
Finding and Removing Performance Bottlenecks

in Large Systems

Glenn Ammons1, Jong-Deok Choi2, Manish Gupta2, and Nikhil Swamy3

1 IBM T. J. Watson Research Center,
Hawthorne, New York, USA,

ammons@us.ibm.com
2 IBM T. J. Watson Research Center,
Yorktown Heights, New York, USA,

{jdchoi,mgupta}@us.ibm.com
3 Department of Computer Science, University of Maryland,

College Park, Maryland, USA,
nswamy@cs.umd.edu

Abstract. Software systems obey the 80/20 rule: aggressively optimiz-
ing a vital few execution paths yields large speedups. However, find-
ing the vital few paths can be difficult, especially for large systems like
web applications. This paper describes a novel approach to finding bot-
tlenecks in such systems, given (possibly very large) profiles of system
executions. In the approach, for each kind of profile (for example, call-
tree profiles), a tool developer implements a simple profile interface that
exposes a small set of primitives for selecting summaries of profile mea-
surements and querying how summaries overlap. Next, an analyst uses a
search tool, which is written to the profile interface and thus independent
of the kind of profile, to find bottlenecks.

Our search tool (Bottlenecks) manages the bookkeeping of the search
for bottlenecks and provides heuristics that automatically suggest likely
bottlenecks. In one case study, after using Bottlenecks for half an
hour, one of the authors found 14 bottlenecks in IBM’s WebSphere Ap-
plication Server. By optimizing some of these bottlenecks, we obtained
a throughput improvement of 23% on the Trade3 benchmark. The opti-
mizations include novel optimizations of J2EE and Java security, which
exploit the high temporal and spatial redundancy of security checks.

1 Introduction

J. M. Juran’s Pareto principle [19, 16] (also known as the 80/20 rule) admonishes,
“Concentrate on the vital few, not the trivial many”. For software systems, the
Pareto principle says that aggressively optimizing a few execution paths yields
large speedups. The principle holds even for large systems like web applications,
for which finding the “vital few” execution paths is especially difficult. Conse-
quently, finding bottlenecks in such systems has been the focus of much previous
work [27, 22, 1].

This paper describes a novel approach to finding bottlenecks, given (possibly
extremely large) profiles of one or more executions of a system. In our approach,
for each kind of profile (for example, call-tree profiles), one implements a simple
interface that supports searching for bottlenecks. Next, an analyst uses a search
tool, which is independent of the kind of profile, to find bottlenecks. The tool
manages the bookkeeping of the search and provides heuristics that automati-
cally suggest likely bottlenecks.

Our search tool is called Bottlenecks. In one case study, after using Bot-

tlenecks for half an hour, one of the authors found 14 bottlenecks in IBM’s
WebSphere Application Server (WAS) [30]; optimizing six of these bottlenecks
yielded a 23% improvement in throughput on the Trade3 benchmark [29]. Al-
though the author was already familiar with several of these bottlenecks from
spending many days inspecting call-tree and call-graph profiles without the aid
of Bottlenecks, by using Bottlenecks, the author quickly verified the famil-
iar bottlenecks and found new bottlenecks. Moreover, one of the new bottlenecks
suggested a new optimization of Java 2 security.

Cost: 25% of total

Context:

CCommandImpl.execute

TCommandImpl.setOutputProperties

AccessController.doPrivileged

TCommandImpl$1.run

Class.checkMemberAccess

SecurityManager.checkMemberAccess

SecurityManager.getClassContext

Cost: 13% of total

Context:

EJSSecurityCllbrtr.preInvoke

AccessController.doPrivileged

EJSSecurityCollaborator$1.run

CurrentImpl.get credentials

SecurityManager.checkPermission

SecurityManager.checkPermission

AccessController.checkPermission

AccessController.getStackACC

Fig. 1. Two WAS bottlenecks, which we found with Bottlenecks. Each bottleneck
summarizes execution-cost measurements by the calling context in which they were
taken. Method and class names have been shortened to fit on a line.

Finding bottlenecks in large systems by hand is hard because of two related
problems: choosing the best way to summarize execution-cost measurements,
and keeping track of overlap among bottlenecks. The bottlenecks in Figure 1 il-
lustrate the problems. These bottlenecks are real bottlenecks in WAS, which we
found with Bottlenecks. Each bottleneck lists a sequence of calls, and sum-
marizes execution-cost measurements taken in calling contexts 4 that contain the
sequence. In this example, execution-cost measurements record the instruction-
count overhead of enabling security in WAS; for example, if the application ex-
ecutes one billion more instructions when security is enabled than it does when
security is disabled, then the bottlenecks in the figure account for 250 million
and 130 million of those instructions, respectively.

4 The calling context of a measurement records the name of the active method, for
each activation record on the call-stack when the measurement is taken.

There are two reasons to summarize measurements: efficiency and under-
standability. For efficiency, profilers summarize measurements on-line, as the sys-
tem runs. For example, flat profiles keep one summary per basic block, control-
flow edge, or method; call-tree or calling-context-tree profiles [2] keep one sum-
mary per calling context; call-graph profiles keep one summary per call-graph
edge; and Ball-Larus path profiles [4] keep one summary per intraprocedural,
acyclic path.

Understandability of measurements is also crucial because human analysts
cannot comprehend large numbers of measurements without summaries. In fact,
profilers are usually distributed with report-generation tools that can reduce
profiles to flat profiles, no matter how the profiler summarizes measurements
internally.

The problem with summarization is that no summarization scheme suffices
to find all bottlenecks. For example, neither a call-tree nor a call-graph profile is
adequate for finding the bottlenecks in Figure 1. A call-tree profile is inadequate
because both bottlenecks occur in many different calling contexts, and so in
many different locations in the tree; a call-graph profile is inadequate because
it has one summary for doPrivileged, while finding the bottlenecks requires a
summary for doPrivileged when called by setOutputProperties and another
summary for doPrivileged when called by preInvoke.

Two bottlenecks overlap if both summarize measurements of some common
cost. Keeping track of overlap among bottlenecks is the second problem in finding
bottlenecks.

For example, the bottlenecks in Figure 1 have no overlap with one another,
because no execution-cost measurements occurred in a calling context that con-
tained both the call sequence on the left and the call sequence on the right. On
the other hand, both bottlenecks overlap with doPrivileged, because a call-
ing context that contains either sequence in the figure also contains a call of
doPrivileged.

Computing overlap manually is difficult in large profiles, but without comput-
ing overlap it is impossible to estimate the potential speedup of optimizing a set
of bottlenecks. Because of overlap, while optimizing bottlenecks separately may
yield performance improvements in each case, optimizing bottlenecks together
might not yield the sum of their separate improvements.

Because estimating speedup requires computing overlap, overlap must be
tracked during the search for bottlenecks. Otherwise, the search could return
redundant bottlenecks, which are not worth optimizing.

Our method for finding bottlenecks addresses both the summarization prob-
lem and the overlap problem. In our method, a profile interface defines a small
set of primitives that support constructing summaries of execution-cost mea-
surements and computing the overlap of summaries. The interface associates
summaries with execution paths (for example, call sequences), instead of sum-
marizing according to a fixed summarization scheme like call-graphs or call-trees.
Of course, any given profiler will use some fixed summarization scheme; however,
the interface presents a flexible mechanism for automatic tools or human ana-

lysts to summarize further. And, because the interface makes overlap explicit,
speedup can be estimated directly from any collection of summaries.

Because the profile interface can be implemented for any profile that as-
sociates execution-cost measurements with paths, it isolates analysis tools from
details of the profiles. In fact, by including two implementations of the profile in-
terface, Bottlenecks supports analyzing call-tree profiles in two very different
ways.

The first implementation supports finding expensive call sequences by ana-
lyzing call-tree profiles. This implementation provides the full precision of the
call-tree profile only where it is needed; where precision is not needed, measure-
ments are summarized just as fully as they are in a flat profile, without losing
the ability to estimate speedup.

The second implementation is comparative: it supports finding call sequences
that are significantly more expensive in one call-tree profile than in another call-
tree profile. For example, if a system is slower in one configuration than another,
the cause can be found by comparing a profile of the slow configuration with a
profile of the fast configuration.

No matter which implementation is in use, Bottlenecks presents the same
user interface to the performance analyst. This interface manages the bookkeep-
ing of the search and provides simple heuristics that automatically suggest likely
bottlenecks.

Contributions This paper makes the following contributions:

– A novel method for finding performance bottlenecks, given program execu-
tion profiles.

– Two instances of the method, both of which we have implemented within
Bottlenecks. One instance supports finding expensive call sequences in
call-tree profiles, while the second supports finding call sequences that are
significantly more expensive in one call-tree profile than in another call-tree
profile.

– A report on the bottlenecks we found with Bottlenecks and optimizations
that remove them. Among the latter are novel optimizations that remove
much of the overhead of enabling the security features of WAS. These opti-
mizations exploit two properties: the same security checks are made several
times in close succession (that is, they have high temporal redundancy) and
the same checks are made repeatedly on the same code paths (that is, they
have high spatial redundancy).

2 Finding Bottlenecks

We started the Bottlenecks project after a painful experience in analyzing
large profiles of WAS with traditional tools. Based on that experience, and on
the observations in Section 1, we had three goals for a better method:

Adequate power The method must allow an analyst (human or machine) to
vary how profiles are summarized and to account accurately for overlap
among summaries.

Profile independence The method must place as few requirements on input
profiles as possible.

Extensibility Because finding bottlenecks is not a well-understood problem, it
must be easy to improve the method iteratively by inventing and validating
new interfaces and algorithms to support the search for bottlenecks.

a,1

c,10

c,5

b,2

d,30 e,52

Profile a,1

c,10

c,5

b,2

d,30 e,52

Profile

Profile

c,e [costly]
c,d [costly]

a,c [cheap]

BOTTLENECKS Tool

Bottlenecks found:

Analyst

User Interface

Profile Interface

Fig. 2. The architecture of Bottlenecks.

Figure 2 is an overview of our Bottlenecks tool, which satisfies these goals.
Bottlenecks has two parts: the profile interface and the user interface.

The profile interface defines an abstraction with adequate power for navigat-
ing and analyzing profiles. Specifically, the interface provides primitives for con-
structing various summaries (with associated execution paths) and for comput-
ing the overlap among summaries. The interface is profile independent, because
these primitives can be implemented for any profile that associates a metric with
paths; as the figure shows, Bottlenecks has one implementation for call-tree
profiles and another for comparing two call-tree profiles.

The user interface is the abstraction that a human analyst sees. In its sim-
plest usage mode, the user interface allows navigating a profile by inspecting
summaries of longer and shorter execution paths. At this level, the tool helps

the analyst by managing tedious bookkeeping such as remembering which sum-
maries have been inspected. In addition, the user interface is designed to be
extended with algorithms that suggest starting places for the analyst’s search or
that automate parts of the search.

The outline of the rest of this section is as follows. Section 2.1 discusses the
profile interface. Section 2.2 explains how we implemented the interface for call-
tree profiles and for comparing call-tree profiles. Finally, Section 2.3 describes
the user interface and gives an example of its use.

2.1 The Profile Interface

The profile interface is a simple abstraction that supports constructing sum-
maries and computing overlap among summaries. Specifically, the interface has
functions to generate an initial set of summaries, given a profile; to query sum-
maries; to construct new summaries from old summaries; and to compute overlap
among summaries.

module type PROFILE INTERFACE =

sig

type t

type profile t

val path of : t -> string list

val initial summaries : profile t -> t list (* Construction. *)

val top extensions : t -> string list

val bottom extensions : t -> string list

val extend top : t -> string -> t

val extend bottom : t -> string -> t

val trim top : t -> t option

val trim bottom : t -> t option

val base of : t -> int64 (* Metrics. *)

val cum of : t -> int64

val total base of : t list -> int64

val total cum of : t list -> int64

end

Fig. 3. The profile interface: a standard interface to profiles that associate a metric
with paths.

Figure 3 lists Objective Caml [23] code for the profile interface. The type t is
the type of summaries; the type profile t is the type of the underlying profile.
The code in the figure lists interface functions with their types but without their
definitions—for example, the function initial summaries accepts a profile as
its sole argument and returns a list of summaries.

A central principle of the interface is that each summary corresponds to an
execution path, which is simply a sequence that identifies a set of execution-cost

measurements (for example, a call sequence). The function path of returns a
summary’s execution path, which is assumed to be representable as a list of
strings (for example, a list of method names).

The profile interface has seven functions for constructing summaries. Given
a profile, the function initial summaries returns a set of basic summaries,
which, in a typical implementation, correspond to execution paths of length 1.

The other six functions enable constructing summaries that correspond to
longer execution paths. These include functions to query the profile for the
list of possible additions to the front or back of a summary’s execution path
(top extensions and bottom extensions), to create a new summary by adding
a string at the front or back (extend top and extend bottom), and to create
a new summary by trimming one string from the front or back (trim top and
trim bottom).

The profile interface supports two metrics for each summary. We assume
that the profile associates (implicitly or explicitly) a metric with each execution
path. The function base of returns this metric, which we call the base of a
summary. Some profiles also have a concept of a cumulative metric; for example,
the cumulative cost of a node in a call-tree profile is the cost of the node itself
plus the cost of all its descendants. For such profiles, the function cum of returns
the cumulative metric of a summary’s execution path, which we call the cum of
the summary.

Finally, total base of and total cum of return the total base and cum of
a list of summaries. The intent is that these functions should account for any
overlap among the summaries: even if an execution-cost measurement belongs
to more than one summary, it should be counted only once.

Other useful functions about overlap can be defined in terms of total base of

and total cum of.5 For example, this function returns the cum overlap of a sum-
mary s with a list of summaries S (in Objective Caml, the :: operator conses a
value onto the head of a list):

let cum ol s S =

(cum of s) + (total cum of S) - (total cum of (s :: S))

The user interface of Bottlenecks assumes only that base of, cum of,
total base of, and total cum of are implemented as functions of the right
type. There are no other assumptions. In fact, comparative profiles violate many
“common sense” assumptions (see Section 2.2): in comparative profiles, both
base and cum may be negative and a summary’s cum may be smaller than
its base. Nonetheless, implementations should not return haphazard values; al-
though Bottlenecks does not fix an interpretation of these metrics, a natural
interpretation should exist. Section 2.2 explains what these functions compute
in our implementations.

5 Even cum of and base of can be defined in terms of total base of and
total cum of. For explanatory purposes, we give separate definitions.

2.2 Implementations of the Profile Interface

This section describes two implementations of the profile interface: one for call-
tree profiles and another for comparing two call-tree profiles.

Call-tree Profiles To implement the profile interface for call-tree profiles, we
must implement the types and functions in Figure 3. The following is a sketch of
our implementation, which is both simple and fast enough to navigate call-tree
profiles with over a million nodes.

The type profile t is the type of call-tree profiles; a call-tree profile is a
tree where

– each node is labeled with a method name and a cost; and
– for each calling context m0, . . . , mk that occurred during program execution,

there is exactly one path n0, . . . , nk such that n0 is the root of the tree and,
for each 0 ≤ i ≤ k, ni is labeled with the method name mi.

Intuitively, a node’s cost summarizes all execution-cost measurements that oc-
curred in the node’s calling context. The profile that appears (twice) in Figure 2
is a call-tree profile.

Summaries consist of a call sequence and the list of all nodes that root the
call sequence:

type t = { calls : string list ; roots : node list }

A node roots a call sequence iff the call sequence labels a path that begins at that
node. For example, in Figure 2, the call sequence [c] has two roots: namely, the
two nodes labeled c. By contrast, the only root of [c;d] is the left node labeled
c.

The function path of simply returns the calls component of a summary.
The function initial summaries traverses the tree and creates a summary

for each length-1 call sequence that occurs in the tree. For example, given the
profile in Figure 2, initial summaries creates five summaries: one each for [a],
[b], [c], [d], and [e].

Given a summary s, the function top extensions returns all method names
m such that m :: path of(s) labels at least one path in the tree; these names
are easy to find by inspecting the parents of s.roots. For example, if s is the
summary for [c] in Figure 2, then top extensions(s) returns a and b.

Similarly, bottom extensions(s) returns all method names m such that
path of(s) @ [m] has at least one root (in Objective Caml, the @ operator con-
catenates two lists); these names are easy to find by inspecting the children of all
nodes reachable by following paths labeled s.calls from nodes in s.roots. For
example, if s is the summary for [c] in Figure 2, then bottom extensions(s)

returns d and e.
Given a summary s and a top extender m of s, extend top returns the sum-

mary s′ for m :: path of(s); s′.roots can be computed easily from s.roots

and is never larger than s.roots. The definition of extend bottom is similar.

We come now to the definitions of the base and cum metrics. For these, we
need some auxiliary definitions (as usual, s is a summary):

paths(s) All paths labeled s.calls from nodes in s.roots.
along(s) All nodes that are along some path in paths(s).
interior(s) All nodes that are along some path in paths(s) but not at the end

of any such path.
final(s) All nodes that are at the end of some path in paths(s).
descendants(s) All nodes that are descendants of some node in final(s).

Note that our implementation does not necessarily compute these sets. In
particular, descendants(s) can be the entire tree, so computing it for each sum-
mary is prohibitively expensive.

Given a summary s, the base of s is given by

base of(s) =
∑

n∈along(s)

cost of n

For example, if s is the summary for [c] in Figure 2, then base of(s) is 15.
The cum of s also includes the cost of all descendants of s:

cum of(s) =
∑

n∈along(s)∪descendants(s)

cost of n

For example, if s is the summary for [c] in Figure 2, then cum of(s) is 97.
As mentioned above, computing descendants(s) is too expensive. Thus, when

it loads a profile, our implementation precomputes a cum-cost for each node in
the tree: the cum-cost of a node equals its cost plus the cost of its descendants.
All cum-costs can be computed in one traversal of the tree. Given cum-costs,
cum of(s) can be implemented efficiently by evaluating this formula:

∑

n ∈ interior(s)
n 6∈ descendants(s)

cost of n +
∑

n ∈ final(s)
n 6∈ descendants(s)

cum-cost of n

This formula can be evaluated quickly because checking for membership of n in
descendants(s) can be done in time proportional to the depth of n, by traversing
tree edges backwards towards the root.

The reader may be asking why we exclude descendants of s from the sums in
the last formula. The reason is that, in the presence of recursion, a node can be
in interior(s) or final(s) and also have an ancestor in final(s). If such descendants
were not excluded, the sums would count them twice.

To complete the implementation of the profile interface, we must implement
total base of and total cum of. Intuitively, computing cum and base for a set
of summaries S is the same as computing cum and base for a single summary,
except that now all paths in S must be taken into account. So, we extend the
auxiliary functions to functions over sets of summaries:

paths(S) The union over all s ∈ S of paths(s).
along(S) All nodes that are along some path in paths(S).
interior(S) All nodes that are along some path in paths(S) but not at the end

of any such path.
final(S) All nodes that are at the end of some path in paths(S).
descendants(S) All nodes that are descendants of some node in final(S).

Then, the formulas for total base of and total cum of are the same as
the formulas for base of and cum of, but with s replaced by S. For example, if
S consists of the summary for [a] and the summary for [c] in Figure 2, then
total base of(S) is 16 and total cum of(S) is 100.

Comparing Call-tree Profiles It is sometimes useful to compare two profiles.
For example, if a system is slower in one configuration than another, the cause
can be found by comparing a profile in the slow configuration with a profile
in the fast configuration—Section 3 discusses how we applied this technique to
reduce the security overhead of WAS. This section describes an implementation
of the profile interface that allows comparing two call-tree profiles.

Comparing two call-tree profiles requires deciding how to relate subtrees of
the first profile to subtrees of the second profile. Our approach is based on the
intuition that analysts are most interested in the cost of paths through programs.
Thus, instead of (for example) explicitly constructing a map from subtrees of
one profile to subtrees of the other profile, our implementation simply compares
the cost of a call sequence in one profile with its cost in the other profile.

An advantage of this approach is that the comparative implementation can
reuse most of the code of the implementation for single call-tree profiles. The
type of summaries is a slight modification of the type of summaries for single
call-tree profiles:

type t = { calls : string list ;

a roots : node list ;

b roots : node list }

Instead of one roots field, we now have an a roots field that lists nodes in the
first profile and a b roots field that lists nodes in the second profile. Thus, a
summary s denotes zero or more paths in one tree, and zero or more paths in a
second tree.

The function initial summaries traverses both trees and produces a list of
paths of length 1, of the form

{ calls = [m] ; a roots = a ns ; b roots = b ns }

Here a ns lists all roots of [m] in the first tree, while b ns lists all roots of [m]

in the second tree. At least one of these lists is not empty.
The other functions are defined in terms of the functions for a single call-

tree profile. For example, if Single.base of implements base of for a single
call-tree profile, then the comparative base of is defined by

let base of s =

(Single.base of ({ calls = s.calls ; roots = s.a roots}))
- (Single.base of ({ calls = s.calls ; roots = s.b roots}))

In general, functions that return numbers are implemented by subtracting
the single-tree result for the second profile from the single-tree result for the first
profile. Other functions combine the results in other natural ways. For example,
top extensions returns the union of the top extensions in the first and the
second profile.

Due to the nature of comparing profiles, the comparative implementation
lacks several “common sense” properties. For example, if a summary has a higher
base in the second profile than it does in the first profile, then the summary
has a negative base in the comparative profile. For similar reasons, the cum of
a summary can be lower than its base. These paradoxes arise because of the
nature of comparison; the best that an implementation can do is expose them,
so that they can be dealt with at a higher level. In practice, we find that they
are not problematic, at least when comparing trees that are more similar than
they are different.

2.3 The User Interface

This section describes the user interface of Bottlenecks. This command-line
interface provides three kinds of commands: suggestion commands, which request
summaries at which to start a search for bottlenecks; a navigation command,
which moves from one summary to another; and a labeling command, which
assigns labels to summaries. Suggestion and navigation permit the human ana-
lyst to find summaries that explain bottlenecks well, without the limitations of
fixed summarization schemes like call trees and call graphs; by design, they are
also good points at which to introduce automation. The analyst uses labels to
mark interesting summaries. Labels are also the mechanism for requesting over-
lap computations: during navigation, Bottlenecks prints the overlap of each
summary with labeled summaries, so that the analyst can avoid investigating
redundant summaries.

The rest of this section gives a simplified overview of the user interface and, as
an example, demonstrates how to use Bottlenecks to uncover the bottleneck
on the left side of Figure 1.

The analyst starts a search by picking a suggester:

<set suggester name> Pick a suggester. A suggester generates an ordered
list of starting summaries, based on the profile.

Next, the analyst views the suggestions:

<suggest> Print the suggester’s starting summaries.

In the future, as we discover better techniques for finding bottlenecks auto-
matically, we will implement them as suggesters. At the moment, Bottlenecks

has two simple suggesters:

HighCum The HighCum suggester suggests summaries for paths of length 1
(that is, individual methods), with summaries ranked in descending order by
their cum. These summaries are good starting points for a top-down search.

HighBase The HighBase suggester also suggests summaries for paths of length
1, but with summaries ranked in descending order by their base. These sum-
maries are good starting points for a bottom-up search.

Bottlenecks gives a number to every summary it prints. The analyst nav-
igates from summary to summary by selecting them by number:

<select n> Select the summary numbered n. The summary (call it s) becomes
the current summary. Bottlenecks prints details about s:

– If s has been labeled, the labels of s.

– The cum and base metrics of s.

– For each unique label l that the analyst has assigned to one or more
summaries, the overlap of s’s cum and base metrics with summaries
labeled l.

– The execution path associated with s.

– A numbered list of “nearby” summaries, which can be reached by ap-
plying summary construction functions (see Figure 3).

Generating the list of nearby summaries is another point at which the user
interface can be extended with heuristics. Bottlenecks has two algorithms for
producing this list. The first algorithm simply prints all 1-method extensions
and trimmings of the current summary.

The second algorithm, called zooming, omits low-cost extensions and trim-
mings and greedily “zooms” through extensions and trimmings that concentrate
the cost. The goal is to avoid printing uninteresting summaries: low-cost sum-
maries are uninteresting because the user is unlikely to choose them, while sum-
maries that concentrate the cost are uninteresting because the user is almost
certain to choose them. In practice, zooming significantly reduces the time it
takes to find useful bottlenecks.

Zooming depends on a user-settable cutoff ratio c, which is a positive real
number (the default is 0.95). Zooming uses c both to identify low-cost summaries
and to identify summaries that concentrate the cost. The following pseudocode
shows how zooming finds nearby top extensions (bottom extensions and trim-
mings are similar):

Routine Zoom(s, c) = ZoomRec(s, c|cum of(s)|)
Routine ZoomRec(s, C) =

T := top extensions of s, in descending order by |cum of|
Tz := first N summaries in T, where N > 0 is smallest s.t

|total cum of(Tz)| ≥ C, or ∅ if no such N exists

If |Tz| = 1 Then Return ZoomRec(first(Tz), C)

Else Return Tz

Sorting Tz by the absolute value of cum of 6 identifies low-cost summaries. The
conditional tests for summaries that concentrate the cost: if the cost of a sum-
mary is at least C, then the user will almost certainly select it, so the algorithm
zooms through it.

For example, suppose that the current summary is for [cd] in Figure 2. If
zooming were enabled, Bottlenecks would zoom to the 2-method top exten-
sion [abcd] instead of listing the 1-method top extension [bcd].

Finally, Bottlenecks provides a labeling command, which the analyst uses
to mark interesting summaries:

<label name> Assign the label name to the current summary.

Once labeled, a summary can be inspected later or saved to a file. More im-
portantly, as the analyst searches for bottlenecks, Bottlenecks displays the
overlap of the current summary with labeled summaries. Accounting for overlap
is key to estimating the expected benefit of optimizing a particular bottleneck;
therefore, after the first bottleneck has been found, the analyst must take overlap
into account when selecting the next summary.

Note that Bottlenecks does not interpret labels; labels have meaning for
the analyst, not for Bottlenecks.

An Example Like other application servers, WAS is slower when its security
features are enabled. To find the cause of this slowdown, we ran the Trade3
application server benchmark twice, the first time with security enabled and the
second time with security disabled, and compared them with Bottlenecks,
using the comparative implementation of the profile interface. Figure 1 lists two
of the bottlenecks that we found. This section works through a session in which
we find the bottleneck on the left side of the figure, using Bottlenecks and a
bottom-up approach.

The first steps are to choose an appropriate suggester and list the highly
ranked suggestions. The HighBase suggester is better for a bottom-up search:

set suggester HighBase

suggest

Bottlenecks prints the summaries with highest base. The highest-ranked
summary is for the call sequence

[SecurityManager.getClassContext]

which has a base that accounts for 9.85% of the total security overhead—that
is, 9.85% of the difference between the cost when security is enabled and the
cost when security is disabled. As it happens, this method is never called when
security is disabled. We look at this summary more closely:

select 0

6 Taking the absolute value is necessary for comparative profiles, in which a summary’s
cum can be negative.

This sets [SecurityManager.getClassContext] as the current summary
(call it s). Bottlenecks prints s, the base and cum of s, and s’s top and
bottom extensions (with a number assigned to each one). In this case, there are
no bottom extensions, and the top extension

[SecurityManager.checkMemberAccess ;

SecurityManager.getClassContext]

(call this s′) has a much higher cum than the other choices. This is extension
number 0, and we look at it more closely:

select 0

This sets s′ as the current summary and Bottlenecks prints s′ and its
metrics and extensions; the length of s′ is greater than 1, so Bottlenecks also
prints the summaries that result from trimming the top or bottom method of s′

(the former is s again).

The next step is to extend s′ at the top. In general, we repeatedly extend the
current summary by choosing the extension with the highest cum. This process
continues until all potential extensions have a low cum, or until there are many
possible extensions, no one of which contributes substantially to the overhead.
Note that, if we were using zooming, this process would be mostly automatic.

In this case, we continue extending at the top until we reach the summary on
the left side of Figure 1. At this point, there are many top extensions (for various
Trade3 commands) and none of them contribute substantially to the overhead.
This summary contributes 25% of the total overhead, which is significant, so we
decide that it is a bottleneck and label it:

label ‘‘bottleneck’’

3 Experience

This section presents our experience with Bottlenecks. Section 3.1 discusses
bottlenecks we found in the implementation of the security model in IBM’s Web-
Sphere Application Server (WAS) and novel optimizations that target those bot-
tlenecks. In Section 3.2, we evaluate how helpful Bottlenecks is for finding bot-
tlenecks in two other object-oriented applications: the SPECjAppServer2002 [28]
application server benchmark 7 and a program under development at IBM that
is related to the optimization of XML.

7 SPEC and the benchmark name SPECjAppServer2002 are registered trademarks of
the Standard Performance Evaluation Corporation. In accord with the SPEC/OSG
Fair Use Policy, this paper does not make competitive comparisons or report SPEC-
jAppServer metrics. For more information, see http://www.spec.org.

3.1 Speeding up WAS security

WAS implements J2EE, which is a collection of Java interfaces and classes for
business applications. Most importantly, J2EE implementations provide a con-

tainer that hosts Enterprise JavaBeans (EJBs). In J2EE, applications are con-
structed from EJBs; the container is like an operating system for EJBs, providing
services such as database access and messaging, as well as managing resources
like threads and memory.

Among these services is security. Security is optional: containers like WAS can
be configured to bypass security checks. Enabling security entails some overhead.
For example, in our experiments, turning on full security reduced the throughput
of IBM’s Trade3 [29] benchmark by 30%.

To find the causes of this slowdown, we collected call-tree profiles of Trade3,
running with security enabled and with security disabled, and compared the
profiles with Bottlenecks, using the comparative implementation of the profile
interface. The result was fourteen bottlenecks, which accounted for over 80% of
the overhead of enabling security.

The rest of this section discusses four topics: what we mean by “WAS secu-
rity” in this paper, our experimental setup, the bottlenecks we found in WAS
security, and finally optimizations that target those bottlenecks.

Security in WAS For our purposes here and at a high level, WAS supports
two kinds of security:

Java 2 security Java 2 security is the security model supported by Java 2,
Standard Edition (J2SE) [15]. In this model, an application developer or
system administrator associates permissions with Java code: that is, the
model supports framing and answering questions of the form, “may this
code access that resource?”. For example, an administrator can use Java 2
security to prevent applets from accessing the local filesystem.

Global security Global security is the security model supported by Java 2,
Enterprise Edition (J2EE) [14], with extensions specific to WAS. Along with
user authentication, the model supports framing and answering questions of
the form, “may this user invoke that code?” A system administrator asso-
ciates roles both with methods and with users: a user may invoke a method
only if a role exists that is associated with both the user and with the method.

Experimental Setup To measure WAS security overhead, we needed an appli-
cation that uses security. We used IBM’s Trade3 benchmark, which is a client-
server application developed specifically to measure the performance of many
features of WAS. Trade3 models an on-line stock brokerage, providing services
such as login and logout, stock quotes, stock trades, and account details.

The standard version of Trade3 does not use WAS security, so we used a
“secured” version, which defines one role that protects all bean methods. We as-
signed that role to two users and used one of those users to access the application;
the other user was the WAS administrator.

Table 1. Characteristics of Trade3 ArcFlow profiles. Nodes lists the number of tree
and leaf nodes in each call-tree profile; Depth lists the maximum and average (arith-
metic mean) depth of tree nodes; Out-degree lists the maximum and average out-
degree of interior nodes.

Security Nodes Depth Out-degree
Total Leaf Max Mean Max Mean

Disabled 413637 189386 135 59.9 69 1.84
Enabled 480994 230248 135 64.6 109 1.92

Table 2. Trade3 bottlenecks, and the time and number of Bottlenecks commands
needed to find them. Time includes the user’s “think” time.

Bottlenecks Cost to find
Number Coverage Mean length Minutes Commands

14 82.7% 14 32.4 151

Trade3 is a small application, with only 192 classes and 2568 methods. By
comparison, WAS contains 23270 classes and 246903 methods. Still, Trade3 re-
vealed significant security bottlenecks in WAS.

We analyzed the performance of Trade3 when hosted by version 5.0.0 of
IBM’s WAS implementation. We ran the benchmark on a single desktop com-
puter, which had 1.5GB of RAM and a single 2.4GHz Intel Pentium 4 processor.
The operating system was Red Hat Linux 7.3 [25], and the database system used
was version 7.2 of IBM’s DB2 [9]. The secured Trade3 also requires an LDAP
server: we used version 4.1 of IBM’s Directory Server [18].

To collect call-tree profiles, we used IBM’s ArcFlow profiler [3]. ArcFlow
builds a call-tree on-line by intercepting method entries and exits. ArcFlow can
collect various metrics: we chose to collect executed instructions (as measured by
the Pentium 4 performance counters) because ArcFlow can accurately account
for its own perturbation of this metric. Time would have been a better metric,
but all profilers available to us either perturb this metric too much or collect
only flat profiles.

Bottlenecks in WAS Security Using ArcFlow, we collected two call-tree
profiles of Trade3: one from a run with WAS security enabled and one from
a run with WAS security disabled. Both runs were otherwise as identical as
we could make them (for example, both runs performed the same number of
transactions). Then, one of the authors used Bottlenecks to find paths with
high security overhead.

Table 1 lists some characteristics of the call-tree profiles. The profiles are
bushy and deep: in both cases, roughly half of the nodes are leaf nodes and
the average depth of a node is around 60. Thus, these profiles are not human-
readable; an analyst would need a tool to make sense of them.

Table 2 shows how effective the author was at finding bottlenecks in these
profiles with Bottlenecks. The author is, of course, an expert at using Bot-

tlenecks. The author was also familiar with some of the bottlenecks in Trade3,
because he had found them earlier without the aid of Bottlenecks.

Bottlenecks worked well on Trade3. Over 80% of the security overhead of
Trade3 is covered by just fourteen bottlenecks. Also, these bottlenecks are useful:
by optimizing six of them, we obtained a 23% improvement in throughput with
security enabled.

In addition, the author found the bottlenecks quickly. By contrast, before
Bottlenecks existed, it took the author over a week to find fewer and less
specific bottlenecks by studying call-graph profiles and source code.

Security Optimizations This section describes four optimizations inspired
by the bottlenecks that we found in the Trade3 profiles. Together, these op-
timizations speed up Trade3 by 23% when security is enabled. Three of these
optimizations were applied to WAS and apply directly to other WAS applica-
tions. In addition, all four optimizations exploit two general properties of Java
security, and we believe that similar optimizations could be applied in other
applications, or perhaps automatically in a just-in-time compiler.

Both properties have to do with the high redundancy of security checks. We
distinguish two kinds of redundancy. A security check exhibits high temporal

redundancy if the check makes the same decision based on the same data sev-
eral times in close succession (for example, a check that repeatedly tests if the
same user may invoke bean methods that are protected by the same role). A
security check exhibits high spatial redundancy if the check frequently makes
the same decision because it is reached by the same code path (for example, a
checkPermission that is executed repeatedly in the same calling context).

Optimizations that exploit temporal redundancy are based on caching. The
results of an expensive check are stored in a cache, which is indexed by the data
that form the basis of the decision. The cache is consulted before making the
check: if the decision is in the cache, the check is avoided. Note that caching
is effective only when cache hits are sufficiently frequent and the cost of cache
lookups and maintenance is sufficiently cheap.

Optimizations that exploit spatial redundancy are based on specialization.
The frequent code path is copied, and the expensive check is replaced with a
cheaper version tailored specifically to that path. Specialization is effective only
when the benefit of the tailored check outweighs the cost of duplicating code.

Table 3 summarizes our optimizations. The CheckRole and DBReuse opti-
mizations exploit temporal redundancy, while the GetCredentials and Reflection
optimizations exploit spatial redundancy. The ease of implementing these opti-
mizations varied: Reflection took less than an hour, DBReuse and GetCredentials
less than a day. The CheckRole optimization took a few days, because we wrote
three versions before finding a fast cache implementation. In general, the tem-
poral optimizations were harder to implement than the spatial optimizations,
because the temporal optimizations required implementing a cache. For the spa-

Table 3. Optimizations suggested by Trade3 bottlenecks.

Optimization Kind Lines Estimated Comment
Improvement

CheckRole temporal 216 0.07 Remove redundant role checks on
bean method access. In WAS.

DBReuse temporal 343 0.04 Remove redundant comparisons and
hashes for database connections. In
WAS.

GetCredentials spatial 114 0.06 Remove doPrivileged and checkPer-
mission on a hot path. In WAS.

Reflection spatial 157 0.11 Replace field access via reflection
with direct access. In Trade3.

tial optimizations, most of the lines we changed were merely copied from one
place to another.

For each optimization, we estimated the potential improvement in through-
put by comparing the overhead of the bottleneck(s) that the optimization ex-
ploited to the total security overhead. The estimates in Table 3 assume that all
of the bottleneck’s overhead can be eliminated, and that the instruction counts
reported by ArcFlow correlate well with execution time. In fact, optimizations
cannot normally eliminate all overhead, and ArcFlow misses the overhead of I/O.
Thus, these estimates are overestimates; see below for the actual improvements
in throughput.

Detailed descriptions of our optimizations follow.

CheckRole The J2EE security model allows an administrator to associate roles
with methods and with users. When global security is enabled, WAS inserts an
access check before each bean method call. If there is a role that is associated with
both the current user and with the method, then the call is allowed; otherwise,
it is forbidden.

Our analysis found that role-checking is a bottleneck that accounts for 16% of
the instruction-count overhead of security when running Trade3. By instrument-
ing the code, we discovered that these checks have high temporal redundancy,
which we exploited by caching. Here is pseudocode for role-checking:

Routine CheckRole(User u, Method m) =

Return UserRoles(u)∩ MethodRoles(m) 6= ∅

Our optimization introduces a decision cache (DC):

Routine CachingCheckRole(User u, Method m) =

If DC.lookup(u, m) Then Return true

ElseIf CheckRole(u, m) Then (DC.add(u, m) ; Return true)

Else Return false

The decision cache is indexed by the user and by a set of roles. For fast
lookups, we modified the WAS code to ensure a correspondence between users
and objects representing users; there was already a correspondence between
methods and objects representing methods. With this implementation, the cache
can check equality simply by comparing references.

To further speed lookups, the decision cache is hierarchical. The cache con-
tains a hash table that maps methods (which vary more frequently than do users)
to 4-element arrays. Given a user and a method, a lookup starts by finding the
4-element array for the method; if the array exists, then the lookup scans it for
a match with the user. The alternative of composing the user and method into
a hash table key is significantly more expensive.

The CheckRole optimization is effective only when role checks have high
temporal redundancy. Temporal redundancy is high for Trade3 because there
is only one user and one role, so checks necessarily repeat. However, even if
multiple users were configured, temporal redundancy in Trade3 should remain
high, because each page request corresponds to seven bean method calls. We
do not know if such behavior is common among J2EE applications: the more
common it is, the more widely applicable is the CheckRole optimization.

DBReuse Because creating a database connection is expensive, WAS reuses
them: when a transaction starts, WAS assigns it a connection from a pool of
available connections; when a transaction completes, its connection is returned
to the pool so that it can be used again.

In J2EE, a Subject represents information about a user or other entity. When
security is enabled, WAS associates a Subject with each database connection.
This association complicates connection pooling, because WAS must ensure that
a database connection that is opened on behalf of one user is never used on
behalf of a different user. Our analysis found that the security checks necessary
to provide this guarantee comprise three bottlenecks, which account for about
10% of the instruction-count overhead of security when running Trade3.

Once again, we used caching to remove this overhead. Most of the overhead of
the check was related to checking equality of Subjects and computing hash codes
for Subjects. These operations are expensive because Subjects contain private
credentials, which cannot be read without first passing a permission check. Our
caches avoid this expense by remembering the results of equality checks and hash
code computations.

GetCredentials Like DBReuse, this optimization speeds up an operation that
depends on reading private credentials. However, while DBReuse is a temporal
optimization, this optimization is spatial. The optimization is an instance of a
general technique for removing Java 2 permission checks.

Permission checking in Java 2 security is complicated, but we can suppose
that it provides two primitives: checkPermission and doPrivileged.

The checkPermission method receives a permission object as its only ar-
gument, and walks the call-stack to verify that the code has the permission
represented by the object. Intuitively, on a call of checkPermission, the Java

runtime visits each call on the call-stack, visiting each callee before its caller. At
each call, the runtime consults a table (prepared by the administrator) to decide
whether the invoked method has the permission or not. If the runtime finds a
method that does not have the permission, it raises an exception.

A doPrivileged call is used to cut off the stack walk. If, while walking the
stack, the runtime finds a doPrivileged call, it stops the walk. Thus, the walk’s
outcome cannot depend on the calling context of the doPrivileged.

Our optimization exploits this property. The following pseudocode illustrates
the optimization, as we applied it to the bottleneck on the right side of Figure 1,
which accounts for 13% of the instruction-count overhead of security when run-
ning Trade3:

Class PrivilegedClass

Routine Invoker = doPrivileged ...GetCredentials()...

Class CheckingClass

Routine GetCredentials() =

checkPermission(constant) ; Return the secret credentials

We can optimize this code as follows:

Class CallingClass

private Object secret

private bool succeeded := false

Routine checkSecret(Object o) = Return secret = o

Routine Invoker =

If succeeded Then creds := GetCredentials(secret)

Else doPrivileged

creds := GetCredentials()

succeeded := true

Class CheckingClass

private bool succeeded := false

Routine GetCredentials(Object o) =

If ¬ CallingClass.checkSecret(o) Then

checkPermission(constant)

ElseIf ¬ succeeded Then

checkPermission(some constant)

succeeded := true

Return the secret credentials

The optimized code performs a full security check just once; if the check succeeds
(the common case), then any further calls perform a fast security check. The fast
check uses a secret object, known only to CallingClass, to verify that the caller
is CallingClass.Invoker. Because the secret is private to CallingClass and
escapes only to GetCredentials, it cannot be forged. So, if attacking code calls
GetCredentials, its permissions will be checked in the normal, safe way.

Table 4. Performance benefit of the optimizations.

Optimization Throughput (pages/s) Improvement Security
Insecure Secure Insecure Secure Overhead

Original 101.1 ± 0.3 71.4 ± 0.2 0.00 0.00 29%

CheckRole 98.7 ± 0.4 74.1 ± 0.2 −0.02 0.04 25%
DBReuse 101.7 ± 0.3 72.3 ± 0.2 0.01 0.01 29%
GetCredentials 100.1 ± 0.3 71.1 ± 0.2 −0.01 0.00 29%
Reflection 102.8 ± 0.2 74.1 ± 0.3 0.02 0.04 28%

All 103.4 ± 0.3 88.1 ± 0.1 0.02 0.23 15%

There is a caveat: once the permission checked by GetCredentials is granted
to CallingClass.Invoker, it must never be revoked. In this instance, the caveat
is not problematic—if the code in question did not have the permission, then
WAS would not work.

There are other ways to implement this optimization safely. First, the runtime
could detect such redundant security checks and rewrite the compiled code (as
we rewrote the source code) to avoid them. This solution would require no source
changes at all and would automatically optimize away other occurences of the
pattern. Second, one could add a module system to Java (such as MJ [8]), which
would allow a programmer to say statically that GetCredentials may only
be called by Invoker. Finally, instead of passing the secret as a parameter of
GetCredentials, the secret could be stored in a thread-local variable. This last
approach avoids changing the signature of GetCredentials but is slow on many
JVMs, for which accessing thread-local storage is expensive.

Reflection Java’s reflection API allows programs to ask the runtime for the
methods, fields, and other attributes of classes. Reflection is inherently expen-
sive, and code that must be fast should avoid using it. Reflection is especially
expensive when security is enabled, because the runtime must check that code
that requests attributes of a class has appropriate permissions.

Our analysis found that Trade3 uses reflection unnecessarily on the code
path on the left side of Figure 1, which accounts for 25% of the instruction-
count overhead of security when running Trade3.

Benefits of Security Optimizations Table 4 shows the performance of the
original WAS and Trade3 code and the performance benefit of each optimiza-
tion in isolation, all safe optimizations together (that is, all optimizations except
GetCredentials), and all optimizations together. For each optimization, we re-
built the Trade3 system from scratch and measured performance with security
enabled and with security disabled. To obtain a measurement, we warmed up
the system by requesting 50000 pages, and then measured the time for Trade3
to satisfy 20000 page requests, repeating the latter measurement ten times. The
Throughput columns of the table report the mean and probable error (that

is, 50% confidence interval) of these measurements, assuming a normal distribu-
tion. The Improvement columns report the mean improvement in throughput
with respect to the unoptimized code. Finally, the Overhead column reports
the overhead of enabling security after applying each optimization.

Overall, we obtained a 23% improvement in throughput (with security en-
abled) with all optimizations.

The performance benefit of all optimizations together exceeds the benefit of
the optimizations separately. This is a reproducible effect, which we are not sure
how to explain.

In general, the optimizations achieve a little more than half of the estimated
improvement of Table 3. This indicates that the ArcFlow profiles, which mea-
sure executed instructions instead of time, miss some security overhead. Unfor-
tunately, we are unaware of any profiling tools for Java that combine context-
sensitivity (crucial for finding these bottlenecks) with sufficiently accurate mea-
surements of execution time.

3.2 Other Applications of Bottlenecks

This section evaluates the effectiveness of Bottlenecks on two more applica-
tions:

SPECjAppServer2002 SPECjAppServer2002 is a client-server application de-
veloped specifically to measure and compare the performance of J2EE appli-
cation servers. At runtime, SPECjAppServer2002 consists of an application
server, the EJBs that are hosted by the application server, a database sys-
tem, and a driver and supplier emulator. The SPEC reporting rules require
that the emulator run on a different machine than the other components,
but, in our tests, we ran all components on the single computer described
above.

XML This is an internal IBM program, written in Java, and related to the
optimization of XML. For this application, we had an ArcFlow profile from
the developers but neither an executable nor the source code. Thus, this
application represents an extreme case of performance analysis with very
little information.

We used Bottlenecks to analyze ArcFlow profiles of both applications. We
collected the SPECjAppServer2002 profile ourselves; the XML profile for XML
was given to us by one of its developers.

Table 5 lists some characteristics of these profiles. The SPECjAppServer2002
profile was large, with over one million nodes, while the XML profile was rel-
atively small. Both profiles are bushy and deep: in both cases, roughly half
of the nodes are leaf nodes and the average depth of a node is 34.2 (SPEC-
jAppServer2002) and 21.9 (XML). As was the case for the Trade3 profiles, these
profiles are not human-readable.

Table 6 shows how effective one of the authors was at finding bottlenecks
in these profiles with our tool. Once again, the author is an expert at using

Table 5. Characteristics of ArcFlow profiles. Nodes lists the number of tree and
leaf nodes in each call-tree profile; Depth lists the maximum and average (arithmetic
mean) depth of tree nodes; Out-degree lists the maximum and average out-degree of
interior nodes.

Application Nodes Depth Out-degree
Total Leaf Max Mean Max Mean

SPECjAppServer2002 1096416 516173 77 34.2 74 1.89
XML 24321 11107 86 21.9 62 1.84

Table 6. Bottlenecks found for each application, and the time and number of Bot-

tlenecks commands needed to find them. Time includes the user’s “think” time.

Application Bottlenecks Cost to find
Number Coverage Mean length Minutes Commands

SPECjAppServer2002 13 35.8% 8.7 50 251
XML 13 88.7% 6.2 29.5 143

Bottlenecks, although he was not familiar a priori with the bottlenecks in
SPECjAppServer2002 and XML.

Bottlenecks worked well on XML. The author quickly found thirteen bot-
tlenecks that cover almost 90% of the executed instructions of XML. Also, these
bottlenecks are useful: we reported them to one of the XML developers, who
told us that they accurately identified the expensive paths in that application.

Bottlenecks was less effective on the SPECjAppServer2002 profile. The
author quit analyzing the profile after about an hour: at this point, he had found
thirteen bottlenecks that accounted for only 36% of the executed instructions.
These bottlenecks were also less useful, primarily because the ArcFlow profile
measures only executed instructions. By using a sampling-based profiler that
measures time accurately but ignores calling context, the author found that
SPECjAppServer2002 is I/O-bound, not compute-bound. Because ArcFlow does
not measure execution time spent waiting on I/O, it is unlikely that optimizing
the bottlenecks we found would significantly improve execution time.

4 Related work

Our profile interface can be implemented for any profile that associates met-
rics with execution paths. A number of tools produce profiles that satisfy this
assumption. Program tracers like QPT [7] record the control flow of an entire
execution. Ball-Larus path profilers [4] record intraprocedural, acyclic control-
flow paths. Interprocedural path profiles [21] generalize Ball-Larus path profiles.
Whole program path profilers [17] record an execution trace in a compact, ana-
lyzable form. Calling-context trees [2] are space-efficient cousins of the call-tree
profiles we use in this paper. ArcFlow [3], which we used for the experiments
in this paper, constructs call-tree profiles on-line by intercepting method entries

and exits. Stack sampling [12, 13] is an alternative, lower overhead method. Fi-
nally, Ball, Mataga and Sagiv show that intraprocedural paths can be deduced,
with significant accuracy, from edge profiles [6].

Many other tools exist for analyzing profiles. The closest to Bottlenecks

is Hall’s call-path refinement profiling [12, 13]. The summary construction func-
tions in Figure 3 are essentially special cases of Hall’s call-path-refinement pro-
files, and Hall also describes a tool for navigating call sequences. However, our
work differs from Hall in several ways. First, while our profile interface can be
implemented for any profile that associates metrics with execution paths, Hall
assumes a specific stack-sampling profiler. Second, Hall addresses the issue of
overlap differently, by extending the user interface with the ability to prune
away time spent either in or not-in given call paths. Finally, Hall’s tools do not
support comparing profiles.

Another closely related analysis tool is the Hot Path Browser [5] (HPB), a
visualizer for Ball-Larus path profiles. HPB graphically shows overlap among
intraprocedural Ball-Larus paths and allows the user to combine profiles by
taking their union, intersection, and difference.

Fields and others [11] use interaction cost to find microarchitectural bottle-
necks, while we use overlap to find bottlenecks in large applications. Overlap
and interaction cost our closely related—in fact, they are arithmetic inverses of
one another. In their work, interaction cost was important because processors
perform tasks in parallel. In our work, overlap was important because the same
execution-cost occurs in the context of many different call-sequences.

Bottlenecks assumes that profiles are not flat and can be analyzed off-line.
For efficiency, performance analysis tools for large-scale parallel systems often
violate one or both of these assumptions. For example, Paradyn [22] avoids col-
lecting large amounts of data by interleaving measurement with interactive and
automatic bottlenecks analysis. Paradyn’s search strategy is top-down, although
their DeepStart stack-sampling heuristic [26] can suggest starting points that
are deep in the call-tree. Other tools for parallel systems, such as HPCView [20]
and SvPablo [10], gather only flat profiles. Insofar as these compromises are nec-
essary for analyzing parallel systems, they pose an obstacle to applying tools
like Bottlenecks to such systems.

Our security optimizations that exploit temporal redundancy rely on iden-
tifying checks that repeatedly operate on the same data. When we suspected
temporal redundancy, we verified it by instrumenting the code. Object equality
profiling [24] might have discovered these opportunities more directly.

References

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 74–89. ACM Press, 2003.

[2] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In Proceedings of the

ACM SIGPLAN 1997 Conference on Programming Language Design and Imple-
mentation, pages 85–96. ACM Press, 1997.

[3] Real-time ArcFlow. http://www.ibm.com/developerworks/oss/pi.
[4] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of the

29th Annual ACM/IEEE International Symposium on Microarchitecture, pages
46–57. IEEE Computer Society, 1996.

[5] Thomas Ball, James R. Larus, and Genevieve Rosay. Analyzing path profiles with
the Hot Path Browser. In Workshop on Profile and Feedback-Directed Compila-
tion, 1998.

[6] Thomas Ball, Peter Mataga, and Shmuel Sagiv. Edge profiling versus path pro-
filing: The showdown. In Symposium on Principles of Programming Languages,
pages 134–148, 1998.

[7] Tom Ball and James R. Larus. Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems, 16(3):1319–1360, July
1994.

[8] John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: A rational
module system for Java and its applications. In Proceedings of the 18th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, pages 241–254. ACM Press, 2003.

[9] IBM DB2 Universal Database. http://www.ibm.com/db2.
[10] Luiz DeRose and Daniel A. Reed. SvPablo: A multi-language architecture-

independent performance analysis system. In Proceedings of the International
Conference on Parallel Processing (ICPP’99), September 1999.

[11] Brian A. Fields, Rastislav Bod́ık, Mark D. Hill, and Chris J. Newburn. Using inter-
action costs for microarchitectural bottleneck analysis. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-36),
pages 228–242, December 2003.

[12] Robert J. Hall. Call path refinement profiles. IEEE Transactions on Software
Engineering, 21(6):481–496, June 1995.

[13] Robert J. Hall. CPPROFJ: Aspect-capable call path profiling of multi-threaded
Java applications. In Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE’02), pages 107–116, September 2002.

[14] Java 2 Platform, Enterprise Edition (J2EE). http://java.sun.com/j2ee.
[15] Java 2 Platform, Standard Edition (J2SE). http://java.sun.com/j2se.
[16] Joseph M. Juran and A. Blanton Godfrey, editors. Juran’s Quality Handbook.

McGraw-Hill, New York, New York, USA, fifth edition, 1999.
[17] James R. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN

1999 Conference on Programming Language Design and Implementation, pages
259–269. ACM Press, 1999.

[18] IBM Tivoli Directory Server. http://www.ibm.com/tivoli.
[19] Thomas J. McCabe and G. Gordon Schulmeyer. Handbook of Software Quality

Assurance, chapter The Pareto Principle Applied to Software Quality Assurance,
pages 178–210. Van Nostrand Reinhold Company, 1987.

[20] John Mellor-Crummey, Robert Fowler, Gabriel Marin, and Nathan Tallent.
HPCView: A tool for top-down analysis of node performance. The Journal of
SuperComputing, 23:81–101, 2002.

[21] David Melski and Thomas W. Reps. Interprocedural path profiling. In Compu-
tational Complexity, pages 47–62, 1999.

[22] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,

and Tia Newhall. The Paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, 1995.

[23] Objective Caml. http://www.ocaml.org.
[24] Robert O’Callahan and Darko Marinov. Object equality profiling. In Proceedings

of the 18th ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’03), pages 313–325, October 2003.

[25] Red Hat Linux. http://www.redhat.com.
[26] Philip C. Roth and Barton P. Miller. Deep start: A hybrid strategy for auto-

mated performance searches. In Euro-Par 2002, number 2400 in Lecture Notes
in Computer Science, August 2002.

[27] G. Sevitsky, W. De Pauw, and R. Konuru. An information exploration tool for
performance analysis of Java programs. In Proceedings of TOOLS Europe, 2001.

[28] SPECjAppServer2002. http://www.specbench.org/jAppServer2002.
[29] IBM Trade3 J2EE Benchmark Application. http://www.ibm.com.
[30] WebSphere Application Server. http://www.ibm.com/websphere.

