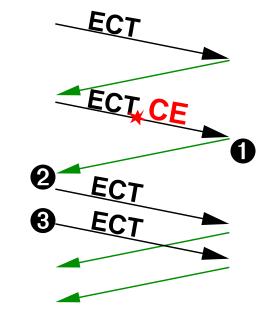

Robust ECN Signaling with Nonces


David Wetherall, David Ely, and Neil Spring University of Washington 50th IETF March, 2001

Problem

Bugs and misbehavior may hide ECN marks from the sender

- ① ECN properly echoed
- **ECT** ECN Capable Transport
 - **CE** Congestion Experienced
- **CWR** Congestion Window Reduced
- **ECE** ECN-Echo

- CE improperly hidden
- **2** Sender infers no congestion
- Then sends too fast

Motivation

[SCWA99] lists how and why receivers can fool senders

- Ack division, DupACK spoofing
- Challenging to implement
- Easy to protect against at server

Receivers can't hide drops if they want data. Receivers can hide ECN marks and still get data.

Want robust ECN mechanism

• Don't assume senders trust receivers

How to hide congestion signals

linux-2.4.0/include/net/tcp_ecn.h Normal:

51: static __inline__ void

52: TCP_ECN_send(...)

• • •

67: if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)

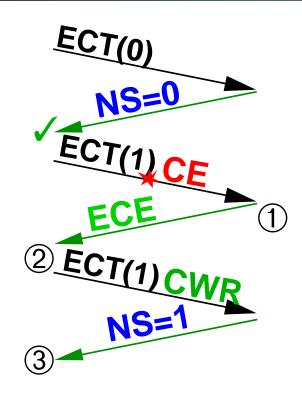
68: skb->h.th->ece = 1;

Misbehaving:

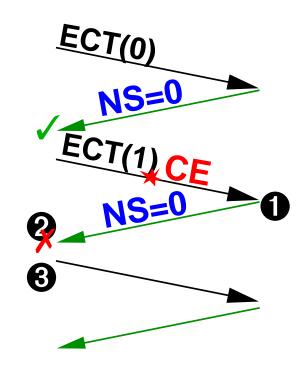
68: skb->h.th->ece = 0;

One-bit random nonce sent with each packet

• Using same IP header bits as ECT/CE


Nonce is erased to signal congestion Sum (parity) of nonces returned with each ack

• A new bit from TCP's reserved field


Sender verifies clear ECN-echo with nonce sum:

- Incorrect sum implies failure
- Should disable ECN and reduce sending rate

Visual ECN nonce review

- ① ECN properly echoed
- ② Nonce sum (NS) ignored
- ③ Synch. **NS** after **CWR**

- CE improperly hidden
- **2** Guessed **NS** is wrong
- Sender disables ECN

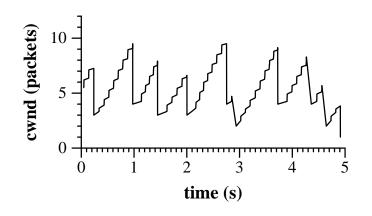
TCP processing state

Receiver stores

- Nonce bit for each out of order packet
- Current nonce sum

Sender stores

- Nonce sum expected for each unack'd packet
- Synchronization offset bit


Packet adds TCP header bit for nonce sum:

4 bit header	reserved		С	Ε	U	Α	P	R	S	F
	(3 bits)		W	С	R	С	S	S	Y	Ι
length	(5 01(3)	3	R	Ε	G	Κ	Η	Т	Ν	Ν

Penalty

Disabling ECN is not sufficient incentive to behave Set cwnd = ssthresh = 1

• Intended to negate gains from misbehavior

Normal cwnd sawtooth

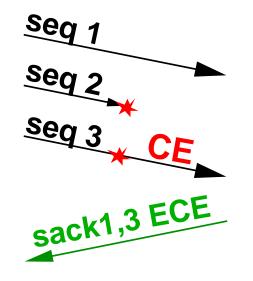
Alternative approaches

Test correct operation by setting CE bit at sender.

- If it is correctly echoed, receiver is behaving
- Performance or accuracy cost

Off-line testing like TBIT

• Blacklist misbehaving destination IP's


ECN nonce protects all packets

How do we deal with existing ECT/CE implementations? Routers: straightforward, described in latest ECN draft TCPs:

- Use third bit in negotiation procedure? $(111 \rightarrow 101)$
- Easy to notice when nonce is unsupported? $(111 \rightarrow 001)$
- Support nonce-less ECN for transition period?

SACKs

Should nonces cover SACK'd packets?

ECN-echo set for subsequent acks Nonce applies only to in-order acknowledged segments SACKs don't increase the window.

Conclusion

ECN without nonces allows receivers to hide signals

- Hard to verify correct behavior
- Misbehaving receivers benefit

ECN with nonces prevents concealment

- One more header bit
- Minor TCP state

Questions? Insults?

Doc: draft-ietf-tsvwg-tcp-nonce-00.txt
Offline: nspring@cs.washington.edu
Talk slides: http://www.cs.washington.edu/
homes/nspring/talks/ietf-ecn.ps.gz