
Using PlanetLab for Network Research:
Myths, Realities, and Best Practices

Neil Springy, Larry Petersonz, Andy Bavierz, and Vivek Paiz

y University of Maryland andz Princeton University
nspring@cs.umd.edu,fllp,acb,vivekg@CS.Princeton.EDU

Abstract

PlanetLab is a continuously-evolving global network re-
search testbed that is simultaneously used by hundreds
of researchers for diverse tasks, ranging from short-
term self-contained experiments among PlanetLab nodes to
continuously-running Web-accessible services with tens of
thousands of non-PlanetLab users. While PlanetLab cannot
provide a perfectly-customized environment for every exper-
iment, it has been changing over time, and the base of knowl-
edge of how to best utilize it has also been growing. As a re-
sult, many of the early observations researchers made about
PlanetLab would change if rechecked today. In this paper, we
discuss these issues and explain whether they remain, have
been addressed via PlanetLab’s evolution, or can be avoided
by the use of best practices. Where possible, we provide
quantitative evidence showing the realities of PlanetLab and
possible research avenues to further broaden the opportunities
for using PlanetLab in network research.

1 Introduction

PlanetLab is a research testbed that supports 563 experiments
on 299 sites, with 632 nodes in 32 countries. It has low-
ered the barrier to distributed experimentation in network
measurement, peer-to-peer networks, content distribution, re-
source management, authentication, distributed file systems,
and many other areas.

PlanetLab did not become a useful network testbed
overnight. It started as little more than a group of Linux
machines with a common password file, which scaled poorly
and suffered under load. However, PlanetLab was conceived
as anevolvablesystem under the direction of a community
of researchers. With their help, PlanetLab version 3.0 has
since corrected many previous faults through virtualization
and substantial performance isolation. This paper is meant to
guide those considering developing a network service or ex-
periment on PlanetLab by separating widely-held myths from
the realities of service and experiment deployment.

Building and maintaining a testbed for the research com-
munity taught us lessons that may shape its continued evo-
lution and may generalize beyond PlanetLab to other sys-
tems. First, users do not always search out “best practice” ap-
proaches: they expect the straightforward approach to work.

Second, users rarely report failed attempts: we learned of the
perceived shortcomings described in this paper through con-
versations, not through messages to the mailing lists. Third,
frustration lingers: users hesitate to give another chance to a
system that was recently inadequate or difficult to use. These
experiences are especially challenging for an evolvable sys-
tem, which relies on user feedback to evolve so that more
users can be supported by features they desire.

The purpose of this paper is to take many of these expe-
riences, which exist in a form similar to oral histories, and
record them with their related explanations, amplifications,
and discussions. Our goal in cataloging these experiences
is not only to aid the current research community in under-
standing the strengths and limitations of PlanetLab, but also
to provide a point for future researchers to start, so that they
do not have to acquire all of the histories piecemeal, or re-
peat the mistakes of the past. Ideally, we also hope to dispel
some negative beliefs that were true of previous versions of
PlanetLab, but have ceased to hold as the system has evolved.
For some researchers who may have decided to avoid Planet-
Lab because of these problems, the knowledge that they have
been addressed may provide enough motivation to reconsider
PlanetLab as a testbed.

We organize the myths in decreasing order of veracity:
those that are realities in Section 2, that were once true in Sec-
tion 3, and those that are false if best practices are employed
in Section 4. We then discuss related work in Section 5, and
conclude in Section 6.

2 Realities

This section describes widely-cited criticisms of PlanetLab
that are entirely true, and are likely to remain so even as Pla-
netLab evolves.

Reality: Results are not reproducible

PlanetLab was designed to subject network services to real-
world conditions, not to provide a controlled environment.
Some of the machines that were part of yesterday’s experi-
ment may have failed, run out of disk space, been upgraded,
or been reconfigured, among many other possible problems,
making them unavailable for repeating an experiment. Load
on networks and on machines varies on every time scale,

making it unlikely that any experiment, run twice, would
yield precisely the same results.

For long-running services, running for months or years, re-
searchers should be able to identify trends and understand the
performance and reliability their service achieves. An exper-
iment that runs for an hour will reflect only the conditions of
the network (and PlanetLab) during that hour.

Short experiments can be measured meaningfully by using
a few techniques. Use CoMon [6], which tracks and pub-
lishes current research usage on each PlanetLab node to de-
termine which are heavily loaded; avoid these machines and
avoid heavily-loaded times. Secure more resources for your
experiment from a brokerage service (see Section 3). Repeat
experiments to understand if results are sensitive to dynamic
behavior. Finally, regard PlanetLab’s ability to exercise a sys-
tem in unintended ways, producing unexpected results, as a
feature, not a bug.

Other platforms, such as Emulab [15] or Modelnet [13] are
appropriate alternatives for repeatable experimentation.

Reality: The network between PlanetLab sites
does not represent the Internet

No testbed, no simulator [3], and no emulator is inherently
representative of the Internet. Researchers must either de-
velop experiments that overcome this limitation, perhaps by
recruiting real users behind residential access networks, or
interpret their results taking PlanetLab’s special network into
account. The challenge for PlanetLab is to evolve so that this
limitation is less severe, seeking new sites and new access
links.

PlanetLab’s network is dominated by global research and
education network (GREN) [1]. The GREN connects Inter-
net2 in the United States, GEANT in Europe, WIDE in Japan,
and many other research networks. However, commercial
sites have joined PlanetLab and research sites have connected
machines to DSL and cable modem links: 26 sites are purely
on the commercial Internet. The question is, how does Pla-
netLab’s network connectivity affect research?

First, some experiments are suitable for the GREN. Claims
that a new routing technique can find better routes than BGP
are suspect if those better routes take advantage of well-
provisioned research networks that are not allowed by BGP
policy. However, claims that a service can find the best avail-
able route might be accurate even on the GREN: results ob-
tained on the GREN are not necessarily tainted.

Second, services for off-PlanetLab users and network mea-
surement projects that send probes off-PlanetLab observe the
commercial Internet. Although most of PlanetLab is on the
GREN, most machines also connect to the commercial net-
work or are part of transit ASes. The PlanetFlow audit-
ing service [4] reports that PlanetLab nodes communicate
with an average of 565,000 unique IP addresses each day.
PlanetSeer [16], which monitors TCP connections between
CoDeeN nodes at PlanetLab sites and Web clients/servers
throughout the Internet, observed traffic traversing 10,090
ASes, including all tier-1 ISPs, 96% of the tier-2 ISPs,

roughly 80% of the tier-3 and 4 ISPs, and even 43% of the
tier-5 ISPs. Measurement services like Scriptroute [10] can
use the geographic diversity of vantage points provided by
PlanetLab to probe the Internet without being limited by the
network topology between PlanetLab nodes.

Finally, it is sometimes not the topology of the GREN,
but the availability of its very high bandwidths and low con-
tention that calls results into question. Researchers can, how-
ever, limit the bandwidth their slices consume to emulate a
lower bandwidth link, via user-space mechanisms (e.g., pac-
ing the send rate) or by asking PlanetLab support to lower the
slice’s outgoing bandwidth cap.

Reality: PlanetLab nodes are not representative
of peer-to-peer network nodes

Typically, this is a comment about the high-bandwidth net-
work (see above). Sometimes it means that PlanetLab is a
managed infrastructure and not subject to the same churn as
desktop systems.

Although PlanetLab is not equivalent to a set of desk-
top machines—and it is not expected to scale to millions of
machines—it can contribute to P2P services. A “seed de-
ployment” on PlanetLab would show the value of a new ser-
vice and encourage end-users to load the service on desktop
machines. End System Multicast [2] instead uses PlanetLab
nodes as the “super nodes” of a P2P network. PlanetLab can
contribute a core of stable, managed nodes to P2P systems.

3 Myths that are no longer true

Some who tried to use early versions of PlanetLab found chal-
lenges that are no longer so daunting because PlanetLab has
evolved.

Myth: PlanetLab is too heavily loaded

Although PlanetLab may always be under-provisioned and
load is especially high before conference deadlines, this per-
ception is misleading in two ways.

First, upgrades to the OS better tolerate high CPU load,
memory consumption, and disk access load. CPU cycles
are fairly distributed among slices rather than threads: a
slice with 100 threads receivesthe sameCPU allocation as
a slice with just one. A daemon polices memory consump-
tion, killing slices that use too much when memory pressure
is high; users now take greater care in configuring programs
that may have a heavy memory footprint to avoid having them
killed, which in turn has reduced memory pressure for every-
one. Finally, an OS upgrade enables disk access via DMA,
rather than programmed I/O, improving performance when
the node is swapping. These upgrades mean that although
PlanetLab remains heavily-loaded, some resources are avail-
able.

Second, PlanetLab has two brokerage services, Sirius and
Bellagio, that perform admission control to a pool of re-

Feb Mar Apr May Jun Jul Aug Sep

Time (Feb 20, 2005 - October 2005)

0

10

20

30

40

50
C

ap
ac

it
y

(%
 a

va
il

cp
u)

Median
25th percentile
10th percentile

Figure 1: Median, 25th, and 10th percentiles of available CPU across PlanetLab nodes, measured using spin loops.

Mar Apr May Jun Jul Aug Sep

Time (Feb 20, 2005 - October 2005)

0

10

20

30

40

50

C
ap

ac
it

y
(%

 a
va

il
cp

u)

Spin-loop
Live slices
Load

Figure 2: Median available CPU measurements using spin loops, load average, and number of active slices.

sources. Researchers can use these services to receive more
than a “fair share” of the CPU, for fixed periods of time, dur-
ing periods of heavy load.

CPU availability measurements. An experiment begun in
February 2005 supports the claim that PlanetLab has suffi-
cient CPU capacity. The experiment runs a spin-loop on each
PlanetLab node to sample the CPU available to a slice; be-
cause of PlanetLab’s fair share CPU scheduler, this measure-
ment is more accurate than standard techniques such as the
load metric reported bytop . Figure 1 summarizes seven
months of CPU availability measurements. The three lines
are the median, 25th, and 10th percentiles of the available
CPU across all nodes. The median line shows that most nodes
had at least 20% available: a slice on a typical PlanetLab
node contends with three to five other slices that are running
processes non-stop. The 25th percentile line generally stays
above 10%, indicating that fewer than one-fourth of the nodes
had less than 10% free. A slice can get nearly 10% of the CPU
on almost any node.

CPU time is also available immediately before conference
deadlines as well. For example, during the week before the
SIGCOMM deadline (February 1–8, 2005), 360 of the 362
running nodes (99%) had at least 10% available CPU, aver-
aged over the week; 328 of the 360 nodes (91%) had at least

20% available. These results show somewhat higher avail-
ability than in Figure 1. Some projects may have refrained
from using PlanetLab to leave resources available to those
running last-minute experiments.

Estimates of available CPU using other metrics are less ac-
curate. In Figure 2, we show the median capacities (a) mea-
sured directly using spin loops, (b) estimated using the in-
verse of the Unix-reported “uptime” load average (a load of
100 equals 1% CPU availability), and (c) estimated using the
inverse of the number of active slices (meaning slices with a
runnable thread). The top line, the spin-loop measured capac-
ity, is significantly higher. The load average is often mislead-
ing: the processors did have high load (sometimes exceeding
100), but the CPU available to slices is much greater because
although slices that spawn many processes increase the load
average, their processes compete only against each other for
CPU. Likewise, not all active slices use their entire quanta
and so the active slice count overestimates contention. The
CoMon monitoring service now publishes the results of the
spin-loop tests to help users choose nodes by CPU availabil-
ity.

Network

gettimeofday(&send)

sendto()

select(5s timeout)

recvfrom()

gettimeofday(&receive)

d
ri

v
e
r

li
m

it
in

g

R
a
te

−

usertraceroute.c kernel

dev_queue_xmit

net/core.c

h
a
rd

w
a
re

netif_rx

Figure 3: Approaches to packet round-trip timing: applications can use gettimeofday before sending and after receiving; closer
to the device are kernel-supplied timestamps applied as the packet is queued for transmission or received. The driver and
hardware also may delay packets on transmission and receipt.

Myth: PlanetLab cannot guarantee resources

With the release of PlanetLab version 3.0, resource guaran-
tees are technically possible, but no compelling-enough ap-
plication for them has emerged to use them. PlanetLab does
not yet have a policy about what slices should receive re-
source guarantees. Typically, continuously running services
on PlanetLab are robust to varying resource availability (and
have not asked for guarantees), while short-term experiments
have the option of using one of the brokerage services (see
previous item) to gain sufficient capacity for the duration of
a run. Once we have enough experience to understand what
policies should be associated with guarantees, or someone de-
velops a robust market in which users can acquire resources,
resource guarantees are likely to become commonplace.

4 Myths falsified by best practices

The following four myths about PlanetLab are not true if best
practices are followed. Often these myths are caused by mis-
matches between the behavior of a single, unloaded Linux
workstation, and the behavior of a highly-shared, network of
PlanetLab-modified Linux nodes. The first three myths ad-
dress problems using PlanetLab for network measurement,
the last, its potential for churn.

Myth: Load prevents accurate latency measure-
ment

Because PlanetLab machines are loaded, no application can
expect that a call togettimeofday() right afterrecv()
will return the time when the packet was received by the ma-
chine. The PlanetLab kernel scheduler (Section 3) can iso-
late slices so that none are starved of CPU, but cannot ensure
that any slice will be scheduled immediately upon receiving
a packet.

Using in-kernel timestamping features of Linux, network
delay can be isolated from (most) processing delay. Shortly
after [9] a machine receives a packet, the network device
sends an interrupt to the processor so that the kernel can pull
the packet from the device’s queue. At the point when Linux

10 100 1000 10000 100000

Difference between timestamps (microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Send
Receive

Figure 4: A cumulative distribution of the differences be-
tween application-level timestamps and kernel-level time-
stamps when sending (left) or receiving (right) in microsec-
onds.

accepts the packet from the device driver, it annotates the
buffer with the current time.1 The kernel will return control
to the current process for the remainder of its quantum, but
this timestamp is kept in the kernel and made available to ap-
plications in at least three ways:

1. The SIOCGSTAMP ioctl called after reading a packet.
Ping uses this ioctl, but Linux kernel comments suggest
the call is Linux-specific.

2. The SOTIMESTAMP socket option combined with
recvmsg() : ancillary data returned by the system call
includes a timestamp. The Spruce [11] receiver code
uses this method, which was introduced in BSD and is
supported by Linux. It is not widely documented, but
can be run as a non-root user.

3. The library behind tcpdump, libpcap. This may be the
most portable, but requires root, which is easy on Pla-
netLab. A minor advantage is thatsentpackets are also

1See: linux/net/core/dev.c:netifrx().

Mar Apr May Jun Jul Aug Sep

Time (Feb 20, 2005 - October 2005)

0

20

40

60

80

100
%

 o
f

tr
ai

ns

5 Gaps
7 Gaps
10 Gaps

Figure 5: Timing statistics for 1 ms (spin-based) chirp trains. The lines show what percentage of tests had at least the specified
number of consecutive gaps (out of 10 possible) meet the target timings.

timestamped [12]. However, the extra socket used by
libpcap adds complexity.

Do kernel timestamps matter? To collect samples
of application- and kernel-level timestamps, we modi-
fied traceroute to print the timestamps it collects via
gettimeofday() , then ran traceroute and tcpdump in par-
allel to gain kernel-level timestamps for the same packets
from 300 PlanetLab machines to three destinations, collecting
40,000 samples for comparison. Figure 3 illustrates where
traceroute and the kernel annotate timestamps. Of course,
running tcpdump in parallel with traceroute may slow the tim-
ing observed by traceroute; we expect this delay to be small.

In Figure 4, we show the differences between application-
and kernel-captured timestamps when sending probes
and receiving responses. Although the time between
gettimeofday() and when the packet is delivered to the
network device is typically small (18�s median, 84�s mean),
the time after the packet is received is typically larger and
more variable (77�s median, 788�s mean). The larger me-
dian may represent the cost of the intermediate system calls:
in traceroute, it isselect() that returns when the response
packet is received. However, that 4% of samples are above
1 ms suggests contention with other active processes. Fur-
ther, the smallest 3% of samples between 20–30�s suggests
that tools that filter for the minimum round trip time, such
as pathchar, will have difficulty: 97% of the packets will not
observe minimal delay in receive processing.

Measurement tools downloaded from research Web pages
may not use kernel-level techniques to measure packet tim-
ings; their results should be held with skepticism until their
methods are understood.

Myth: Load prevents sending precise packet
trains

Sending packets at precise times, as needed by several tools
that measure available bandwidth, is more difficult. If the
process is willing to discard measurements where the desired

sending times were not achieved or when control of the pro-
cessor is lost, then sending rate-paced data on PlanetLab sim-
ply requires more attempts than on unloaded systems.

To determine how CPU load impairs precise sending, we
measure how often we can send precisely-spaced packets in a
train. Sent trains consist of eleven packets, spaced either by 1
ms, to test spin-waiting, or 11 ms, to test sleep-based waiting
using thenanosleep() system call (via theusleep()
library call). We show how often the desired gaps were
achieved for 1 ms gaps in Figure 5 and 11 ms gaps in Fig-
ure 6. In all measurements, 10 gaps are used, and we measure
how often the gaps are within 3% of the target either for all
10 gaps or for any 5 consecutive gaps.

For both tests, at least five consecutive gaps have the de-
sired intervals in 80–90% of the trains. For the 11 ms test,
all 10 gaps had the correct timing 60–70% of the time. The
1 ms test did not fare as well: all 10 gaps met their target
times in only 20–40% of the trains. For the shorter (5-gap)
chirp trains, the results are quite good: sending 10 packets is
sufficient to discard less than 20% of the measurements. For
longer chirp trains, two to five times as many probes may have
to be sent, which may be tolerable for many experiments.

Mechanisms for negotiating temporarily longer time slices,
or even delegating packet transmission scheduling to the ker-
nel, are being discussed. The latter might address another
source of concern for measurement experiments: the packet
scheduler used to cap bandwidth and fairly share bandwidth
among slices. The timestamps on sent packets that a process
can observe with libpcap are accurate—the kernel timestamps
packetsafter they pass through the packet scheduler—and so
can still be used to discard bad results. However, the sched-
uler does limit the kinds of trains that can be sent: it enforces
a per-slice cap of 10 Mbps with a maximum burst size of
30KB. Longer trains sent at a faster rate are not permitted.

Myth: The PlanetLab AUP makes it unsuitable
for measurement

The PlanetLab user Acceptable Use Policy [8] states:

Mar Apr May Jun Jul Aug Sep

Time (Feb 20, 2005 - October 2005)

0

20

40

60

80

100
%

 o
f

tr
ai

ns

5 Gaps
7 Gaps
10 Gaps

Figure 6: Timing statistics for 11 ms (sleep-based) chirp trains. The lines show what percentage of tests had at least the specified
number of consecutive gaps (out of 10 possible) meet the target timings.

PlanetLab is designed to support network measurement
experiments that purposely probe the Internet. However,
we expect all users to adhere to widely-accepted standards
of network etiquette in an effort to minimize complaints
from network administrators. Activities that have been
interpreted as worm and denial-of-service attacks in the
past (and should be avoided) include sending SYN pack-
ets to port 80 on random machines, probing random IP
addresses, repeatedly pinging routers, overloading bottle-
neck links with measurement traffic, and probing a single
target machine from many PlanetLab nodes.

This policy is a result of experience with network measure-
ments on PlanetLab, and is designed to prevent and help re-
spond to network abuse reports of the form “PlanetLab is at-
tacking my machine.” Here we elaborate on steps to conduct
responsible Internet measurement on PlanetLab. The goal of
these practices is to make network measurements as easy to
support as possible by building a list of hosts that “opt-out” of
measurement without growing the list of PlanetLab sites that
have asked to “opt-out” of hosting measurement experiments.

Test locally and start slow. Do not use PlanetLab to send
traffic you would not send from your workstation. Use a ma-
chine at your site first to discover any problems with your
tool before causing network-wide disruption. Measurements
from PlanetLab can appear to be a distributed denial of ser-
vice attack; starting with a few nodes can limit how many
sites receive abuse reports. Some intrusion detection systems
generate automatic abuse reports; an abuse report to every
PlanetLab host is best avoided.

Software has bugs, and bugs can cause measurements to
be more intrusive than necessary. Bugs that have made
PlanetLab-supported tools unnecessarily intrusive include
faulty checksum computation in a lightweight traceroute im-
plementation and a reaction to unreachable hosts that di-
rected a great deal of redundant measurement toward the
same router. Such errors could have been detected before de-
ployment with local testing. Intrusion detection systems are
particularly sensitive to malformed packets, and errors (e.g.,

requests for non-existent web pages) are logged more exten-
sively than successes.

Even a correctly-implemented tool may require local
testing, because very little experimental data guides non-
intrusive measurement tool design: are TCP ACKs less likely
to raise alarms than SYNs? Should traceroute not increment
the UDP destination port to avoid appearing as a port scan?
How many probes are needed to distinguish lossy links from
unreachable hosts?

Starting slow may have helped to avoid abuse report flur-
ries in March, October, and November 2005. An experiment
with an implementation flaw generated 19 abuse reports from
as many sites, half on the first day, March 15. The experiment
ran for only 21 hours before being shut down, but reports con-
tinued in for two weeks. A carefully-designed experiment in
October tickled two remote firewalls and a local intrusion de-
tection system for a total of 10 abuse reports forwarded to
PlanetLab support. The automated responses from remote
firewalls may have been avoided by local testing of the des-
tination address list. Many more abuse reports were likely
generated by the automated systems, but discarded by recipi-
ents as frivolous as they reported a single ICMP echo request
(ping) as an attack. Finally, an experiment that inadvertently
caused a DNS server to crash in November drew such ire that
over 800 abuse reports were filed.

Alert PlanetLab support. Update your slice description
and send a message to PlanetLab support detailing your in-
tended measurement, how to identify its traffic, and what
you’ve done to try to avoid problems. First, sending such
a message shows that you, as an experimenter, believe you
have put sufficient effort into avoiding abuse reports. Second,
describing your approach gives PlanetLab staff and other in-
terested people the chance to comment upon your design—
not just whether it will raise abuse reports, but whether you’ll
be measuring what you think you’re measuring [7]. Finally,
knowing the research goals and methods can save PlanetLab
staff time and ensures prompt response to abuse reports.

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Time (Aug 12, 2004 - October 2005)

0

5

10

15

20

25
U

pt
im

e
(d

ay
s)

Figure 7: Median uptime in days across all PlanetLab nodes.

Use Scriptroute. Scriptroute separates measurement logic
from low-level details of measurement execution. A goal of
Scriptroute is to codify the best practices to protect new users
from common mistakes. It will prevent contacting hosts that
have complained about traffic, can prevent inadvertently in-
valid packets that trigger intrusion detection systems, will
limit the rate of traffic sent, collects timestamps from libp-
cap, and schedules probes using a hybrid between sleeping
and busy-waiting.

Curtail ambition. It is tempting to demonstrate implemen-
tation skill by running a measurement study fromeverywhere
to everywhere, using many packets for accuracy, and using
TCP SYN packets to increase the chance of discovering prop-
erties of networks behind firewalls. Resist! Aggressive mea-
surement increases its cost for only a marginal benefit to the
authority of your result.

Myth: PlanetLab experiences excessive churn

Widespread outages on PlanetLab are fairly rare. Only three
times during the last two years have many PlanetLab nodes
been down for longer than a reboot: (1) all nodes were taken
off-line for a week in response to a security incident in De-
cember 2003; the system was also upgraded from version 1.0
to 2.0; (2) an upgrade from version 2.0 to 3.0 during Novem-
ber 2004 caused more churn than usual for a two week period;
and (3) a kernel bug in February 2005 took many nodes off-
line for a weekend.

On the other hand, roughly 30% of PlanetLab’s nodes are
down at any given time. About one-third of these are down for
several weeks, usually because a site is upgrading the hard-
ware or blocking access due to an AUP or security issue. The
remaining failed nodes are part of the daily churn that typ-
ically sees 15–20 nodes fail and as many recover each day.
Major software upgrades that require reboots of all nodes oc-
cur, but are infrequent.

PlanetLab as a whole has been remarkably stable. Figure 7
shows median node uptimes over 13 months. Of the six sharp
drops in uptime, four are due to testbed-wide software up-
grades requiring reboots. The November upgrade from 2.0 to
3.0 (item (2) above) and the kernel bug in February are both
evident in the graph. Median uptimes are generally longer
than 5 days, and often 15 to 20 days—much higher than what
would be expected in typical home systems.

Since PlanetLab does experience churn, no users should
expect that the storage offered by PlanetLab nodes is persis-
tent and no users should expect that a set of machines, once
chosen, will remain operational for the duration of a long-
running experiment.

5 Related Work

Even without using a shared platform like PlanetLab, reliably
performing accurate Internet measurements can be a chal-
lenging proposition. Paxson [7] describes techniques that can
help in the process, but many of these can be broadly ap-
plied to other measurements. Many of the principles revolve
around checking your assumptions, verifying that your data
gathering processes are correct, performing sanity checks on
your results, etc. Many of these techniques can be extended
for use in PlanetLab—checking your clock to know how your
data gathering is being affected by the shared environment,
discarding data gathered without precision, comparing results
across different PlanetLab machines as well as between Pla-
netLab and non-PlanetLab hosts, etc.

PlanetLab also opens other avenues for concern if the ex-
periment consists of building a publicly-accessible service. In
particular, any system that uses well-supported protocols, like
HTTP, BitTorrent, etc., can receive traffic well before their
developers intend to announce them. Some experiences with
the CoDeeN content distribution network [5, 14] illustrate the
lengths to which malicious users will go to gain access to a
wide range of resources on the Internet, ranging from high-
value content like site-licensed journals and databases, to the

seemingly trivial, such as inflating scores on referral-based
game sites. As these services have grown, so too has the body
of research on how to secure them against a broad range of at-
tacks.

6 Summary

In this paper, we described realities of the PlanetLab plat-
form: it is not representative of the Internet or of peer-to-
peer networks, and results are not always reproducible. We
then described myths that linger despite being fixed: Planet-
Lab’s notoriously high load poses less of a problem today
than it once did because there are resource brokerage services
and the operating system has been upgraded to isolate exper-
iments. Finally, we described challenges that can often be
addressed by following some best practices. PlanetLab is ca-
pable of substantial network measurement, despite technical
challenges in precise timing and social challenges in avoid-
ing abuse complaints. In addition, many PlanetLab machines
may fail or be down at any time; being prepared for this churn
is a challenge for experimenters.

Our hope is that separating myth from reality will make
clear the features and flaws of PlanetLab as an evolving re-
search platform, enabling researchers to choose the right plat-
form for their experiments and warning them of the chal-
lenges PlanetLab implies.

Acknowledgments

We would like to thank the anonymous reviewers for their
useful feedback on the paper. This work was supported in
part by NSF Grants ANI-0335214, CNS-0439842, and CNS-
0435065.

References

[1] S. Banerjee, T. G. Griffin, and M. Pias. The interdomain
connectivity of PlanetLab nodes. InProceedings of the
Fifth Passive and Active Measurement Workshop, PAM
2004, pages 73–82, Antibes Juan-les-Pins, France, Apr.
2004.

[2] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProceedings of the International Confer-
ence on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS 2000, June 2000.

[3] S. Floyd and V. Paxson. Difficulties in simulating
the Internet. IEEE/ACM Transactions on Networking,
9(4):392–403, Feb. 2001.

[4] M. Huang, A. Bavier, and L. Peterson. PlanetFlow:
Maintaining Accountability for Network Services. Sub-
mitted for publication.

[5] V. S. Pai, L. Wang, K. Park, R. Pang, and L. Peterson.
The dark side of the web: An open proxy’s view. InPro-
ceedings of the ACM Workshop on Hot Topics in Net-
works (HotNets), Cambridge, MA, Nov. 2003.

[6] K. Park and V. Pai. CoMon: A monitoring infrastructure
for PlanetLab. http://comon.cs.princeton.edu.

[7] V. Paxson. Strategies for sound Internet measurement.
In Proceedings of the ACM SIGCOMM Internet Mea-
surement Conference (IMC), pages 263–271, Taormina,
Sicily, Italy, Oct. 2004.

[8] PlanetLab Consortium. PlanetLab acceptable use policy
(AUP). https://www.planet-lab.org/php/aup/PlanetLab
AUP.pdf, Feb. 2004.

[9] R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt
coalescence on network measurements. InProceedings
of the Fifth Passive and Active Measurement Workshop,
PAM 2004, Antibes Juan-les-Pins, France, Apr. 2004.

[10] N. Spring, D. Wetherall, and T. Anderson. Scriptroute:
A public Internet measurement facility. InProceed-
ings of the USENIX Symposium on Internet Technolo-
gies and Systems (USITS), pages 225–238, Seattle, WA,
Mar. 2003.

[11] J. Strauss, D. Katabi, and F. Kaashoek. A measurement
study of available bandwidth estimation tools. InPro-
ceedings of the ACM SIGCOMM Internet Measurement
Conference (IMC), pages 39–44, Miami, FL, Oct. 2003.

[12] TCPDUMP.org Frequently Asked Questions. http://
www.tcpdump.org/faq.html, July 2001.

[13] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becker. Scalability and accuracy
in a large-scale network emulator. InProceedings of
the Symposium on Operating Systems Design and Im-
plementation (OSDI), Boston, MA, Dec. 2002.

[14] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson.
Reliability and security in the CoDeeN content distri-
bution network. InProceedings of the USENIX Annual
Technical Conference, Boston, MA, June 2004.

[15] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guguprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental en-
vironment for distributed systems and network. In
Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, Dec.
2002.

[16] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
PlanetSeer: Internet path failure monitoring and charac-
terization in wide-area services. InProceedings of the
Sixth Symposium on Operating Systems Design and Im-
plementation, OSDI ’04, San Francisco, CA, Dec. 2004.

http://comon.cs.princeton.edu
https://www.planet-lab.org/php/aup/PlanetLab_AUP.pdf
https://www.planet-lab.org/php/aup/PlanetLab_AUP.pdf
http://www.tcpdump.org/faq.html
http://www.tcpdump.org/faq.html

	Introduction
	Realities
	Myths that are no longer true
	Myths falsified by best practices
	Related Work
	Summary

