
Managing Policy Updates in
Security-Typed Languages

Nikhil Swamy, Michael Hicks, Stephen Tse, Steve Zdancewic

 Computer Security Foundations Workshop

Venice, Italy

June, 2006

Context

• The security behavior of long running programs
changes frequently.

• Principals can enter and leave the system

• A principal's privilege level can change

• But, most security-typed languages assume
that these kinds of changes never occur.

Contributions

• RX: a new security-typed language

• Maintains the confidentiality and integrity of data
even in the presence of an evolving security policy.

• Includes a novel treatment of labels as roles derived
from a role-based policy language.

• Models information flows through the state of the
policy by a formal treatment of metapolicy.

• Gives the programmer control over the effect of
policy updates by using a transactional model of
memory.

Outline of the Talk

I. Motivation and challenges

II. A model for policy derived from role-based policy languages

III. RX: A programming language integrated with policy updates

1. Roles as labels and policy queries

2. Integrating policy updates into a language

3. Avoiding inconsistent policy updates using a transactional semantics

4. Preventing information leaks through the policy with metapolicy

IV. Security Properties for RX

V. Related Work

VI. Future Work

Arbitrary Policy Change is Dangerous

• The timing of an update can cause undesirable
information flows.

• The context in which an update occurs can
can allow an adversary to control which data
she is allowed to observe.

• Policy updates can cause the policy to
become a channel of secret information.

Timing of an Update is Critical

• Only members of clinicX
can view patientRec

• Updating policy at L2
allows Doc to view
patientRec even when not a
member of clinicX

• Update at L4 invalidates the
check in L1, but the flow
has already occurred

• Update at L6 might seem to
be ok, but can also be
problematic

L1: if (Doc actsFor clinicX)) {
L2:
L3: show(Doc, patientRec)
L4:
L5: }
L6:

resign(Doc, clinicX) (policy change)

Transitive Flows

• Update at L4 deletes an
actsFor edge between A and
B and simultaneously adds
one between C and A.

• L4 invalidates the check at
L1, but it isn’t within the
scope of L1 --- should such
an update be ok?

• The result is that the
contents of Brec are copied
to Crec, and C actsFor B is
not stated by π or π’.

L0: initial π : A actsFor B, C

L1: if (A actsFor B) {
L2: Arec := Brec
L3: }

L4: change π’ : B, C actsFor A

L5: if (C actsFor A) {
L6: Crec := Arec
L7: }

Policy Integrity

• Principals state their
security preferences
through the policy.

• Suppose conditionX is
controlled by the attacker;
then the update in L2 can
be triggered by the
attacker.

• Who is affected by the
update in L2? Policy
ownership is important.

L0: initial π : A actsFor B, C
L1: if (conditionX)
L2: change π’ : A, B actsFor C

Policy as an Information Channel

• Policy updates can depend
on secret data.

• If attacker discovers that
DrBob is Pat’s doctor, then
he can conclude that Pat
has HIV.

L1: if (patHasHIV) {
L2: change π’: DrBob actsFor Pat
L3: }

Design Goals

• One size does not fit all with respect to the
timing of policy updates. Must provide some way
of controlling when policy updates take effect.

• Principals state their security requirements
through policy. Changes to policy must be
authorized by the appropriate principals.

• The state of a changing policy can become a
channel of information. Must prevent leaks
through this channel too.

RX: A Secure Language with Policy Updates

• Types contain a security label constructed from RT roles.

• A query construct that examines the runtime policy to establish
relations between roles.

• An update construct that allows the policy to be changed from
within the program itself.

• A transactional semantics that allows the programmer to
control how policy updates take effect.

• A formal treatment of information flows through the state of the
policy.

RX uses a role-based policy language

Why not the DLM?
• Policy in the DLM consists of

1. A lattice specifying the actsFor relation between principals

2. Data tagged by labels specifying how the data is permitted to
be used.

• A label is owned by a principal and is literally a set of
principals.

• Unclear ownership of the actsFor lattice makes it difficult to
constrain who can change the lattice

• Labels as literal sets means that policy change requires a
relabeling of data

• The actsFor hierarchy is too coarse-grained. A principal
delegates all his privileges to another or none.

RT0: A Role-based Policy Language

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

Roles are interpreted as
sets of principals

 includes all principals X

where

as well as

where

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

A sample policy

Benefits of a Role-based Policy

• Owned Roles: The role A.r is owned by principal A

• Only A can add or remove statements defining A.r

• Membership is distinct from delegation

• A.r B states that A considers B to be in the A.r role

• A.r B.r states that A considers all members of B.r to also be
in A.r. B can introduce new members into A.r by altering B.r

• Ownership and Delegation together define who can change which
parts of a policy

Roles as Labels
atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ
compound labels " ::= L | " ! "
types t ::= bool
security types τ ::= t!

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω # true : bool! Ω # false : bool! Ω # x : Ω.Γ(x)

Ω # E1 : bool!1 Ω # E2 : bool!2
Ω # E1 ⊕ E2 : bool!1!!2

Ω # S1 Ω # S2

Ω # S1; S2

Ω # skip
Ω # E : bool! Ω[pc = Ω.pc ! "] # S

Ω # while (E) S

Ω # E : bool! Ω[pc = Ω.pc ! "] # Si i ∈ {1, 2}
Ω # if (E) S1 S2

Ω.Γ(x) = t! Ω # E : t! Ω.Q # Ω.pc % "

Ω # x := E

Ω # E : bool!′ Ω.Q # "′ % "

Ω # E : bool!

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, ", are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 !
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol! which stands for the type
of policy mutation statements at security level ", where " is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-

• Atomic labels are roles; roles are interpreted as sets

• Adds a level of indirection: by changing the definition of a role the
security level of a type can change, but the label does not.

• Labels contain a confidentiality and an integrity
component --- compound labels are interpreted as a pair
of sets

• Labels are arranged on a lattice according their
interpretation

A Program Updates Its Own Security Policy

• Can add or delete RT0 statements from the
policy

• ∂1 ::= add Pat.docs Clinic.staff

• ∂2 ::= del Clinic.staff DrBob

• Individual ∂’s are grouped together to take effect
atomically.

Timing of Updates

• Assume clinicRec is confidential to members of Clinic.staff and
patSymptoms to Pat.healthRecords.

• Assignment in S1 is justified by the policy query

• The policy update in S2 may alter the result of the query in S1

• Should such an update be allowed?

• What if S2 was nested within S1?

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

Transactions Control Update Timing

• RX provides a declarative construct for specifying
a scope within which policy updates must respect
past and future flows.

• All memory effects that occur within S are logged
as in a transaction.

• Q represents a set of policy assumptions which if
violated by an update in S cause the transaction
to be rolled back.

• Potential leaks that can occur due to rollback are
eliminated by the type system.

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

Policy as an Information Channel

• Runtime configuration of a
program includes a
memory and a policy

• The attacker has a view
of both memory and
policy

• As policy evolves, the
attacker can gain
information by observing
the policy too.

• If attacker discovers that
DrBob is Pat’s doctor, then
he can conclude that Pat
has HIV.

L1: if (patHasHIV) {
L2: update(Pat.docs DrBob)
L3: }

Metapolicy : Policy is data too

• For each role ρ, C(ρ) is the set of principals
that can interpret ρ as a set.

• C(ρ) is the confidentiality metapolicy.

• Similarly, I(ρ) is the set of principals that trust
the definition of ρ.

• I(ρ) is the integrity metapolicy.

Preventing Leaks through Policy

• Typechecker accepts this
only if it can show (similar to
memory updates)

• Confidentiality of
patHasHIV is not greater
than C(Pat.docs)

• Integrity of patHashHIV is
not less than I(Pat.docs)

• Prevents the attacker from
learning patHasHIV, and from
effecting an unauthorized
change to Pat’s policy.

L1: if (patHasHIV) {
L2: update(Pat.docs DrBob)
L3: }

Requirements of a Metapolicy

• Delegation introduces dependences between roles

• A.r B.r in the policy means that information
flows from B.r to A.r

• Any change to B.r is reflected in the interpretation of A.r

• Metapolicy for B.r cannot be stricter (more
confidential, less trustworthy) than A.r

• Also require I(A.r) to include at least A

• The definition of a role is trusted by the owner

Noninterference

• Configurations of a program include policy and
memory

• Observability of policy is determined by metapolicy C(⋅)

• Memory observability is standard

• RX programs preserve the low-equivalence of a
pair of configurations until a policy change
declassifies policy or data to the attacker

• Obtain an end-to-end guarantee by piecing
together non-declassifying subtraces

• Timing and termination insensitive

Related Work

• FCS 2005, Hicks et al

• Broberg & Sands, Flow Locks

• Almeida-Matos & Boudol, CSFW 2005
(Nondisclosure)

• ... (to do)

Future Directions

• Multi-threaded and distributed setting

• Expect transactions to be useful here

• A hierarchy of policies and metapolicies to
provide better control over policy evolution

• Policies communicated between processes

• Applied to

• Medical information systems

• Cross-domain security in a mostly trusted
environment --- e.g. military intelligence

Summary

• RX supports inlined policy updates, both
additions and revocations

• Provides the programmer with control to
maintain a consistent policy

• A framework for metapolicy to control
information leaks through policy

• Uses a role-based language to provide a
natural administrative model for policy

http://www.cs.umd.edu/projects/PL/RX

EXTRA SLIDES

A Sample Policy in RT0

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

All of Pat’s doctors can view her health records
All staff at Clinic can considered Pat’s doctors

RX Term Syntax (Partial)

• Queries q examine the runtime policy to establish the
lattice ordering relation between atomic labels

• In the statement the static semantics
permits S1 to assume the label ordering q

atomic labels L ::= ρ
compound labels " ::= L | " ! "
types t ::= bool
security types τ ::= t!

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω # true : bool! Ω # false : bool! Ω # x : Ω.Γ(x)

Ω # E1 : bool!1 Ω # E2 : bool!2
Ω # E1 ⊕ E2 : bool!1!!2

Ω # S1 Ω # S2

Ω # S1; S2

Ω # skip
Ω # E : bool! Ω[pc = Ω.pc ! "] # S

Ω # while (E) S

Ω # E : bool! Ω[pc = Ω.pc ! "] # Si i ∈ {1, 2}
Ω # if (E) S1 S2

Ω.Γ(x) = t! Ω # E : t! Ω.Q # Ω.pc % "

Ω # x := E

Ω # E : bool!′ Ω.Q # "′ % "

Ω # E : bool!

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, ", are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 !
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol! which stands for the type
of policy mutation statements at security level ", where " is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)

update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

A Program Updates Its Own Policy

• Can add or delete statements from the policy

• Individual ∂’s are grouped together into a ∆ to take
effect atomically

• Paper treats policy statements s as expressions
allowing updates ∆ to be constructed at runtime

• More restrictive syntax presented here assumes that
all updates are known statically

atomic labels L ::= ρ | C(ρ) | I(ρ)
compound labels " ::= (LC , LI) | " ! "
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add s | del s
updates ∆ ::= δ | δ, ∆
statements S ::= . . .

| if (q) S1 S2

| update ∆
| transQ S

Figure 4. RX syntax, extending RXcore.

policy by adding or removing a collection of policy state-
ments ∆ = δ1, . . . , δn.

Finally, the statement transQ S creates a transaction
with policy context invariant Q. Such a transaction ensures
that, although the policy Π may be updated within S, mod-
ifications to memory by the statement S are consistent with
respect to a single policy.

We present the intuitive idea behind these new constructs
by example, followed by the formal dynamic and static se-
mantics, and conclude with a discussion of metapolicies.

3.2 Motivating Examples

Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 2:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

This example illustrates the purpose of the policy context
Q. The policy update statement executes only if the runtime
policy satisfies the label ordering relation that appears in the
second if-statement. This indicates that it is safe to assume
this label ordering when type-checking the update statement
since it will always be true when the statement executes.
The policy context Q is used to accumulate the result of
label ordering queries that appear in enclosing scopes and

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

is used to statically prove label orderings in the absence of
the runtime policy Π.

While straightforward, this program has a num-
ber of potential information leaks. Suppose that
patAcceptsTreatment is private to only Pat and staff
at the Clinic, but that the contents of Pat .doctors is pub-
lic. Then an adversary could learn the secret value of
patAcceptsTreatment by observing Pat .doctors. This
occurs because policy is essentially another kind of data,
which suggests we must protect it in the same way as
we protect variables. There is a similar dependency be-
tween between the contents of Clinic.insuranceCos and
Pat .insurers and the contents of Pat .doctors. The change to
the latter may indirectly reveal information to an adversary
about the former (i.e., that the members of Pat .insurers are
included in Clinic.insuranceCos). To address both cases,
we define metapolicy label of role ρ to be lab(ρ), and use
this label to protect policy information.

Protecting policy information involves both confiden-
tiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (C(ρ), I(ρ)). Here the
metapolicies C(ρ) and I(ρ) may depend on the owner of
the role ρ and delegation information in the current policy.
Section 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information across up-
dates to the policy in Figure 2. This transitive flow of infor-
mation is illegal, motivating RX’s transactional semantics.

Assume clinicRec is labeled Clinic.staff, and
patSymptoms labeled Pat .healthRecords, and philRec la-
beled DrPhil .self.

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to the
role Pat .healthRecords. Line S1 copies this data into the
Clinic records, which is permitted by the policy in Fig-
ure 2. If the patient decides to leave the clinic, represented
by the variable leaveClinic in line S2, the policy is up-
dated to remove the Clinic.staff from Pat .doctors. Subse-
quently, DrPhil joins the clinic and is therefore added as

5

For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) $= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels "
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π # "1 $ "2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π # ρ1 $ ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation ($) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω # E : τ state that in context Ω the expression E
has type τ . Statement typings Ω # S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label " that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the

atomic labels L ::= ρ | C(ρ) | I(ρ)
compound labels " ::= (LC , LI) | " ! "
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add s | del s
updates ∆ ::= δ | δ, ∆
statements S ::= . . .

| if (q) S1 S2

| update ∆
| transQ S

Figure 4. RX syntax, extending RXcore.

policy by adding or removing a collection of policy state-
ments ∆ = δ1, . . . , δn.

Finally, the statement transQ S creates a transaction
with policy context invariant Q. Such a transaction ensures
that, although the policy Π may be updated within S, mod-
ifications to memory by the statement S are consistent with
respect to a single policy.

We present the intuitive idea behind these new constructs
by example, followed by the formal dynamic and static se-
mantics, and conclude with a discussion of metapolicies.

3.2 Motivating Examples

Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 2:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

This example illustrates the purpose of the policy context
Q. The policy update statement executes only if the runtime
policy satisfies the label ordering relation that appears in the
second if-statement. This indicates that it is safe to assume
this label ordering when type-checking the update statement
since it will always be true when the statement executes.
The policy context Q is used to accumulate the result of
label ordering queries that appear in enclosing scopes and

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

is used to statically prove label orderings in the absence of
the runtime policy Π.

While straightforward, this program has a num-
ber of potential information leaks. Suppose that
patAcceptsTreatment is private to only Pat and staff
at the Clinic, but that the contents of Pat .doctors is pub-
lic. Then an adversary could learn the secret value of
patAcceptsTreatment by observing Pat .doctors. This
occurs because policy is essentially another kind of data,
which suggests we must protect it in the same way as
we protect variables. There is a similar dependency be-
tween between the contents of Clinic.insuranceCos and
Pat .insurers and the contents of Pat .doctors. The change to
the latter may indirectly reveal information to an adversary
about the former (i.e., that the members of Pat .insurers are
included in Clinic.insuranceCos). To address both cases,
we define metapolicy label of role ρ to be lab(ρ), and use
this label to protect policy information.

Protecting policy information involves both confiden-
tiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (C(ρ), I(ρ)). Here the
metapolicies C(ρ) and I(ρ) may depend on the owner of
the role ρ and delegation information in the current policy.
Section 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information across up-
dates to the policy in Figure 2. This transitive flow of infor-
mation is illegal, motivating RX’s transactional semantics.

Assume clinicRec is labeled Clinic.staff, and
patSymptoms labeled Pat .healthRecords, and philRec la-
beled DrPhil .self.

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to the
role Pat .healthRecords. Line S1 copies this data into the
Clinic records, which is permitted by the policy in Fig-
ure 2. If the patient decides to leave the clinic, represented
by the variable leaveClinic in line S2, the policy is up-
dated to remove the Clinic.staff from Pat .doctors. Subse-
quently, DrPhil joins the clinic and is therefore added as

5

atomic labels L ::= ρ | C(ρ) | I(ρ)
compound labels " ::= (LC , LI) | " ! "
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add s | del s
updates ∆ ::= δ | δ, ∆
statements S ::= . . .

| if (q) S1 S2

| update ∆
| transQ S

Figure 4. RX syntax, extending RXcore.

policy by adding or removing a collection of policy state-
ments ∆ = δ1, . . . , δn.

Finally, the statement transQ S creates a transaction
with policy context invariant Q. Such a transaction ensures
that, although the policy Π may be updated within S, mod-
ifications to memory by the statement S are consistent with
respect to a single policy.

We present the intuitive idea behind these new constructs
by example, followed by the formal dynamic and static se-
mantics, and conclude with a discussion of metapolicies.

3.2 Motivating Examples

Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 2:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

This example illustrates the purpose of the policy context
Q. The policy update statement executes only if the runtime
policy satisfies the label ordering relation that appears in the
second if-statement. This indicates that it is safe to assume
this label ordering when type-checking the update statement
since it will always be true when the statement executes.
The policy context Q is used to accumulate the result of
label ordering queries that appear in enclosing scopes and

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

is used to statically prove label orderings in the absence of
the runtime policy Π.

While straightforward, this program has a num-
ber of potential information leaks. Suppose that
patAcceptsTreatment is private to only Pat and staff
at the Clinic, but that the contents of Pat .doctors is pub-
lic. Then an adversary could learn the secret value of
patAcceptsTreatment by observing Pat .doctors. This
occurs because policy is essentially another kind of data,
which suggests we must protect it in the same way as
we protect variables. There is a similar dependency be-
tween between the contents of Clinic.insuranceCos and
Pat .insurers and the contents of Pat .doctors. The change to
the latter may indirectly reveal information to an adversary
about the former (i.e., that the members of Pat .insurers are
included in Clinic.insuranceCos). To address both cases,
we define metapolicy label of role ρ to be lab(ρ), and use
this label to protect policy information.

Protecting policy information involves both confiden-
tiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (C(ρ), I(ρ)). Here the
metapolicies C(ρ) and I(ρ) may depend on the owner of
the role ρ and delegation information in the current policy.
Section 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information across up-
dates to the policy in Figure 2. This transitive flow of infor-
mation is illegal, motivating RX’s transactional semantics.

Assume clinicRec is labeled Clinic.staff, and
patSymptoms labeled Pat .healthRecords, and philRec la-
beled DrPhil .self.

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to the
role Pat .healthRecords. Line S1 copies this data into the
Clinic records, which is permitted by the policy in Fig-
ure 2. If the patient decides to leave the clinic, represented
by the variable leaveClinic in line S2, the policy is up-
dated to remove the Clinic.staff from Pat .doctors. Subse-
quently, DrPhil joins the clinic and is therefore added as

5

Some Typing Judgments

• Ω consists of an environment, a pc label, and a policy
context Q

• Top-left rule: Q accumulates the the results of policy
queries

• Standard rules for assignments and if-stmt:

• Q is used to establish label ordering

atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels " ::= (LC , LI) | " ! "
types t ::= . . . | pol
queries q ::= L1 " L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)
if(Clinic.insuranceCos " Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords " Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del(Pat.doctors ← Clinic.staff));

S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff " DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords ! Clinic.staff) needed to
justify the flow of information in the assignment of S1 was

atomic labels L ::= ρ
compound labels " ::= L | " ! "
types t ::= bool
security types τ ::= t!

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω # true : bool! Ω # false : bool! Ω # x : Ω.Γ(x)

Ω # E1 : bool!1 Ω # E2 : bool!2
Ω # E1 ⊕ E2 : bool!1!!2

Ω # S1 Ω # S2

Ω # S1; S2

Ω # skip
Ω # E : bool! Ω[pc = Ω.pc ! "] # S

Ω # while (E) S

Ω # E : bool! Ω[pc = Ω.pc ! "] # Si i ∈ {1, 2}
Ω # if (E) S1 S2

Ω.Γ(x) = t! Ω # E : t! Ω.Q # Ω.pc % "

Ω # x := E

Ω # E : bool!′ Ω.Q # "′ % "

Ω # E : bool!

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, ", are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 !
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol! which stands for the type
of policy mutation statements at security level ", where " is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-

atomic labels L ::= ρ
compound labels " ::= L | " ! "
types t ::= bool
security types τ ::= t!

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω # true : bool! Ω # false : bool! Ω # x : Ω.Γ(x)

Ω # E1 : bool!1 Ω # E2 : bool!2
Ω # E1 ⊕ E2 : bool!1!!2

Ω # S1 Ω # S2

Ω # S1; S2

Ω # skip
Ω # E : bool! Ω[pc = Ω.pc ! "] # S

Ω # while (E) S

Ω # E : bool! Ω[pc = Ω.pc ! "] # Si i ∈ {1, 2}
Ω # if (E) S1 S2

Ω.Γ(x) = t! Ω # E : t! Ω.Q # Ω.pc % "

Ω # x := E

Ω # E : bool!′ Ω.Q # "′ % "

Ω # E : bool!

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, ", are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 !
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol! which stands for the type
of policy mutation statements at security level ", where " is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-

atomic labels L ::= ρ
compound labels " ::= L | " ! "
types t ::= bool
security types τ ::= t!

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω # true : bool! Ω # false : bool! Ω # x : Ω.Γ(x)

Ω # E1 : bool!1 Ω # E2 : bool!2
Ω # E1 ⊕ E2 : bool!1!!2

Ω # S1 Ω # S2

Ω # S1; S2

Ω # skip
Ω # E : bool! Ω[pc = Ω.pc ! "] # S

Ω # while (E) S

Ω # E : bool! Ω[pc = Ω.pc ! "] # Si i ∈ {1, 2}
Ω # if (E) S1 S2

Ω.Γ(x) = t! Ω # E : t! Ω.Q # Ω.pc % "

Ω # x := E

Ω # E : bool!′ Ω.Q # "′ % "

Ω # E : bool!

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, ", are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 !
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol! which stands for the type
of policy mutation statements at security level ", where " is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-

Ω[Q = Ω.Q ∪ {q}] " S1 Ω " S2

Ω " if (q) S1 S2

The who, what, when and how of
policy change

• Which principals are allowed to change the policy?

• What parts of the policy are they allowed to change?

• When during execution can the change take place?

• How is a change reflected in the program's behavior?

Choosing a Security Property
 How much attention to

pay to “Past Flows”?

• Suppose A:=B is consistent with
Π, but not consistent with Π’

• Should we rule out Program P as
insecure?

• What if the assignment A:=B was
not already executed?

• Similar issue with “Future Flows”

Program P
<policy = Π>
…
A := B;
...
<update policy to Π’>
…
C := D

 The least we require is for all flows exhibited by a
program to be consistent with the current policy

Static Reasoning about Dynamic Policy

• Static enforcement permits a strong security
guarantee

• But, we still want the actual runtime policy to be
indeterminate

• Need to combine a static and a dynamic approach

• The program must interact with the state of the
policy before causing a flow to occur. (Similar to
access control)

