementations did not scale well, however, and lacked the robustness necessary
to make the NWS a reliable system service. Moreover, we wished to extend
the monitoring and forecasting capabilities of the system to meet the needs
of various performance-oriented distributed software infrastructures such as
Globus [12], Legion [18], Condor [27] and Netsolve [7]. As such, we hoped to
improve the portability, the extensibility, and the reliability of the system over
prior implementations.

The NWS is designed to maximize four possibly conflicting functional char-
acteristics. It must meet these goals despite the highly dynamic execution
environment and evolving software infrastructure provided by shared meta-
computing systems [2].

e Predictive Accuracy: The NWS must be able to provide accurate esti-
mations of future resource performance in a timely manner.

e Non-intrusiveness: The system must load the resources it is monitoring
as little as possible.

e Execution longevity: To be effective, the NWS should be available at any
time as a general system service. It should not execute and complete — its
execution lifetime is logically indefinite.

e Ubiquity: As a system service, the NWS should be available from all po-
tential execution sites within a resource set. Similarly, it should be able to
monitor and forecast the performance of all available resources.

We have constructed the current NWS using using four different component
processes.

e Persistent State process: stores and retrieves measurements from persis-
tent storage.

e Name Server process: implements a directory capability used to bind pro-
cess and data names with low-level contact information (e.g. TCP/IP port
number, address pairs).

e Sensor process: gathers performance measurements from a specified re-
source.

e Forecaster process: produces a predicted value of deliverable performance
during a specified time frame for a specified resource.

Each of these component processes, represented in Figure 1, can communicate
with other processes only through strongly typed messages. Their implemen-
tation may be improved or replaced by appropriate standard implementations



as they become available.
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Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.

Workstation 3

At present, each of the five process abstractions has been implemented in C,
for Unix, using TCP/IP socket networking facilities as the underlying com-
munications transport. Our choice of Unix and TCP/IP sockets as an initial
programming platform stems from their nearly exclusive use by extant meta-
computing infrastructures such as Globus [12] and Condor [27]. The remainder
of this paper, therefore, focuses on the implementation of the NWS for Unix
and Unix networking via sockets.

3 Naming and State Management

To make the system more robust, all NWS processes are stateless. Persistent
state — state that must be able to survive the failure of a process’ memory —
is managed explicitly throughout the system using Persistent State processes.
Each Persistent State process provides a simple text string storage and re-
trieval service and allows each stored string to be associated with an optional
time stamp. Each storage or retrieval request must be accompanied by the
name of the data set that is to be accessed, and any data that is sent to a
Persistent State process is immediately written to disk before an acknowledge-
ment is returned. Since the function of the NWS is to generate forecasts which
lose their utility after their epoch passes, the system does not maintain any
data indefinitely. Each file that a Persistent State process uses is managed
as a circular queue, the length of which is a configuration option. Data to
be archived indefinitely must be fetched and stored in some more permanent
medium outside the NWS before the queue fills.

The NWS also maintains its own primitive but highly portable naming and
directory service to manage name-location bindings. In the current implemen-



tation, a name is a human-readable text string, and a location is a TCP/IP
address and port number, but all data are manipulated as text strings. At
present, the Name Server process that implements this functionality is based
on the more general Persistent State process. This relationship is purely an en-
gineering expediency, however, as the circular queue management techniques
implemented for Persistent State storage are cumbersome to use to implement
a directory service. We are, therefore, converting the Name Service to use an
implementation of the Lightweight Directory Access Protocol [32] (LDAP).

The address of the NWS Name Server process is the only well-known address
used by the system, allowing both data and services to be distributed*. All
other NWS processes register their name-location bindings with the Name
Server. These bindings time out according to a time-to-live specification that
must accompany each registration. Active processes, therefore, must register
their bindings periodically. This approach provides a simple “heartbeat” that
is process specific. We are considering the use of the Globus Heartbeat Mon-
itor [13] as an implementation platform for this functionality as part of our
future development.

We anticipate that state storage and name service functionality will eventu-
ally be provided by lower-level metacomputing services, such as the Globus
Metacomputing Directory Service [10] and the Legion Resource Directory Ser-
vice [8].

4 Performance Monitoring

The problems associated with gathering accurate performance measurements
from active computational and network resources continue to pose significant
research challenges [24,21,5,6,20,8,19]. In general, there is a tension between
the intrusiveness of a monitoring technique and the measurement accuracy
it provides. The NWS attempts to use both extant performance monitoring
utilities and active resource occupancy to measure performance. The current
implementation supports measuring the fraction of CPU time available for
new processes, TCP connection time, end-to-end TCP network latency, and
end-to-end TCP network bandwidth.

4 At present, the Name Server is centralized, but we plan to leverage the distribution
facilities of LDAP once they become available.



4.1 NWS Sensors

The function of an NWS Sensoris to gather and store time stamp-performance
measurement, pairs for a specific resource. Each Sensor process may measure
several different performance characteristics of the resource it is sensing. The
TCP/IP network Sensor, for example, provides both bandwidth and end-to-
end round-trip latency measurements, but each set of measurements is named
and stored separately. That is, a Sensor does not attempt to correlate the
separate performance characteristics of a resource it monitors. However, since
a Sensor attaches a time stamp to each measurement it takes, different types
of measurements may be associated by matching their time stamps. While we
have implemented several different Sensors (described below) any process that
can generate time stamp-measurement tuples, store them with a Persistent
State process, and register their location with a Name Server process can
contribute data to the system.

4.2 CPU Sensor

The NWS CPU Sensor combines information from Unix system utilities up-
time and vmstat with periodic active CPU occupancy tests to provide mea-
surements of CPU availability on timeshared Unix systems. CPU availability
is measured as the fraction of CPU occupancy time a full-priority standard
user process can obtain. Typically, the uptime utility reports load average as
the average number of processes in the run queue over the past one, five, and
fifteen minutes. The CPU Sensor uses the one-minute measurement to calcu-
late the fraction of the CPU occupancy time that a process would get if it
were to run at the moment the uptime measurement were taken. From vmstat
output, the CPU Sensor uses a combination of idle time, user time, and system
time measurements to generate an estimate of the available CPU occupancy
fraction [31].

Since these utilities generate their reports using internal Unix system vari-
ables, invoking the utilities presumably does not generate significant load.
That is, they are fairly non-intrusive monitoring utilities. However, both may
leave out considerable information that can affect measurement of CPU avail-
ability. For example, neither uptime nor vmstat provides information on the
priority of processes presently running on the system. In order to obtain more
accurate measurements, the CPU Sensor incorporates active probes into its
calculations. It periodically runs an artificial, compute-intensive “probe” pro-
gram and calculates the CPU availability as the ratio of its observed CPU
occupancy time to the wall-clock time of its execution. The Sensor then com-
pares the results of these probes to the measurements taken using uptime and



vmstat and uses the utility that is reporting the most accurate information.
Typically, the probe process is run much less frequently than measurements
are gathered from vmstat or uptime. When all three values are taken simulat-
neously, the probe is treated as “ground truth” and used to bias subsequent
uptime and vmstat measurements until the next probe is conducted.

The Sensor also uses heuristics to adaptively adjust the frequency with which
active probes are conducted, thereby further limiting its intrusiveness. As long
as the measurements from uptime and vmstat remain relatively stable, the
Sensor assumes that the error in the estimate will also change little, and so
runs active experiments less frequently. On systems with very stable usage
patterns the Sensors may run active probes only once per hour. Conversely,
when utility estimates change significantly between sequential measurements,
the Sensor increases the frequency of active probes in order to calculate more
accurate error estimates.
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Fig. 2. Improvement from active probing in estimates of CPU availability generated
using uptime (left) and vmstat (right). The solid line shows the amount of error in
unadjusted estimates; the dashed line the error in adjusted estimates.

Figure 2 shows an example of improvement in CPU availability estimates by
incorporating infrequent runs of an active probe. CPU availability estimates
were generated on a UCSD Parallel Computing Lab workstation by an NWS
Sensor over a three-hour period, during which time a low-priority process
was running. Because neither uptime nor vmstat returns priority information,
unadjusted estimates of CPU availability, shown by the solid lines, differ from
the actual values by as much as 40% of CPU time. Adjusting the estimates
using the results of active probing gives the improved estimates shown by the
dashed lines. During the three-hour test, the NWS sensor ran the three-second
active probe seven times, consuming less than 0.2% of the overall CPU time
in order to provide the improved estimates.



4.8 Network Sensor

Because end-to-end network performance data between arbitrary machines is
not consistently available, NWS network Sensors rely on active network probes
exclusively when determining network load. Each probe consists of a timed
network operation, such as the movement of a fixed amount of data, or, in
the case of TCP, the establishment and dissolution of a network connection.
At regular intervals, each network Sensor connects to a set of peer Sensors
running on machines of interest and conducts one or more probes of different
types to gather its measurements. To gather a set of end-to-end performance
measurements of any type from N Sensors would require N2 — N probes. To
avoid introducing this much network load, Sensors are organized hierarchically
so that an end-to-end measurement can be made for a representative subset of
the total Sensor population. These representative measurements can then be
used to describe the network performance between an arbitrary Sensor pair.
We discuss this hierarchical organization in greater detail in Section 7.

Currently, the NWS network Sensor is capable of measuring three network per-
formance characteristics: small-message round-trip time, large-message through-
put, and TCP socket connect-disconnect time. The small-message probe con-
sists of a 4-byte TCP socket transfer that is timed as it is sent from a source
Sensor to a destination Sensor and back. The socket connection used to facil-
itate the transfer is already established before the probe is conducted. Large-
message throughput (that is taken to measure available network bandwidth at
the application level) is calculated by timing the transfer of a message using
TCP and the acknowledgement of its receipt by the receiving sensor. The size
of the message, the sending and receiving socket buffer requests, and the size
of the internal buffers used by each Sensor in the socket send() and recv()
system calls are all parameterizable for each Sensor. Empirically, we have ob-
served that a message size of 64K bytes, sent using 32K byte socket buffers
and 16K byte send() and recv() yields meaningful results.

It is important to note, however, that the network performance to the ap-
plication level can be affected dramatically by socket interface conditioning.
The vBNS [28] for example, supports high throughput rates, both in aggregate
and end-to-end, if the RFC1323 large-window extensions are used to condition
the sockets used in the transfer. In our experience, however, most “standard”
socket communications do not use these extensions at the time of this writing.
Therefore, we have elected not to use them when the network Sensor mea-
sures deliverable network performance. We do plan to extend the system by
developing a large-window throughput probe, and to store, in persistent state,
both large window and standard performance measurements.

To make experiment results available to Forecasters, Sensors contact Persis-



tent State processes to store the information. The location of the Persistent
State process that a Sensor will use for each of the measurements it gathers
is specified when the Sensor is configured. When it is initialized, each Sensor
registers the location of the Persistent State process that stores its measure-
ment data with the Name Service so that measurement data may be located
by name.

5 Forecasting

To generate a forecast, a Forecaster process requests the relevant measurement,
history from a Persistent State process. Recall that persistent state is stored as
a circular queue by Persistent State processes. If the state is being continually
updated by a Sensor, the most recent data will be present when a Forecaster
makes its request. Ordered by time stamp, the measurements may then be
treated as a time series for the purposes of forecasting. The current NWS
Forecaster uses such time series of performance measurements to generate
forecasts of future measurement values.

An NWS Forecaster works only with time stamp-measurement pairs, and does
not currently incorporate any modeling information that is specific to a par-
ticular series. Instead, it applies a set of forecasting models to the entire series
and dynamically chooses the forecasting technique that has been most accu-
rate over the recent set of measurements. Notice that it is possible to use a
forecasting model to “predict” a measurement based on the measurements
that come before it in the series. When a forecast of a future value is required,
the Forecaster makes predictions for each of the existing measurements in the
series. Every forecasting model generates a prediction for each measurement,
and a cumulative error measure is tabulated for each model. The model gen-
erating the lowest prediction error for the known measurements is then used
to make a forecast of future measurement values. This method of dynami-
cally identifying a forecasting model has been shown to yield forecasts that
are equivalent to, or slightly better than, the best forecasting model in the
set [30].

The advantage of this adaptive approach is that it is ultimately non-parametric
and, as such, can be applied to any time series presented to the Forecaster.
While the individual forecasting methods themselves may require specific
parameters, we can include different fixed parameterizations of a particular
method with the assurance that the most accurate parameterization will be
chosen.

To allow new forecasting techniques to be integrated easily, the Forecaster
process consists of a driver and a set of compile-time determined prediction



modules. The prediction module interface is well-defined, and each module
is assumed to implement a different forecasting model. When a forecast is
required for a particular time series, the driver presents the time series to each
prediction module via the interface, and a forecast for the next value must be
returned. The driver keeps track of which prediction module yields the lowest
aggregate error measure over time and reports the forecast returned by that
module. Any method that can be coded in C which accepts a time series and
produces a short-term forecast can be integrated with the system.

5.1 Ezample Forecasting Results
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Fig. 3. The left graph shows four days of bandwidth measurements between UC
Santa Barbara and Kansas State University. The right graph shows the correspond-
ing NWS forecast values.

Figure 3 shows four-day traces of bandwidth measurements and forecasts gen-
erated by the NWS. Long-term trends in the measurements can be seen —
throughput tends to peak in the early morning hours, then drop sharply in the
afternoon and evening hours before picking up again as midnight approaches.
However, the large amount of local variance in the data obscures these trends
and limits the usefulness of performance predictions based solely on current
measurements. The analysis used by the NWS forecaster allows it to filter
local noise and accurately track ongoing long-term trends.

5.2 Incorporating Additional Forecasting Techniques

We wished to be able to extend the NWS to incorporate other forecasting
services as they become available. In particular, more parametric modeling
approaches, each with their own set of abstractions, are certain to yield good
forecasts for specific resources. We would like to be able to incorporate other
statistical forecasting methodologies such as Semi-Nonparametric Time Series
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Analysis (SNP) [14], automated Box-Jenkins [4] techniques, and wavelet-based
models [25]. Since these more sophisticated techniques have larger compu-
tational requirements, generating forecasts on-demand according to the re-
quirements of the prediction module interface will not be feasible. We have
designed the NWS so that new complete Forecaster processes may be incor-
porated within the system. Indeed, any process that can retrieve performance
data from persistent state (via the Name Service and Persistent State pro-
cesses) and register itself with the Name Server as a Forecaster can be added
dynamically, while the system is running.

6 Reporting Interface

The NWS exports a lightweight and portable C API that contacts the system
via sockets so that applications can quickly retrieve short term performance
forecasts. For infrequent or casual users, the system also provides continuous
access to NWS forecasts through the world wide web.

6.1 CAPI

The programming interface provided to applications is intended to be lightweight
and easily integrated into applications written for systems such as Legion [18],
Globus [12], Condor [27], MPI [11], and PVM [17]. Two functions make up this
lightweight interface and separate the two phases of a forecaster connection,
InitForecaster() and RequestForecasts().

The InitForecaster() function opens a socket connection to a Forecaster
and passes a list of requested forecasts. This Forecaster spawns a new fore-
caster process to handle the client request. This child forecaster contacts the
Persistent State processes that maintain performance measurement data for
the requested forecasts, retrieves a recent history of measurements and initi-
ates the forecasting sequence by invoking an initialization function for each
predictor configured into the Forecaster. Priming forecasts in this manner al-
lows each predictor to perform initialization early so that subsequent forecasts
may be delivered more quickly.

When the application is ready to retrieve forecast data, it calls RequestForecasts()
to send a request message over the previously-established connection. After
updating each predictor with any measurements that have been generated
since the call to InitForecaster(), the connected forecaster process returns
a list of forecasts to the application. Because the forecaster process retrieves
only newly-generated data from persistent storage when a request is received,
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the time required to generate a forecast can be controlled by the application.
An application that requests forecasts frequently will experience a shorter
response time than one that waits for long periods between requests. Our
experience shows that applications that make frequent requests can receive
forecasts in near real time. The forecaster remains available to provide addi-
tional forecasts until the application exits.

6.2 CGI Interface

Interactive access to Forecasters is provided by a set of CGI programs [23].
These programs generate time series graphs of performance measurements and
forecasts. Trends recognized and followed by the forecasting system are easily
discovered when shown in time series form. To allow users to search for either
long-term or short-term trends, the web interface provides ways to display
graphs showing information taken over time periods of various lengths. Other
options allow users to specify the image format and resolution and whether or
not the graph should be continuously updated as the NWS system generates
additional measurements and forecasts.

7 Sensor Control

To make the system long-lived despite the lossy network connections and inter-
mittent machine failures that occur in any large distributed setting, the NWS
relies on adaptive and replicated control strategies. In particular, the Sensors
use adaptive time-out discovery and a distributed leader election protocol [15]
to remain stable while, at the same time, limiting the load they introduce.

The NWS attempts to measure end-to-end network performance between all
possible network Sensor pairs. However, all-to-all network Sensor communica-
tion would consume a considerable amount of resources (both on the individ-
ual host machines and on the interconnection network) if it were run asyn-
chronously using the entire network Sensor population. The possibility that
Sensor probes would collide and thereby measure the effect of Sensor traffic in-
creases quadratically with the number of Sensors. To avoid Sensor contention
and to provide a scalable way to generate all-to-all network performance mea-
surements, the network Sensors are organized as a hierarchy of Sensor sets
called cliques. Each Sensor participating in a clique conducts inter-machine
experiments with every other clique member, but not with Sensors outside the
clique.

Sensors can participate in multiple cliques simultaneously, so the Sensor pop-
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ulation may be organized into a hierarchy by defining different cliques for
each level in the hierarchy and promoting one representative Sensor from each
clique to also participate in the clique at the next higher level.

For example, consider a Sensor population consisting of Sensor processes run-
ning on 5 workstations in the UCSD Parallel Computation Laboratory (PCL),
5 workstations at the San Diego Supercomputer Center (SDSC)® | and 5 work-
stations at the University of Tennessee (UTenn) (Figure 4). The most accurate
way to measure the end-to-end performance between all 15 Sensors is to pe-
riodically conduct the 15?2 — 15 = 210 network probes required to match all
possible Sensor pairs. However, the performance of a network connection be-
tween the PCL and SDSC is dominated by that of a UCSD campus-wide
ATM backbone link which must be traversed en route. All processes running
in the PCL observe approximately the same network performance when com-
municating with all processes at SDSC. Operating system-specific scheduling
vagrancies, buffer management strategies, etc. make this assertion an approx-
imation. With less accuracy, then, it is enough to probe a single PCL-SDSC
process pair to determine what the performance of any PCL-SDSC connec-
tion will be. Similarly, between the SDSC and UTenn, the performance will
be governed by that of the general Internet. Indeed, the PCL and SDSC share
all but the campus backbone hop. As the Internet performance dominates, an
SDSC-UTenn measurement can represent any PCL-UTenn communication.
To organize this Sensor population as an efficient hierarchy of cliques, we de-
fine a PCL clique, containing the PCL Sensors, an SDSC clique containing
SDSC Sensors, and a UTenn clique containing UTenn sensors. We then define
a UCSD-Campus clique in which one of the PCL machines and one of the
SDSC Sensors also participate. At the top level, we define a National clique in
which one of the SDSC Sensors and one of the UTenn Sensors participate. The
end-to-end performance of an arbitrary pair of Sensors, then, is represented by
the end-to-end performance between Sensors in the nearest common ancestral
clique in the hierarchy.

We may choose (and we can reconfigure dynamically) the PCL to have sub-
cliques of its own. Similarly, if a new site wishes to join the National clique,
its representative Sensor can be added dynamically. Further, since the cliques
are independent, it is possible to impose different “virtual” hierarchies over
the same Sensor population.

To reduce contention within a clique, only a single clique member conducts
experiments at any given time. This policy is implemented by passing a clique
token among member Sensors. The token contains an ordered list of all Sensors
in the clique, which is used to implement token recovery (described below).
Holding the token gives a Sensor the “right” to conduct any and all network

5 SDSC is located on the UCSD campus.
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Fig. 4. Example Clique Organization

probes that involve other Sensors in the clique. When it has exhausted the
list of probes it wishes to conduct, it passes the token to the next clique
member. Once the token has visited all Sensors in the clique, it is returned to
the initiating Sensor (the leader) which is then responsible for re-initiating
it. The periodicity with which the clique leader re-initiates the token controls
the periodicity with which each Sensor conducts its probes.

Within a clique, the token may be unavailable either because a Sensor holding
it has failed, or because the network has partitioned, isolating one or more
Sensors from the one holding the token. Any token recovery mechanism must
be able to ensure that the system continues to function under either circum-
stance. Before the leader re-initiates a token it times a complete token circuit
and sets a time-out value for the token (we describe the method by which
it determines this time-out value in the next subsection). Once the time-out
has been determined, it is carried in the token when it is re-initiated. Each
Sensor then calculates a local time-out based on the last time it held the token
and the time-out that the leader has determined. If the local time-out expires
before a Sensor receives the token again it assumes that either the token has
been lost or the network has partitioned. It then generates a new token, marks
itself as its leader, and initiates it into the system.

In this way, if the token has been lost due a Sensor failure, a new one will be
initiated. Note that the Sensors within a clique receive the token in a particular
order, and, therefore, time-out in the same order. So the expected behavior is
that the next Sensor in the list will become the leader by initiating the new
token. Alternatively, if the network partitions into disjoint sets, at least one
token will be started in each set when the time-out occurs. It is possible, using
this protocol, for multiple tokens to be present if a time-out occurs but the
network has not partitioned, or if a true partition has been eliminated and
the partition sets merged. To prevent multiple tokens from consuming network
resources indefinitely, tokens are sequenced, and any Sensor encountering an
old token discards it rather than propogating it to the next Sensor.
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7.1 Adaptive Time-out Discovery

The stability of the token protocol depends on the clique leader’s ability to
determine when the token should be timed out. If the time-out value is too
small, extra tokens will be spawned, consuming greater amounts of network
resource and increasing the intrusiveness of the system. If the time-out value
is too large, the system may remain quiescent while it waits for some Sensor
to time-out and re-initiate the token after a failure. Moreover, the token cir-
cuit time is affected by any performance variations in the network the Sensors
are using to communicate with each other. The Sensors, therefore, require a
prediction of what the time-out value should be, given the performance vari-
ations of the network. To make this prediction, the Sensors use the prediction
techniques that are integrated with the Forecasters. The clique leader passes
a time series of circuit times to a local Forecaster interface and receives back
a predicted circuit time and an estimate of the variance associated with that
prediction. The time-out is then set to be the estimate plus three estimated
standard deviations. When a token times out, the time-out is increased by
a fixed amount until the system can “relearn” what the new time-out value
should be. In this way, each clique adaptively discovers what the appropri-
ate time-out value should be, given the dynamically changing performance
characteristics of the underlying system.

8 Related Work

Resource performance monitoring and forecasting is an active area of re-
search. Internet performance monitoring and analysis tools such as TReno [22],
Pathchar [19], and Carter and Crovella’s bprobe/cprobe [5,6] attempt to
discern Internet congestion characteristics by actively probing the network
between designated hosts. We have attempted to design the NWS Sensor in-
terface so that data from these tools can easily be incorporated for forecasting.
Topology-d [24] is similar to the NWS in that it conducts a series of perfor-
mance experiments (using both UDP/IP and TCP/IP) and then automatically
analyzes the resulting data. One of its goals is to provide resource scheduling
mechanisms such as Smart Clients [33], AppLeS [3], and MARS [16] with infor-
mation depicting the “state” of the network. Important differences, however,
concern Topology-d’s scalability and periodicity. The performance topology
graph it produces is calculated relatively infrequently (once per hour in [24])
using N? measurements. The NWS is attempting to capture and forecast
higher-frequency dynamics. Typically, NWS network Sensors make measure-
ments once every 10 to 60 seconds. The clique protocol and clique hierarchy
allow measurements to be taken at this frequency with limited intrusiveness
while also providing scalability. Also, the NWS measures and forecasts the per-
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formance of resources other than the network. ReMoS [21] is a generalizable
resource monitoring system for network applications. It maintains both static
and dynamically changing information, but it does not, at present, include a
forecasting component [9]. Its API for accessing the information, however, is
similar to that provided by the Globus MDS [10] and Legion Resource Direc-
tory [8], but more focused on network information. It should be possible to
integrate NWS forecasting techniques with both Topology-d and ReMoS as
the relevant APIs are simple and portable.

9 Conclusions and Future Work

The implementation of the NWS relies on adaptivity to enable stability, ac-
curacy, non-intrusiveness, and extensibility. For example, an early version of
this implementation used fixed time-outs to control clique-token recovery. We
found that such a fixed time-out tended to cause cliques either to pause for
long periods of time or to initiate the clique recovery algorithm frequently.
Even local-area cliques experienced enough variation to make fixed time-outs
impractical. Moreover, using periodic local clocks (i.e. each Sensor probes the
network according to its own local periodicity) causes Sensor contention that
is statistically significant [31]. Our implementation of the NWS, therefore,
gathers more accurate information as a result of its adaptive behavior.

The adaptive forecasting model selection algorithm discussed in Section 5
and [30,29,31] allows the Forecasters to operate in a non-parametric way which
promotes extensibility in two ways. First, new and different performance mea-
surement time series may be considered easily. Any series may be presented
and, assuming that the suite of models is rich enough, a forecast can be ob-
tained. In [31] we showed a comparison of the forecasting accuracy between
sophisticated time series models based on maximum likelihood techniques [14]
and the forecasting suite we have implemented (described in [30]). The per-
formance of the currently implemented suite is excellent compared to more
powerful techniques for a variety of different metacomputing performance mea-
surements. Second, the adaptive method allows new forecasting models to be
incorporated easily. Any model that can be implemented using the predictor
module interface can be added to the driver loop in the Forecaster. If it is
successful (in terms of its forecasting error performance) it will be chosen.

The longevity of the system and its potential ubiquity stem from its stability,
the robustness of its implementation, and its scalability. The implementation
platform of TCP/IP sockets and Unix provides a robust and portable set
of programming abstractions for a large variety of metacomputing settings.
In particular, TCP is well suited to both local area and wide area network
settings. The clique abstraction implemented by NWS Sensors provides for
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scalability and stability in the system along with limiting its intrusiveness.
Perhaps most important is the flexibility that the cliques support. It is pos-
sible, for example, to build star topologies [24] or other virtual topologies by
defining different sets of overlapping cliques. We plan to use the NWS as a
vehicle for our future research in performance monitoring and forecasting.

We plan to continue to enhance the NWS both by adopting new metacom-
puting standards as they become available, and by incorporating the fruits of
the research that is facilitated by the system itself. We are currently working
to implement the Name Server using Lightweight Directory Access Protocol
(LDAP) [32] as this facility is becoming more commonly available. In addition,
we are exploring new forecasting methodologies and new performance moni-
toring facilities appropriate for different distributed computing environments
(e.g. Java).

References

[1] D. Andresen and T. McCune. Towards a hierarchical scheduling system for
distributed www server clusters. In Proc. of the Seventh IEEE International
Symp osium on High Performance Distributed Computing(HPDC7) (to appear),
Chicago, Illinois, July 1998. IEEE Computer Society.

[2] F.Berman. Computational Grids: The Future of High-Performance Computing,
C. Kesselman, and I. Foster, editors. to appear, 1998.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application
level scheduling on distributed heterogeneous networks. In Proceedings of
Supercomputing 1996, 1996.

[4] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis, Forecasting, and
Control, 3rd edition. Prentice Hall, 1994.

[5] R. Carter and M. Crovella. Dynamic server selection using bandwidth probing
in wide-area networks. Technical Report TR-96-007, Boston University, 1996.
available from
http://cs-www.bu.edu/students/grads/carter/papers.html.

[6] R. Carter and M. Crovella. Measuring bottleneck link speed in packet-switched
networks. Technical Report TR-96-006, Boston University, 1996. available from
http://cs-www.bu.edu/students/grads/carter/papers.html.

[7] H. Casanova and J. Dongarra. NetSolve: A network server for solving
computational science problems. In Proc. of Supercomputing’96, Pittsburgh.
Department of Computer Science, University of Tennessee, Knoxville, 1996.

[8] S.J. Chapin, J. Karpovich, and A. Grimshaw. Resource management in legion.
Technical Report CS-98-09, University of Virginia, Department of Computer
Science, May 1998.

[9] T. DeWitt, B. Lowecamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste,
and J. Subhlok. A resource monitoring system for network-aware applications.
Technical Report

17



CMU-CS-97-194, Carnegie-Mellon University, december 1997. available from
http://www.cs.cmu.edu/afs/cs/user/jass/www/index.html.

[10] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and
S. Tuecke. A directory service for configuring high-performance distributed
computations. In Proc. 6th IEEE Symp. on High Performance Distributed
Computing, August 1997.

[11] M. P. I. Forum. Mpi: A message-passing interface standard. Technical Report
(CS-94-230, University of Tennessee, Knoxville, 1994.

[12] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 1997. to appear.

[13] I. Foster and C. Kesselman. The globus project: A status report. In IPPS/SPDP
’98 Heterogeneous Computing Workshop, 1998.

[14] R. Gallant and G. Tauchen. Snp: A program for nonparametric time series
analysis. In
http://www.econ.duke.edu/Papers/Abstracts/abstract.95.26.html.

[15] H. Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, C-31(1):49-59, Jan 1982.

[16] J. Gehrinf and A. Reinfeld. Mars - a framework for minimizing the job execution
time in a metacomputing environment. Proceedings of Future general Computer
Systems, 1996.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[18] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds.
Legion: The next logical step towrd a nationwide virtual computer. Technical
Report CS-94-21, University of Virginia, 1994.

[19] V. Jacobson. A tool to infer characteristics of internet paths. available from
ftp://ftp.ee.1lbl.gov/pathchar.

[20] R. Jones. http://www.cup.hp.com/netperf/netperfpage.html. Netperf: a
network performance monitoring tool.

[21] B. Lowecamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok.
A resource query interface for network-aware applications. In Proc. 7th IEEE
Symp. on High Performance Distributed Computing, August 1998. available
from http://www.cs.cmu.edu/afs/jass/www/papers.html.

[22] M. Mathis and J. Madhavi. Diagnosing internet congetstion with a transport
layer performance tool. In Proceedings of INET ’96, 1996.

[23] Network weather service. http://nws.npaci.edu/.

[24] K. Obraczka and G. Gheorghiu. The performance of a service for network-aware
applications. In Proceedings of 2nd SIGMETRICS Conference on Parallel and
Distributed Tools, August 1998. to appear.

[25] R. Ogden. FEssential Wavelets for Statistical Applications and Data Analysis.
Birkhauser, 1997.

[26] N. Spring and R. Wolski. Application level scheduling: Gene sequence
library comparison. In Proceedings of ACM International Conference on
Supercomputing 1998, July 1998.

[27] T. Tannenbaum and M. Litzkow. The condor distributed processing system.
Dr. Dobbs Journal, February 1995.

[28] vBNS. http://www.vbns.net.

18



[29] R. Wolski. Dynamically forecasting network performance to support dynamic
scheduling using the network weather service. In Proc. 6th IEEE Symp. on
High Performance Distributed Computing, August 1997. to appear.

[30] R. Wolski. Dynamically forecasting network performance using the
network weather service. Cluster Computing, 1998. also available from
http://www.cs.ucsd.edu/users/rich/publications.html.

[31] R. Wolski, N. Spring, and C. Peterson. Implementing a performance forecasting
system for metacomputing: The network weather service. In Proceedings of
Supercomputing 1997, November 1997.

[32] W. Yeong, T. Howes, and S. Kille”. Lightweight directory access protocol,
March 1995. RFC 1777.

[33] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler.
Using smart clients to build sclable services. In Proceedings of the USENIX
1997 Technical Conference, 1997.

19



