Typed Memory Management via Static Capabilities

David Walker and Karl Crary and Greg Morrisett

ACM TOPLAS, July 2000

Presented by Nikhil Swamy for CMSC838z
Region-based Memory Management

- Regions provide some control over memory management
 - Regions are LIFO – lexical scoping
 - Objects are allocated into regions
 - Efficient

- But there are limitations
 - Object lifetimes can be longer than needed – no prompt deallocation
 - Definitions of regions may be large – no late allocation
Capability Language

- A Continuation Passing Style (CPS) language
- Provides regions with explicit allocation/deallocation
 - Memory is a map from region names to regions
 - A region is a map from locations to values
- Create a new region ν using $\text{newrgn} \, \rho, \, x$
 - Binds ρ to ν the name of the region
 Region names are used at compile-time for type checking
 - Binds x to $\nu \, hdl$ – handle of the region
 Region handles are used at run-time for allocation etc.
- Free a new region ν using $\text{freergn} \, x; (x : \nu \, hdl)$
Types

Three *kinds* of types

- **Value Types**
 \[\tau ::= \alpha \mid \text{int} \mid r \ hdl \mid < \tau_i > \at r \mid \]

 \(r \ hdl \) is a singleton type for a region handle
 Non-word values are tuples (or function) in some region \(r \)

- **Memory and Region Types**
 \[\Upsilon ::= \{ l_i : \tau_i \} \quad \text{– Region Type; location:value type} \]
 \[\Psi ::= \{ \nu_i : \Upsilon_i \} \quad \text{– Memory Type; region names:region type} \]
Capabilities and Function Types

Capability Type

\[C ::= 0 \{ r^\phi \} \mid C \oplus C \mid \bar{C} \]

Basically a list of live region names ... (except for that \(\phi \)).

Only ok to access a \(\tau \) at \(r \) if \(C = C' \oplus \{ r \} \)

Function Type

Like tuples function are also resident in regions

\[\tau ::= \ldots \forall[\Delta].(C, \tau_1, \ldots, \tau_n) \rightarrow 0 \text{ at } r \]

\(\Delta \) is the context of all bound variables (all kinds)

C is capability requirement for this function.

The explicit \(\ldots \rightarrow 0 \) emphasizes CPS

But then implicitly assume that \(r \in C' \)!
Typing Environments

Expressions are typed with regard to Ψ, Δ, Γ, C

Simple type judgement for the projection operation π

π_i projects the i-th element of the tuple

$$\Delta \vdash C' = C' \oplus \{r\}$$

$$\Pi \begin{array}{c}
\Psi; \Delta; \Gamma \vdash v : \langle \tau_1, \ldots, \tau_n \rangle \\
\psi; \Delta; \Gamma; C \vdash x = \pi_i v : \tau_i
\end{array}$$

Capability is an unforgeable key to access a region
Capability – Attempt I

Intuitively, C is a list of all live regions
So, try to type the `newrgn` and `freergn` as:

- Create a new key when a region is allocated.

\[
\text{newrgn} \quad \Psi; \Delta; \Gamma; C \vdash \text{newrgn} \; \rho \; x : \Delta, \rho; \Gamma, x : \rho \; \text{hdl}; C \oplus \{\rho\}
\]

- Destroy the key when a region is freed

\[
\text{freergn} \quad \Psi; \Delta; \Gamma; C \vdash \text{freergn} \; \nu : \Delta; \Gamma; C = C' \oplus \{r\}
\]

- But region aliases are possible – which keys to destroy?
Typing Function Calls

\[\Delta \vdash \nu : \forall [\alpha_1 : \kappa_1, \ldots, \alpha_n : \kappa_n] (C', \tau_1, \ldots, \tau_m) \rightarrow 0 \text{ at } r \]

\[\Psi; \Delta; \Gamma \vdash c_i : \kappa_i, \nu_i : \tau_i \]

\[\Delta \vdash (C = C'' \oplus \{ r \}) \leq C''[c_i/\alpha_i] \]

\[\Psi; \Delta; \Gamma; C \vdash \nu[c_1, \ldots, c_n](\nu_1, \ldots, \nu_m) : \]

Define a subtyping relation \(\leq \) on capabilities

But in the paper they use a metavariable \(\epsilon \) and an equality relation

So \(C = \{ r \} \oplus \epsilon \) is equivalent to any \(C' \) that contains \(\{ r \} \)
Suppose you have a function definition \(f \)

\[
f[\rho_1 : \text{Rgn}, \rho_2 : \text{Rgn}] (\{\rho_1, \rho_2\}, x : \rho_1 \text{ hdll}, y : \text{int at } \rho_2) \\
\text{let freergn } x \text{ in} \\
\text{let } z = \pi_1 y \text{ in } ... \\
\]

And it is invoked as \(f[\rho, \rho](x, y) \)

Then the projection derefs a dangling pointer

Aliasing due to region polymorphism

Solved by aliasing constraints
Aliasing Constraints

Recall $C ::= \ldots | \{r^\phi\} | \ldots$. $\phi \in \{+, 1\}$ is the multiplicity

- $C = C'' \oplus \{r^1\}$ uniqueness constraint on region r.
- $C = C'' \oplus \{r^+\}$ allows region r to be freely aliased.
- Refine the definition of \oplus so that it is not idempotent

 $C = C'' \oplus \{r^1\} \neq C'' \oplus \{r^1\} \oplus \{r^1\}$

 $C = C'' \oplus \{r^+\} = C'' \oplus \{r^+\} \oplus \{r^+\}$
Typing Rule for Regions

- Allocation creates a unique region

\[
\text{newrgn} \quad \Psi; \Delta; \Gamma; C \vdash \text{newrgn } \rho \ x : \Delta, \rho; \Gamma, x : \rho \ hdl; C \oplus \{\rho^1\}
\]

- Only unique regions may be deallocated

\[
\text{freergn} \quad \Psi; \Delta; \Gamma; C \vdash \text{freergn } \nu : \Delta; \Gamma; C' = C' \oplus \{r^1\}
\]
Subtyping Capabilities

- With multiplicities (\{+ \), 1\}) really need subtyping relation
 \[\color{red}C = C'' \oplus \{r^1\} \leq C'' \oplus \{r^+\} \]

- The function \(f \) below doesn’t free rgns – non-linear \(C \)
 \[
 f[\rho_1 : Rgn, \rho_2 : Rgn]
 \{
 \{\rho_1^+, \rho_2^+\}, \ x: \text{int at } \rho_1, \ y: \text{int at } \rho_2, \ g: (...) \rightarrow 0 \text{ at } \rho_1
 \}
 \]
 let \(z = x + y \) in
 \[
 \text{g}(x+y)
 \]

- Can be called as \(f[\rho^1, \rho^1](x, x, g) \) because
 \[
 \color{red}C = \{\rho^1\} \leq \{\rho^+\} = \{\rho^+\} \oplus \{\rho^+\}
 \]
This function frees a region – requires a linear capability

\[f[\rho_1 : Rgn, \rho_2 : Rgn] \]
\[\{\rho_1^1, \rho_2^+\}, \ x: \rho_1 \ hdl, \ y: \text{int}, \ g:(\ldots)\rightarrow 0 \ at \ \rho_2 \]
let freergn x in
let z = \pi_1 \ y \ in
\]
\[g(y) \]

Cannot be invoked as \(f[\rho_1^1, \rho_1^1](x, y, g) \) because
\[C = \{\rho_1^1, \rho_2^+\} = \{\rho_1^1\} \oplus \{\rho_2^+\} \] cannot be unified with
\[C' = \{\rho_1^1, \rho_1^1\} \neq \{\rho_1^1\} \oplus \{\rho_1^1\} \]
Recovering Linearity

If a function f has type $\forall[\Delta](\{\rho_1^+, \rho_2^+\}, \ldots)$ how can the regions ever be freed.

Maybe declare the continuation as $\forall[\Delta](\{\rho_1^1\}, \ldots)$?

But then it couldn’t be called from f since $\{r^+\} \not\subseteq \{r^1\}$

Bounded quantification: finally, the ϵ context is useful

Allow the caller to instantiate ϵ to C preserving multiplicity

The callee’s capability constraint are expressed as a subtyping relation w.r.t to ϵ

But the continuation has access to the original context C
Recovering Linearity – Example

- Function f has type
 \[f[\rho_1 : \text{Rgn}, \rho_2 : \text{Rgn}, \epsilon \leq \{\rho_1^+, \rho_2^+\}] \]
 \[(\epsilon, \ldots, g : (\epsilon, \ldots) \rightarrow 0 \text{ at } \rho_1) \rightarrow 0 \text{ at } r \]

- f can be called by $f[\{\rho^1\}](\ldots, g)$ instantiating ϵ to
 \[\{\rho^1\} \leq \{\rho^+, \rho^+\} \]

- But in the continuation g, the capability is still precisely
 \[\{\rho^1\} \]
Comparison to Alias Types

- Alias Types (Smith, Walker, Morrisett ’00) very similar to this work
- Attempts to provide per-object manual memory management
- Capabilities there are represented within the memory type

\[\Psi ::= \{\rho \leftrightarrow <\text{int}>\}\{\rho \leftrightarrow \text{junk}\}\{\rho \leftrightarrow \text{junk}\}^\omega \]

- Similar linearity constraints – \(\omega \) is non-linear
- But does not provide a mechanism for recovering linearity – though easily added
Alias Types contd

- Coarser region aliasing constraints are less restrictive on aliasing of objects
- Other mechanisms are isomorphic
 - Region polymorphism :: Location polymorphism
 - Capability subtyping :: Store polymorphism
Summary

- Neat addition of manual memory management to a type-safe IR
- CPS makes things a whole lot easier ... well positioned as an intermediate language
- Powerful technique – same formalism looks like it can represent many other things
 - Generalize to lock sets, encapsulation, security ...