Trustworthy, Useful Languages for Probabilistic Modeling and Inference

Neil Toronto
Department of Computer Science, BYU
Doctor of Philosophy

The ideals of exact modeling, and of putting off approximations as long as possible, make Bayesian practice both successful and difficult. Languages for modeling probabilistic processes, whose implementations answer questions about them under asserted conditions, promise to ease much of the difficulty.

Unfortunately, very few of these languages have mathematical specifications. This makes them difficult to trust: there is no way to distinguish between an implementation error and a feature, and there is no standard by which to prove optimizations correct. Further, because the languages are based on the incomplete theories of probability typically used in Bayesian practice, they place seemingly artificial restrictions on legal programs and questions, such as disallowing unbounded recursion and allowing only simple equality conditions.

We prove it is possible to make trustworthy probabilistic languages for Bayesian practice by using functional programming theory to define them mathematically and prove them correct. The specifications interpret programs using measure-theoretic probability, which is a complete enough theory of probability that we do not need to restrict programs or conditions.

We demonstrate that these trustworthy languages are useful by implementing them, and using them to model and answer questions about typical probabilistic processes. We also model and answer questions about processes that are either difficult or impossible to reason about precisely using typical Bayesian mathematical tools.

Keywords: Bayesian, Probability, Domain-Specific Languages, Functional Programming, Semantics, Measure Theory
To my wife, Amy.
ACKNOWLEDGMENTS

I must first thank my parents for bringing me up right.

I must secondly thank my parents again, for encouraging my curiosity and intellectual development. Only now do I hear stories of the difficulties they had finding age-appropriate computer accessories and programming books for my Christmas presents—in the mid-1980s, when such things were scarce and few were made for children.

I must thirdly thank my parents yet again, for trying to instill in me a love of hard work. It eventually took. I assure them it was worth it.

My master’s advisor, Dan Ventura, was a joy to work with. He took me in when I was still an undergraduate, and showed me how to enjoy doing research and to be unafraid of tackling hard, important problems. He allowed a great deal of freedom, even though my inquiries eventually took me to a different research area.

My PhD advisor, Jay McCarthy, has been stellar in every respect. He showed me how to research programming languages rigorously, taught me how to structure my communication, and offered excellent insights and suggestions on research that crosses into an area he initially knew little about. Without Jay’s guidance, there would be little to distinguish this work from other work in probabilistic languages. Together, we have done it in a way that is the most complete and reliable.

I cannot confine my thanks only to Jay’s professional instruction. He has also ensured that I could take care of my family without going into debt, and ensured that I have the connections necessary to secure a good career. The wait for “when Daddy gets a real job” has been bearable, with no ever-increasing financial load and with good prospects to look forward to. The positive repercussions will be nearly endless. I am eternally grateful.

My wife, Amy, has constantly supported my academic pursuits for 11 years. This is truly marvelous in a way that words are too narrow to contain.
I thank my children, for praying for me every day, and for being sweet, loving, talented, and so very interesting.

Lastly, I thank my God and Savior, whose justice and mercy make life meaningful and beautiful.
Table of Contents

List of Figures

<table>
<thead>
<tr>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
</tr>
<tr>
<td>1.2 Terms</td>
</tr>
<tr>
<td>1.3 Proof and Supporting Evidence</td>
</tr>
<tr>
<td>1.4 Reading Transition System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Bayesian Practice</td>
</tr>
<tr>
<td>2.1.1 Discrete Probability and Joint Distribution Models</td>
</tr>
<tr>
<td>2.1.2 Probability Densities and Density Models</td>
</tr>
<tr>
<td>2.2 Measure-Theoretic Probability</td>
</tr>
<tr>
<td>2.2.1 Probability Measures</td>
</tr>
<tr>
<td>2.2.2 Measure-Theoretic Models</td>
</tr>
<tr>
<td>2.2.3 Segue: Approximating Measure Theory</td>
</tr>
<tr>
<td>2.3 Functional Programming Theory</td>
</tr>
<tr>
<td>2.3.1 λ-Calculus</td>
</tr>
<tr>
<td>2.3.2 Evaluation Order</td>
</tr>
<tr>
<td>2.3.3 Big-Step Operational Semantics</td>
</tr>
<tr>
<td>2.3.4 Denotational Semantics</td>
</tr>
<tr>
<td>2.3.5 Categorical Semantics</td>
</tr>
</tbody>
</table>
2.3.6 Abstract Interpretation .. 45

3 Related Work 49

3.1 Implementations .. 49
3.2 Semantics .. 50
3.3 Somewhat Related Work .. 51

4 Computing in Cantor’s Paradise With λ_{ZFC} 52

4.1 Motivation .. 52
4.2 Language Tower and Terminology .. 54
4.3 Metalanguage: First-Order Set Theory .. 55
 4.3.1 The Gateway to Cantor’s Paradise: Infinity .. 57
 4.3.2 Every Set Can Be Sequenced: Well-Ordering .. 59
 4.3.3 Infinity’s Infinity: An Inaccessible Cardinal .. 59
4.4 λ_{ZFC}’s Grammar .. 60
 4.4.1 An Infinite Set Rule For Finite BNF Grammars .. 61
 4.4.2 The Grammar of Infinite, Encoded Terms .. 63
4.5 λ_{ZFC}’s Big-Step Reduction Semantics .. 64
4.6 Syntactic Sugar and a Small Set Library .. 67
4.7 Example: The Reals From the Rationals .. 69
4.8 Example: Computable Real Limits .. 71
 4.8.1 The Limit Monad .. 72
 4.8.2 The Computable Limit Monad .. 73
4.9 Related Work .. 75
4.10 Conclusions .. 77

5 Using λ_{ZFC} .. 78

5.1 Computations and Values .. 78
5.2 Auxiliary Type Systems .. 79
5.3 Using ZFC Values and Theorems .. 80
5.4 Internal Equality and External Equivalence 81
5.5 Additional Functions and Syntactic Forms 82
5.6 Extensional Functions ... 82

6 Countable Models and Implementation 84

6.1 Introduction ... 84
6.2 The Expression Language .. 86
 6.2.1 Background Theory: Random Variables 86
 6.2.2 Interpreting Random Variable Expressions As Computations . 87
 6.2.3 Implementation in Racket ... 89
6.3 The Query Language ... 89
 6.3.1 Background Theory: Probability Spaces 90
 6.3.2 Background Theory: Queries 90
 6.3.3 Interpreting Query Notation 91
 6.3.4 Approximating Queries .. 92
 6.3.5 Implementation in Racket ... 92
6.4 Conditional Queries ... 93
6.5 The Statement Language .. 95
 6.5.1 Interpreting Common Conditional Theories 95
 6.5.2 Interpreting Statements as Monadic Computations 97
 6.5.3 Approximating Models and Queries 99
 6.5.4 Implementation in Racket ... 99
 6.5.5 Examples .. 100
6.6 Why Separate Statements and Queries? 102
6.7 Conclusions ... 103

7 Interlude: Uncountable Outcomes and Recursion 104
8 Preimage Computation Theory: Running Programs Backwards 106

8.1 Introduction .. 106
 8.1.1 Measure-Theoretic Semantics 107
 8.1.2 Arrow Solution Overview 108

8.2 Arrows and First-Order Semantics 109
 8.2.1 Alternative Arrow Definitions and Laws 109
 8.2.2 First-Order Let-Calculus Semantics 113

8.3 The Bottom Arrow ... 116

8.4 Deriving the Mapping Arrow 117
 8.4.1 Composition .. 119
 8.4.2 Pairing ... 120
 8.4.3 Conditional ... 121
 8.4.4 Laziness ... 122
 8.4.5 Correctness ... 122

8.5 Lazy Preimage Mappings 123
 8.5.1 Composition .. 125
 8.5.2 Pairing ... 126
 8.5.3 Disjoint Union ... 127

8.6 Deriving the Preimage Arrow 128
 8.6.1 Composition .. 130
 8.6.2 Pairing ... 131
 8.6.3 Conditional ... 131
 8.6.4 Laziness ... 132
 8.6.5 Correctness ... 132

8.7 Preimages Under Partial, Probabilistic Functions 133
 8.7.1 Motivation .. 134
 8.7.2 Threading and Indexing 134
8.7.3 Applicative, Associative Store Transformer 135
8.7.4 Partial, Probabilistic Programs 136
8.7.5 Correctness 139
8.7.6 Termination 142
8.8 Output Probabilities and Measurability 145
8.9 Approximating Semantics 146
8.9.1 Implementable Lifts 146
8.9.2 Approximate Preimage Mapping Operations 148
8.9.3 Correctness 151
8.9.4 Preimage Refinement Algorithm 153
8.10 Implementations 156
8.11 Conclusions 157

9 Preimage Computation Implementation 158
9.1 Introduction 158
9.2 Abstract Sets and Concrete Values 159
9.2.1 Infinite Binary Trees 164
9.2.2 Disjoint Bottom and Top Unions 168
9.2.3 Testing 171
9.3 Preimages Under Real Functions 174
9.3.1 Invertible Primitives 175
9.3.2 Two-Argument Primitives 177
9.3.3 Primitive Implementation 188
9.3.4 Piecewise Monotone Primitives 194
9.4 Sampling Methods 195
9.4.1 Partitioned Sampling 196
9.4.2 Partitioning Probabilistic Program Domains 200
9.4.3 Approximate Partitions of Probabilistic Program Domains 206
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A transition system for reading this dissertation</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Computing probabilities using the standard normal density function</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Joint density model plot</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Bayes’ law for densities, in pictures</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Conditional probabilities as limits of ratios</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Conditional probabilities with a uniform random source model</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Big-step operational semantics example</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Implementation of the big-step semantics</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>Big-step operational semantics with nondeterminism</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Denotational semantics and implementation</td>
<td>38</td>
</tr>
<tr>
<td>2.10</td>
<td>Denotational semantics with nondeterminism</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Categorical semantics with nondeterminism</td>
<td>42</td>
</tr>
<tr>
<td>2.12</td>
<td>Abstract semantics with nondeterminism</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Definition of λ_{ZFC}</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Semantic function $F[\cdot]$</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>λ_{ZFC}’s grammar</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>λ_{ZFC}’s semantics</td>
<td>65</td>
</tr>
<tr>
<td>6.1</td>
<td>Random variable expression semantics</td>
<td>88</td>
</tr>
<tr>
<td>6.2</td>
<td>Implementation of $R[\cdot]$</td>
<td>89</td>
</tr>
<tr>
<td>6.3</td>
<td>Implementation of finite approximation and distribution queries</td>
<td>93</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.12</td>
<td>Images and preimages under real functions</td>
<td>191</td>
</tr>
<tr>
<td>9.13</td>
<td>Images and preimages under two-dimensional real functions</td>
<td>193</td>
</tr>
<tr>
<td>9.14</td>
<td>Preimage refinement sampling</td>
<td>196</td>
</tr>
<tr>
<td>9.15</td>
<td>Sampling uniformly in a partitioned unit square</td>
<td>199</td>
</tr>
<tr>
<td>9.16</td>
<td>A computation tree and an induced partition of Ω</td>
<td>202</td>
</tr>
<tr>
<td>9.17</td>
<td>Branch index collecting semantics</td>
<td>207</td>
</tr>
<tr>
<td>9.18</td>
<td>Final indexes arrow definitions</td>
<td>210</td>
</tr>
<tr>
<td>9.19</td>
<td>Preimage refinement sampling</td>
<td>211</td>
</tr>
<tr>
<td>9.20</td>
<td>Independent vs. dependent uniform sampling</td>
<td>215</td>
</tr>
<tr>
<td>9.21</td>
<td>Self-adjusting, probabilistic tree search</td>
<td>217</td>
</tr>
<tr>
<td>9.22</td>
<td>Self-adjusting, probabilistic tree search algorithm</td>
<td>218</td>
</tr>
<tr>
<td>9.23</td>
<td>Implementation dependency graph</td>
<td>221</td>
</tr>
<tr>
<td>10.1</td>
<td>Sampling from preimages under multiplication and division</td>
<td>227</td>
</tr>
<tr>
<td>10.2</td>
<td>Samples from Dr. Bayes and a density estimate</td>
<td>232</td>
</tr>
<tr>
<td>10.3</td>
<td>Nested rectangular conditions</td>
<td>235</td>
</tr>
<tr>
<td>10.4</td>
<td>Inference with ε_i of differing magnitudes</td>
<td>236</td>
</tr>
<tr>
<td>10.5</td>
<td>Bayesian analysis of Dr. Bayes’s running time, using Dr. Bayes</td>
<td>238</td>
</tr>
<tr>
<td>10.6</td>
<td>Bayesian theory selection in Dr. Bayes</td>
<td>241</td>
</tr>
<tr>
<td>10.7</td>
<td>The distribution of X given $Y_1 + Y_2 = 2$</td>
<td>243</td>
</tr>
<tr>
<td>10.8</td>
<td>Bayesian inference with a bounded measuring device</td>
<td>244</td>
</tr>
<tr>
<td>10.9</td>
<td>Circular probabilistic conditions</td>
<td>246</td>
</tr>
<tr>
<td>10.10</td>
<td>Stochastic ray tracing in Dr. Bayes</td>
<td>247</td>
</tr>
<tr>
<td>10.11</td>
<td>The dependency problem</td>
<td>254</td>
</tr>
</tbody>
</table>
“I think you’re begging the question,” said Haydock, “and I can see looming ahead one of those terrible exercises in probability where six men have white hats and six men have black hats and you have to work it out by mathematics how likely it is that the hats will get mixed up and in what proportion. If you start thinking about things like that, you would go round the bend. Let me assure you of that!”

Agatha Christie, *The Mirror Crack’d*
Chapter 1

Thesis

This branch of mathematics [Probability] is the only one, I believe, in which good writers frequently get results which are entirely erroneous.

Charles S. Peirce

1.1 Introduction

Probability is notorious for being counterintuitive. Ask anyone who is wrestling with the birthday paradox, the Monty Hall problem, or the Bayesian phenomenon explaining away.

Probability’s habit of violating intuition makes any automation of probabilistic reasoning helpful. For automation, Bayesian practitioners are increasingly turning to languages for modeling probabilistic processes, whose implementations compute answers to questions about the processes under constraints.

Probabilistic languages should have mathematical specifications. The reason is simple: if a probabilistic language is implemented to be faithful to its maker’s intuitions instead of a specification, it is almost certainly faulty.

Unfortunately, there are currently few probabilistic languages that have mathematical specifications. This state of affairs is partly responsible for another: until now, every probabilistic language that can support Bayesian practice is artificially limited in what it can express. Most commonly, probabilistic languages disallow unbounded loops and recursion, allow only discrete or continuous distributions, and restrict constraints to the form $X = c$.

The thesis statement is essentially that these states of affairs need not continue.
Thesis Statement: Functional programming theory and measure-theoretic probability provide a solid foundation for trustworthy, useful languages for constructive probabilistic modeling and inference.

1.2 Terms

To model something is to make it into a model of a theory, by developing the theory. For example, physicists model gravity by developing theories of gravitation; the physical phenomenon is a model of the theories. Likewise, Bayesians model probabilistic processes by developing probabilistic theories for which the physical processes are models. When there are mathematical models of theories, the mathematical models can be used to predict the physical models’ behavior and discover their properties.

Bayesians write theories in many ways. One is to write them constructively: in such a way that the theory contains enough information to directly construct one of its mathematical models. This is often regarded as the ideal way to write them.

Inference means answering questions about theories. In this context, it implies conditioning: constraining the model in a way that preserves certain relative probabilities.

Measure-theoretic probability [43] is the most successful theory of probability in precision, maturity, and explanatory power. It was first developed in the early 1900s to formalize intuitive ideas about probability, to unify notions of discrete and continuous random variables, and to settle paradoxes that arise from incorrectly applying intuition to infinities.

Functional programming theory is used to give mathematically precise meaning to programs and to give rules for executing them. In it, the λ-calculus serves as a model of computation and as a minimal language in which to reason by substitution.

A trustworthy language has a mathematical meaning called a semantics. By defining a language mathematically, it is possible to prove theorems about it, which apply to all faithful implementations. Further, if a language implementation computes something unexpected, its semantics provides a way to determine whether its behavior is correct.
We generally think of languages as being useful when they save time by automating calculations. Languages are also useful when they allow us to express ideas naturally and reason about them precisely, or provide abstraction mechanisms so we can express ideas and reason about them at high levels.

1.3 Proof and Supporting Evidence

All but usefulness in the thesis can be proved, and for usefulness, we give evidence. To prove and give evidence for the thesis, for two languages, we define semantics, prove them correct, implement approximations of them, and test the implementations.

The first language is an initial investigation into our general approach. First, we define an exact semantics that transforms Bayesian theories into λ-calculus terms that build exact measure-theoretic models of the theories. Second, we derive an approximating semantics that outputs approximate models to carry out computations. To keep the investigation simple, we restrict theories to countable probability distributions and finitely many statements.

We ensure that the first language is trustworthy by deriving its exact semantics from an idealized expected meaning of Bayesian theories, and computing answers to queries from approximate models in a way that converges to the correct answers according to the exact models. We demonstrate that the language is useful by implementing the approximating semantics, and encoding theories and running queries that are difficult to model directly without it.

The second language’s semantics handles uncountable probability distributions and recursion by transforming a first-order functional language with probabilistic choice into λ-calculus terms that build models. Again, we derive an approximating semantics for building approximate models.

We show the language is trustworthy by proving

- Exact queries always terminate with correct answers (Theorem 8.51).
- All probabilistic programs have output distributions, regardless of nontermination
(Theorems 8.52 and 8.53).

- The approximations are sound, always terminate, and have other desirable properties (Theorems 8.58 through 8.61).
- Answers computed using the approximations correctly converge (Theorem B.22).

Further, Theorems 8.52 and 8.53 apply to any probabilistic programming language that can be transformed into ours. Because ours is Turing-equivalent (with a random oracle) and is easy to extend with uncomputable operations such as real limits and decidable equality, this includes all probabilistic programming languages to date, and likely almost all future probabilistic programming languages.

We demonstrate the second language is useful by implementing the approximating semantics and encoding some typical Bayesian theories and running queries. In all of our tests, the theory encodings are straightforward and the queries are efficient.

To demonstrate further usefulness, we encode theories and run queries that are impossible to reason about precisely using typical Bayesian mathematical tools. One example draws inferences from a correctly modeled thermometer. Another is a simple, direct theory of light transport and a query that together carry out stochastic ray tracing. We also recast probabilistic program verification as Bayesian inference and verify the error bounds of floating-point function implementations.

The second language’s main implementation is called **Dr. Bayes**. It can be found at https://github.com/ntoronto/drbayes.

1.4 Reading Transition System

While this work is designed to make sense when read straight through, readers may skip some depending on their goals.

In principle, answers to questions such as “Which chapters should I read if I am interested only in implementations of probabilistic languages with conditioning and recursion?” can be answered using a dependency graph. However, the graph would be a mess of arrows:
for example, everything after Chapter 2 (Background) depends on Chapter 2; similarly for Chapter 5 (Using \(\lambda_{ZFC} \)). Figure 1.1 shows an alternative: a transition system on chapters for which following any path (with backtracking permitted) guarantees a reader will not miss out on prerequisites.

Chapter 2 gives the necessary background in Bayesian practice and functional programming theory, and motivates using measure theory. Chapter 3 reviews related work.

The semantics mentioned in the preceding section transform programs into \(\lambda \)-calculus terms. This target language has three requirements that, taken together, are unusual for a \(\lambda \)-calculus: it must be able to represent infinite objects and operations on them, it must have nonterminating programs, and measure-theoretic theorems must apply directly to its terms. Before this work, such a \(\lambda \)-calculus did not exist. Chapter 4 defines one, \(\lambda_{ZFC} \), with the precision necessary to carry out proofs with it.
While this precision is necessary for doing the rest of our work and verifying it, such precision is not necessary for understanding it. Readers who are not verifying our work may therefore skip from Chapter 3 to Chapter 5, which gives an overview of λ_{ZFC} and its relationship with contemporary mathematics, gives examples of use, and defines some common terminology and functions.

Chapter 6 defines a semantics for Bayesian notation restricted to countable probability distributions and finitely many statements. Chapter 7 explains why its specific way of transforming notation into models does not extend easily to theories with recursion, which motivates a slight change in tactics.

Following the new tactics, Chapter 8 defines a semantics for a probabilistic language with uncountable distributions, recursion, and arbitrary probabilistic conditions. Chapter 9 gives details that should be common to all implementations, and details specific to ours. Chapter 10 explores our implementation’s capabilities, strengths and weaknesses through examples.

Appendix A contains proofs of theorems critical to correctness, but whose inclusion in Chapter 8 would interrupt the narrative flow too much for readers unfamiliar with measure theory. Appendix B is similar, but contains proofs of theorems from Chapter 9. While familiarity with measure theory is helpful while reading these two chapters, it is not strictly necessary: both explain the necessary concepts, and import enough definitions and lemmas from other sources to verify the proofs.
Chapter 2

Background

Our work bridges Bayesian practice and functional programming theory using measure-theoretic probability. Here, we attempt to give enough background in each area that readers can follow the aspects of our work they are not familiar with, at least at a high level.

It is difficult to find two areas in computer science as different as Bayesian practice and functional programming theory. In Bayesian practice, we find deeply held belief that unknowns can and should be quantified (usually by probabilities), reasoning by probabilistic inference, willingness to accept many kinds of approximations, and common notation that is—to put it kindly—flexible. In functional programming theory, we find deeply held belief that unknowns should be qualified (usually universally), reasoning by logical inference, little tolerance for unsound approximations even if they converge, and common notation that is—to put it kindly—almost precise enough to feed a compiler.

There is one common trait that makes bridging both areas even conceivable. While Bayesians model processes and functional programming researchers model languages, both approach their tasks methodically, and both create theories in which every entity they want to reason about is represented explicitly. If something important is going on behind the scenes—whether a hidden Markov process or mutating the program’s store—it is brought to the fore and fully characterized. In both areas, the extra time and cognitive burden are considered worthwhile payment for reliable artifacts and repeatable results.

It is this trait, explicit representation, that makes it possible to automate Bayesian inference, and again this trait that makes it possible to prove the automation correct.
2.1 Bayesian Practice

From Bayesian practice, the requisite background includes probability mass functions, probability densities, queries and manipulation rules, Bayesian modeling, and Bayesian inference. We assume readers know arithmetic, some set theory, functions, and the basic ideas behind integration.

2.1.1 Discrete Probability and Joint Distribution Models

In a probabilistic model of a real-world process, distinguished identifiers called random variables denote random values. These are regarded as free variables, but with additional information that quantifies the likelihoods of every combination of their values, or observable outcomes. The additional information is completely characterized by a function called a joint distribution.

For example, suppose $X, Y \in \{h, t\}$ are random variables that each represent the outcome of a coin toss, one of which may not be fair. Further, let the joint distribution $p_{X,Y} : \{h, t\} \times \{h, t\} \rightarrow [0, 1]$ quantify the likelihood of every possible combination of observable outcomes by defining

$$p_{X,Y} = \begin{cases}
(h, h) &\mapsto \frac{1}{4},
(h, t) &\mapsto \frac{1}{4},
(t, h) &\mapsto \frac{1}{6},
(t, t) &\mapsto \frac{1}{3}
\end{cases} \quad (2.1)$$

(The subscript “X, Y” is just part of the function name, and has no special meaning.) This is a probability mass function: its outputs sum to 1.

The probability that $X = t$ and $Y = h$ is $p_{X,Y}(t, h) = \frac{1}{6}$. Another way to write “the probability that $X = t$ and $Y = h$” is with a probability query:

$$\Pr[X = t \land Y = h] = p_{X,Y}(t, h) \quad (2.2)$$

A probability query always implicitly refers to some ambient joint distribution. In general, the result of a probability query $\Pr[e]$ is the sum of probabilities of observable outcomes
for which the proposition \(e \) is true. Conjunctions are often separated by a comma; e.g. \(\Pr[X = x, Y = y] \) means \(\Pr[X = x \land Y = y] \).

Probability queries have manipulation rules. One is that random variables may be “summed out” to consider the probabilities of the values of others independently. For example, to consider just the probabilities of values of \(X \), we may sum out \(Y \):

\[
\Pr[X = x] = \sum_{y \in \{h, t\}} \Pr[X = x, Y = y]
\]

(2.3)

According to this rule, \(X \) represents the outcome of a fair coin toss (independent of \(Y \)):

\[
\begin{align*}
\Pr[X = h] & = \Pr[X = h, Y = h] + \Pr[X = h, Y = t] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \\
\Pr[X = t] & = \Pr[X = t, Y = h] + \Pr[X = t, Y = t] = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}
\end{align*}
\]

(2.4)

Another manipulation rule allows fixing the value of one random variable to consider the probabilities of the values of others dependently. For example, if \(x \) is fixed and \(\Pr[X = x] > 0 \), then the probability that \(Y = y \) is

\[
\Pr[Y = y \mid X = x] = \frac{\Pr[X = x, Y = y]}{\Pr[X = x]}
\]

(2.5)

This conditional probability query is read “the probability that \(Y = y \) given \(X = x \).” Using this rule, we can determine that, if \(X \) is known to be \(t \), then \(Y \) represents a coin toss that is not fair:

\[
\begin{align*}
\Pr[Y = h \mid X = t] & = \frac{\Pr[X = t, Y = h]}{\Pr[X = t]} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3} \\
\Pr[Y = t \mid X = t] & = \frac{\Pr[X = t, Y = t]}{\Pr[X = t]} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}
\end{align*}
\]

(2.6)

We could similarly show \(\Pr[Y = h \mid X = h] = \frac{1}{2} \) and \(\Pr[Y = t \mid X = h] = \frac{1}{2} \), so when \(X \) is known to be \(h \), \(Y \) represents a fair coin toss.
To avoid the condition $\Pr[X = x] > 0$, the preceding rule is often written

\[
\Pr[X = x, Y = y] = \Pr[X = x] \cdot \Pr[Y = y \mid X = x]
\]

\[
= \Pr[Y = y] \cdot \Pr[X = x \mid Y = y]
\]

(2.7)

In this form, it is called the chain rule.

As a function of x, $\Pr[X = x]$ is a probability mass function, but over just X instead of X and Y together. With any fixed x, as a function of y, $\Pr[Y = y \mid X = x]$ is also a probability mass function. Most Bayesian models are constructed by reifying these queries as functions called (respectively) distributions and conditional distributions, and using the chain rule to build a joint distribution. For the present example,

\[
p_X = \begin{bmatrix} h \mapsto \frac{1}{2}, t \mapsto \frac{1}{2} \end{bmatrix}
\]

\[
p_{Y \mid X}(y \mid x) = \begin{cases}
 x = h & \begin{bmatrix} h \mapsto \frac{1}{2}, t \mapsto \frac{1}{2} \end{bmatrix} (y) \\
 x = t & \begin{bmatrix} h \mapsto \frac{1}{3}, t \mapsto \frac{2}{3} \end{bmatrix} (y)
\end{cases}
\]

(2.8)

\[
p_{X,Y}(x,y) = p_X(x) \cdot p_{Y \mid X}(y \mid x)
\]

In the conditional distribution $p_{Y \mid X}$, the “$Y \mid X$” subscript is simply part of the function name, and in applying it, $(y \mid x)$ is just another way to write the arguments (y, x).1 The syntax simply connotes that we expect $\Pr[Y = y \mid X = x] = p_{Y \mid X}(y \mid x)$.

This model can be more compactly specified by a constructive theory about X and Y, which states only the properties that a joint distribution model must satisfy:

\[
X \sim \begin{bmatrix} h \mapsto \frac{1}{2}, t \mapsto \frac{1}{2} \end{bmatrix}
\]

\[
Y \sim \begin{cases}
 X = h & \begin{bmatrix} h \mapsto \frac{1}{2}, t \mapsto \frac{1}{2} \end{bmatrix} \\
 X = t & \begin{bmatrix} h \mapsto \frac{1}{3}, t \mapsto \frac{2}{3} \end{bmatrix}
\end{cases}
\]

(2.9)

Here, $X \sim e$ is read “X is distributed e.” In this leaner form, it is perhaps easier to understand

1It is common to leave off subscripts such as $Y \mid X$ and use the form of application to distinguish the different ps; e.g. $p(x)$ means $p_X(x)$ and $p(y \mid x)$ means $p_{Y \mid X}(y \mid x)$. Doing so is helpful when there are many random variables, and it is usually unambiguous, but the practice often confuses and frustrates newcomers.
the process being modeled, which is

1. Toss a coin and call its outcome \(X \).
2. If \(X = h \), toss a fair coin and call its outcome \(Y \).
3. If \(X = t \), toss a biased coin with heads probability \(\frac{1}{3} \) and call its outcome \(Y \).

It is usually easy to manually translate constructive theories into programs that sample random variable values.

By combining a conditional probability query and the chain rule (or using the chain rule twice), we get Bayes’ law: if \(\Pr[Y = y] > 0 \), then

\[
\Pr[X = x \mid Y = y] = \frac{\Pr[X = x] \cdot \Pr[Y = y \mid X = x]}{\Pr[Y = y]} \quad (2.10)
\]

This is different than \(\Pr[Y = y \mid X = x] \). This time, we are interested in the conditional probability that \(X = x \) given we know \(Y = y \) for some fixed \(y \).

For example, suppose we did not observe \(X \), but were allowed to observe \(Y = t \). Given that we know the second coin toss is tails, the probability that \(X = t \) is

\[
\Pr[X = t \mid Y = t] = \frac{\Pr[X = t] \cdot \Pr[Y = t \mid X = t]}{\Pr[Y = t]} = \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{4} + \frac{1}{3}} = \frac{\frac{1}{4} \cdot \frac{2}{3}}{\frac{7}{12}} = \frac{4}{7}
\]

which is greater than \(\Pr[X = t] = \frac{1}{2} \). Similarly, \(\Pr[X = h \mid Y = t] = \frac{3}{7} \), which is less than \(\Pr[X = h] = \frac{1}{2} \). Observing the effects of the second coin toss—even random effects—allows us to draw stronger conclusions about the first coin toss. In this case, we know it is more likely to be tails.

Using Bayes’ law to draw probabilistic conclusions about probabilistic processes given observed probabilistic effects is called Bayesian inference.

It is easy for probability newcomers with logical background to think of conditional queries as being analogous to logical implication. A short example demonstrates that doing
so leads to faulty intuition. To compute the probability that $Y = t \implies X = t$, we apply logical rules to the query until it is a disjunction of distinct observable outcomes, and add their probabilities:

$$
\Pr[Y = t \implies X = t] \\
= \Pr[\neg(Y = t) \lor X = t] \\
= \Pr[Y = h \lor X = t] \\
= \Pr[(Y = h \land X = t) \lor (Y = h \land X = h) \lor (Y = t \land X = t)] \\
= \Pr[Y = h \land X = t] + \Pr[Y = h \land X = h] + \Pr[Y = t \land X = t] \\
= \frac{1}{6} + \frac{1}{4} + \frac{1}{3} = \frac{3}{4}
$$

(2.12)

This is clearly not $\Pr[X = t | Y = t] = \frac{4}{7}$. In a similar fashion, $\Pr[Y = t \implies X = h] = \frac{2}{3}$, which is not $\Pr[X = h | Y = t] = \frac{3}{7}$.

In conditioning on $Y = t$, we did not consider any outcomes in which $Y \neq t$: we restricted the possible outcomes to those for which $Y = t$ and renormalized the probabilities of $X = h$ and $X = t$. On the other hand, in computing the probability that $Y = t \implies X = t$, we had to consider all of the outcomes in which $Y \neq t$, and only one outcome in which $Y = t$.

2.1.2 Probability Densities and Density Models

Probability mass functions cannot quantify the likelihoods of uncountably many observable outcomes, such as when $X \in \mathbb{R}$. In these cases, the distributions, conditional distributions, and joint distributions are specified using probability density functions: functions over outcomes that integrate to 1 instead of sum to 1.\(^2\)

For example, this probability density function defines the standard normal distribution, or bell curve:

$$
f_N(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right)
$$

(2.13)

\(^2\)For readers familiar with measure theory: we use the word density for densities with respect to Lebesgue measure, and mass for densities with respect to counting measure. We call all other densities derivatives.
If X has a standard normal distribution, then the probability that $X \in (0, 1)$ is

$$
\Pr[X \in (0, 1)] = \int_0^1 f_N(x) \, dx \approx 0.3413447460685
$$

(2.14)

Figure 2.1 plots this density and illustrates integrating under it to compute $\Pr[X \in (0, 1)]$.

When probabilities are computed by integrating density functions, sets of outcomes may have positive probability, but every single outcome has zero probability. For any random variable $X \in \mathbb{R}$, outcome $x \in \mathbb{R}$, and density function $f_X : \mathbb{R} \rightarrow [0, \infty)$,

$$
\Pr[X = x] = \int_x^x f_X(x) \, dx = (f_X(x) - 0) \cdot (x - x) = f_X(x) \cdot 0 = 0
$$

(2.15)

As a consequence, interval endpoints do not matter; i.e. $\Pr[X \in [a, b]] = \Pr[X \in (a, b)]$. We discuss other, more difficult consequences further on.

The normal distribution can be extended to a distribution family by parameterizing
it on a mean μ and a standard deviation σ:

$$f_N(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)$$

(2.16)

(Again, the application syntax $(x \mid \mu, \sigma)$ simply means (x, μ, σ).) Using parameterized distributions, we can define a joint density model of a probabilistic process involving two random variables $X, Y \in \mathbb{R}$:

$$f_X(x) = f_N(x \mid 0, 1)$$
$$f_{Y \mid X}(y \mid x) = f_N(y \mid x, 1)$$
$$f_{X, Y}(x, y) = f_X(x) \cdot f_{Y \mid X}(y \mid x)$$

(2.17)

Integrating under $f_{X, Y}$ computes probability queries:

$$\Pr[X \in (a, b), Y \in (c, d)] = \int_a^b \int_c^d f_{X, Y}(x, y) \, dy \, dx$$

(2.18)
Figure 2.2 illustrates the joint density model \(f_{X,Y} \) and computing a probability query.

As with discrete models, density models can be specified by constructive theories:

\[
X \sim \text{Normal}(0, 1) \\
Y \sim \text{Normal}(X, 1)
\]

The probabilistic process being modeled is

1. Choose \(X \) according to the standard normal distribution.
2. Choose \(Y \) according to a normal with mean \(X \), standard deviation 1.

Again, it is usually easy to manually translate such theories into programs that sample random variable values.

When all single outcomes have zero probability, interpreting theories in terms of expected conditional probability queries is difficult. Fortunately, densities have rules analogous to rules for manipulating probability queries, which allow practitioners to derive joint density models from theories and compute a restricted class of conditional queries. Instances of the two most important rules are

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy
\]

\[
f_{X,Y}(x, y) = f_X(x) \cdot f_{Y|X}(y | x) = f_Y(y) \cdot f_{X|Y}(x | y)
\]

The second rule is the **chain rule for densities**, and it justifies constructing the joint density \(f_{X,Y} \) from the density \(f_X \) and the conditional density \(f_{Y|X} \).

The rules for densities can be used to derive **Bayes’ law for densities**: if \(f_Y(y) > 0 \), then, starting from the right-hand side of the chain rule,

\[
f_Y(y) \cdot f_{X|Y}(x | y) = f_X(x) \cdot f_{Y|X}(y | x)
\]

\[
f_{X|Y}(x | y) = \frac{f_X(x) \cdot f_{Y|X}(y | x)}{f_Y(y)}
\]

\[
= \frac{f_X(x) \cdot f_{Y|X}(y | x)}{\int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx}
\]
\[
\int_{-\infty}^{\infty} f_X(x) f_{Y|X}(y | x) \, dx
\]

The last form is conveniently in terms of \(f_X \) and \(f_{Y|X} \), which we have on-hand.

Using Bayes’ law for densities, we can draw conclusions about \(X \) given knowledge about \(Y \). For example, suppose we want to know the distribution of \(X \) given \(Y = 2 \), as a density. A quite lengthy derivation finally results in

\[
f_{X|Y}(x \mid 2) = \frac{f_X(x) f_{Y|X}(2 \mid x)}{\int_{-\infty}^{\infty} f_X(x) f_{Y|X}(2 \mid x) \, dx}
\]

\[
= f_N(x \mid 1, \sqrt{\frac{1}{2}})
\]

We can answer conditional probability queries such as “the probability that \(X \in (a, b) \) given \(Y = 2 \)” by integrating \(f_{X|Y}(x \mid 2) = f_N(x \mid 1, \sqrt{\frac{1}{2}}) \):

\[
\Pr[X \in (a, b) \mid Y = 2] = \int_{a}^{b} f_N(x \mid 1, \sqrt{\frac{1}{2}}) \, dx
\]

While using Bayes’ law for densities is difficult, it is easy to visualize, at least in two dimensions. We may think of using it as happening in three steps: restrict, project, then renormalize. Figure 2.3 illustrates them. First, we restrict the joint density model (Figure 2.3a) to the subset of \(\mathbb{R} \times \mathbb{R} \) where \(y = 2 \) (Figure 2.3b). Second, because the resulting model integrates to zero and therefore all answers to probability queries using it would be zero, we project it onto the \(x \) axis (Figure 2.3c), on which it integrates to a positive value. Third, because the total probability is now less than 1, we renormalize the restricted, projected model by dividing its output by its area, and obtain a probability density (Figure 2.3d).

Using Bayes’ law for densities is not only often technically challenging, but in general there are no closed-form solutions. In such cases, practitioners turn to approximation techniques such as Monte Carlo integration, or sampling, to answer conditional probability
(a) The original joint density model.

(b) Restricting the model to the subset of its domain where \(y = 2 \). The probability of the subset is zero.

(c) Projecting the restricted model onto the x axis results in a density that integrates to a nonzero constant that is less than 1.

(d) Normalizing the restricted, projected model results in a probability density that characterizes the distribution of \(X \) given \(Y = 2 \).

Figure 2.3: Bayes’ law for densities, in pictures.
2.2 Measure-Theoretic Probability

From measure-theoretic probability, the requisite background includes approximation with limits, measures, and the formal definition of random variable. The preceding section is prerequisite, and it helps to understand the definition of differentiation as a limit.

2.2.1 Probability Measures

Many queries cannot be answered using Bayes’ law for densities. Two main reasons are

- The query cannot be put in terms of axis-aligned conditions.
- The theory has no density model in the first place.

We give an example of each and show how to answer the queries, to motivate using a more general way to define probability distributions.

Queries Without Axis-Aligned Conditions

Bayes’ law for densities implicitly projects a restricted density onto an axis. It does so to get around the fact that the condition set—all of the points \((x, y) \) for which \(Y = y \)—has zero area, and therefore zero probability. In other words, it does so because the following equality cannot be true, because the right-hand side is equivalent to \(0/0 \), which is undefined:

\[
\Pr[X \in (a, b) | Y = y] = \frac{\Pr[X \in (a, b), Y = y]}{\Pr[Y = y]}
\]

(2.24)

This raises a question: are there similar tricks for zero-probability condition sets that are not aligned with an axis? The answer is sometimes, if we are lucky.

In Bayesian modeling, this question comes up whenever we can observe only the outputs
of deterministic functions of random variables. For example, suppose we have the theory

\[X \sim \text{Normal}(0, 1) \]
\[Y_1 \sim \text{Normal}(X, 1) \]
\[Y_2 \sim \text{Normal}(X, 1) \] (2.25)

and we need to know \(\Pr[X \in (a, b) \mid Y_1 + Y_2 = y] \). As with the preceding example, we have a zero-probability condition set; i.e. \(\Pr[Y_1 + Y_2 = y] = 0 \). But in this case, the condition set is not aligned with an axis.

However, we are lucky: we can project onto an axis before applying Bayes’ law. It is well-known that if \(Y_1 \sim \text{Normal}(\mu_1, \sigma_1) \) and \(Y_2 \sim \text{Normal}(\mu_2, \sigma_2) \), then \(Y_1 + Y_2 \sim \text{Normal}(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}) \).

Because \(Y_1 \) and \(Y_2 \) are referred to only in the query, we rewrite the theory as

\[X \sim \text{Normal}(0, 1) \]
\[Y \sim \text{Normal}(X + X, \sqrt{1^2 + 1^2}) \] (2.26)

and answer \(\Pr[X \in (a, b) \mid Y_1 + Y_2 = y] = \Pr[X \in (a, b) \mid Y = y] \) using Bayes’ law for densities.

There are other well-known transformations. If \(X \) and \(Y \) have normal distributions, then \(X/Y \) has a Cauchy distribution. It is always possible to obtain the density of \(Y = f(X) \) if \(f \) is monotone and has a differentiable inverse. But modeling within the confines of preconditions for known transformations is quite limiting, and sooner or later, we run out of tricks.

For example, suppose we have the following theory and query:

\[X \sim \text{Normal}(0, 1) \]
\[Y \sim \text{Normal}(X, 1) \]
\[\Pr \left[X \in (a, b), Y \in (c, d) \mid \sqrt{X^2 + Y^2} = 1 \right] \] (2.27)

In words, the query is “what is the probability that \(X \in (a, b) \) and \(Y \in (c, d) \) given \(X, Y \) is on the unit circle?” Clearly \(\Pr \left[\sqrt{X^2 + Y^2} = 1 \right] = 0 \). A trick to get around division by zero in this case might exist, but it is not obvious.

We need a general technique to avoid \(0/0 \). One is inspired by differential calculus, which

3This is true when \(Y_1 \) and \(Y_2 \) are conditionally independent, which is the case here.
Figure 2.4: Computing $\Pr[X \in (-1.5, 0), Y \in (-1.5, 0) | \sqrt{X^2 + Y^2} = 1]$ as a limit of ratios. The answer is the proportion of the volume above $(-1.5, 0) \times (-1.5, 0)$ under the joint density restricted to $\sqrt{x^2 + y^2} \in (1 - \varepsilon, 1 + \varepsilon)$, as ε approaches 0.

avoids $0/0$ using limits. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then f’s derivative at $x \in \mathbb{R}$ is

$$\lim_{\varepsilon \to 0} \frac{f(x + \varepsilon) - f(x - \varepsilon)}{2 \cdot \varepsilon}$$

(2.28)

Although the numerator and denominator both approach zero, the limit of their ratio is well-defined. We may do the same with zero-probability conditions: approach them with positive-probability conditions, and take a limit; i.e.

$$\Pr[X \in (a, b), Y \in (c, d) | \sqrt{X^2 + Y^2} = 1]$$

$$= \lim_{\varepsilon \to 0} \Pr[X \in (a, b), Y \in (c, d) | \sqrt{X^2 + Y^2} \in (1 - \varepsilon, 1 + \varepsilon)]$$

$$= \lim_{\varepsilon \to 0} \frac{\Pr[X \in (a, b), Y \in (c, d), \sqrt{X^2 + Y^2} \in (1 - \varepsilon, 1 + \varepsilon)]}{\Pr[\sqrt{X^2 + Y^2} \in (1 - \varepsilon, 1 + \varepsilon)]}$$

(2.29)

Figure 2.4 illustrates the idea with $\varepsilon = \frac{1}{4}$. As ε approaches 0, the probability of $(a, b) \times (c, d)$ approaches the correct conditional probability.

The fact that we can answer probability queries in the absence of densities suggests that
queries are the more general construct. To replace the joint density $f_{X,Y}$ with a function that directly answers unconditioned rectangular queries about the present theory, we define partial function on subsets of \mathbb{R}^2, or $P_{X,Y} : \mathcal{P}(\mathbb{R}^2) \rightarrow [0,1]$ by

$$
P_{X,Y}((a,b) \times (c,d)) = \Pr[X \in (a,b), Y \in (c,d)] = \int_a^b \int_c^d f_{X,Y}(x,y) \, dy \, dx \tag{2.30}
$$

We need $P_{X,Y}$ to answer questions about more subsets of \mathbb{R}^2 than just rectangles, such as the annulus surrounding the unit circle. To make $P_{X,Y}$ do so, we define it in terms of a more general form of integration called **Lebesgue integration**:4

$$
P_{X,Y}(A) = \int_A f_{X,Y} \, dm \tag{2.31}
$$

Here, the set $A \subseteq \mathbb{R}^2$ may be any countable union of rectangles, the complement of any such union, any countable union of such complements, and so on. These infinitary unions and complements include essentially every set of interest, particularly any annulus that covers the set $\{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2+y^2} = 1\}$. Now $P_{X,Y}$ is a joint **probability measure**: a function that returns the probabilities of sets.

From $P_{X,Y}$, we can define another probability measure $P'_{X,Y} : \mathcal{P}(\mathbb{R}^2) \rightarrow [0,1]$ to answer queries conditioned on the unit circle:

$$
P'_{X,Y}(A) = \lim_{\varepsilon \to 0} \frac{P_{X,Y}(A \cap \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2+y^2} \in (1-\varepsilon,1+\varepsilon)\})}{P_{X,Y}(\{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2+y^2} \in (1-\varepsilon,1+\varepsilon)\})} \tag{2.32}
$$

Now we have

$$
\Pr[X \in (a,b), Y \in (c,d) \mid \sqrt{X^2+Y^2} = 1] = P'_{X,Y}((a,b) \times (c,d)) \tag{2.33}
$$

Unlike $P_{X,Y}$, the probability measure $P'_{X,Y}$ has no corresponding density.

4Pronounced “lehBEG,” and named after French mathematician Henri Lebesgue.
Theories Without Density Models

Suppose we have a thermometer whose output is not quite correct, but is usually within 1 degree. We could model its error with a normal distribution with standard deviation 1. If the thermometer cannot show a number greater than 100 and we want to model that fact, assuming the correct temperature is 99, we could write a theory about it like this:

\[
T \sim \text{Normal}(99, 1)
\]

\[
U = \min(T, 100)
\]

so that \(U\) represents the thermometer’s output. Because \(T \geq 100\) if and only if \(U = 100\), \(\Pr[T \geq 100] = \Pr[U = 100] > 0\). But we know that if \(U\) has a density, \(\Pr[U = 100] = 0\).

While \(U\) has no density, it does have a probability measure. We can compute it by integrating the density of \(T\) up to 100 and adding \(\Pr[T \geq 100]\) if the set happens to contain 100. Let \(f_T(t) = f_N(t | 99, 1)\) and define the measures \(P_T, P_U : \mathcal{P}(\mathbb{R}) \rightarrow [0, 1]\) by

\[
P_T(A) = \int_A f_T dm
\]

\[
P_U(A) = P_T(A \cap (\infty, 100)) + \begin{cases}
P_T([100, \infty)) & \text{if } 100 \in A \\
0 & \text{if } 100 \notin A
\end{cases}
\]

so that \(\Pr[U \in A] = P_U(A)\). Here, \(A\) may be any countable union of intervals, the complement of any such union, any countable union of such complements, and so on.

Not only does \(U\) have a measure but no density, it is easy to write a program that samples its values. It is also easy to write programs that output random values in \(\mathbb{R} \cup \mathbb{R}^2\) or (using lazy data structures) \(\mathbb{R}^N\), which in general have measures but not densities. Therefore, if we are to automatically derive models for arbitrary theories encoded as programs, they must be measure-theoretic models, not density models.
2.2.2 Measure-Theoretic Models

Another way to write P_U is

$$P_U(A) = P_T(\{t \in \mathbb{R} \mid \min(t, 100) \in A\})$$

(2.36)

If we interpret U as a function in $\mathbb{R} \to \mathbb{R}$, defined by $U(t) = \min(t, 100)$, we can define P_U by

$$P_U(A) = P_T(\{t \in \mathbb{R} \mid U(t) \in A\})$$

$$= P_T(U^{-1}(A))$$

(2.37)

The notation $U^{-1}(A)$ is read “the preimage of A under U.” Preimages generalize inverses, in the sense that, because they operate on sets, they are defined regardless of whether U is invertible. For example,

$$U^{-1}(\{99\}) = \{99\}$$

$$U^{-1}(\{100\}) = [100, \infty)$$

$$U^{-1}(\{101\}) = \emptyset$$

(2.38)

whereas the inverses of 100 and 101 under U are undefined. In fact, inverses are defined on precisely the points for which preimages map singleton sets to singleton sets.

Our measure-theoretic model of the thermometer theory is now

$$P_T(A) = \int_A f_T \, dm$$

$$U(t) = \min(t, 100)$$

(2.39)

where $f_T(t) = f_N(t \mid 99, 1)$ and $P_T : \mathcal{P}(\mathbb{R}) \to [0, 1]$. The distribution of U is simply $P_T \circ U^{-1}$.

Measuring the outputs of functions by measuring those outputs’ preimages is so simplifying and powerful that measure-theoretic probability defines all random variables as functions.

The standard form of a measure-theoretic model is

$$\Omega = \ldots$$

$$X_1(\omega) = \ldots$$

(2.40)

$$P(A) = \ldots$$

$$X_2(\omega) = \ldots$$
where Ω is a set of outcomes that are philosophically assumed to be random, the probability measure $P : \mathcal{P}(\Omega) \to [0,1]$ is assumed to quantify their randomness, and $X_1 : \Omega \to B_1$ and $X_2 : \Omega \to B_2$, and so on, are random variables, or deterministic functions that observe some aspect of each outcome. The distribution of each random variable X_i is $P \circ X_i^{-1}$, or $P_{X_i}(A) = P(X_i^{-1}(A))$. Chapter 6’s semantics interprets discrete Bayesian theories mechanically as measure-theoretic models in this form.

Defining random variables as functions factors measure-theoretic models into an assumed-random part and a deterministic part. Among the many advantages to doing so is that it allows changing the outcomes Ω and probability measure P to make them more convenient or more efficient to compute, without affecting queries, as long as the random variables are changed accordingly.

As an example, first consider the standard form of the thermometer model:

\[
\begin{align*}
\Omega &= \mathbb{R} \\
U(\omega) &= \min(\omega, 100) \\
P(A) &= \int_A f_T \, dm
\end{align*}
\] (2.41)

Most of its complexity resides in P. We will move this complexity out of P and into random variables. Recall that f_N with one parameter is the standard normal distribution’s probability density function. We define $F_N : \mathbb{R} \to [0,1]$, its corresponding cumulative distribution function (CDF), by integrating f_N from $-\infty$ to argument x:

\[
F_N(x) = \int_{-\infty}^x f_N \, dx
\] (2.42)

It is well-known that if $Z \sim \text{Uniform}(0,1)$ and F is a strictly monotone CDF, then F^{-1} is invertible and $F^{-1}(Z)$ has the distribution defined by F. More concretely, if $Z \sim \text{Uniform}(0,1)$ then $F^{-1}_N(Z) \sim \text{Normal}(0,1)$. Further, because the normal distribution family’s μ parameter only shifts the standard normal, $\mu + F^{-1}_N(Z) \sim \text{Normal}(\mu, 1)$.

Using inverse CDFs to sample from arbitrary distributions using uniformly distributed samples is called inverse transform sampling. There is no random sampling in pure
mathematics, but we can do something similar to transform the measure-theoretic model into one in which Ω has a uniform distribution:

$$\Omega = (0, 1) \quad T(\omega) = 99 + F_N^{-1}(\omega)$$

$$P(A) = m(A) \quad U(\omega) = \min(T(\omega), 100)$$

(2.43)

Here, $m(A)$ means the length of A. Because P assigns each set in the unit interval $(0, 1)$ its length, P defines a uniform distribution over Ω; therefore $T \sim \text{Normal}(99, 1)$. The random variable $U : \Omega \rightarrow \mathbb{R}$ does not change much: it simply refers to $T(\omega)$ instead of ω. In both models, $P \circ U^{-1}$ is the same.

We call measure-theoretic models with uniform probability measures, such as the model defined in (2.43), \textit{uniform random source} models. Chapter 8’s semantics interprets probabilistic programs as deterministic functions from an infinite-dimensional uniform random source Ω to program outputs; i.e. it defines a uniform random source model for every possible program. We use inverse transform sampling in Chapter 9 to extend the probabilistic language with primitives that define distributions by computing preimages under their inverse CDFs.

As another example, consider again the normal-normal theory

$$X \sim \text{Normal}(0, 1)$$

$$Y \sim \text{Normal}(X, 1)$$

(2.44)

and a measure-theoretic model defined in terms of its density model:

$$\Omega = \mathbb{R}^2 \quad X(\omega_0, \omega_1) = \omega_0$$

$$P(A) = \int_A f_{X,Y} \, dm \quad Y(\omega_0, \omega_1) = \omega_1$$

(2.45)

Again, most of the model’s complexity resides in P. The random variables are simply projections: they return the first and second coordinates of points $\omega \in \mathbb{R}^2$. We again use the inverse of the standard normal’s CDF to move the complexity into the random variables, to
Here, \(m(A) \) means the \textit{area} of \(A \).

Figure 2.4 illustrated answering queries \(\Pr[X \in (a, b), Y \in (c, d) \mid \sqrt{X^2 + Y^2} = 1] \) using a limit of queries with positive-probability conditions and a density model. To use a measure-theoretic model, we define another random variable \(Z(\omega) = \sqrt{X(\omega)^2 + Y(\omega)^2} \) and compute

\[
\Pr\left[X \in (a, b), Y \in (c, d) \mid \sqrt{X^2 + Y^2} = 1\right] = \lim_{{\varepsilon \to 0}} \frac{P(X^{-1}((a, b)) \cap Y^{-1}((c, d)) \cap Z^{-1}((1 - \varepsilon, 1 + \varepsilon)))}{P(Z^{-1}((1 - \varepsilon, 1 + \varepsilon)))} \tag{2.47}
\]

The fact that the models defined in (2.45) and (2.46) are equivalent means that this query has the same answer regardless of which model is used. Figure 2.5a illustrates answering it using the uniform random source model defined in (2.46), again with \(\varepsilon = \frac{1}{4} \).
2.2.3 Segue: Approximating Measure Theory

We have been using the word *compute* in an abstract, mathematical sense. As far as we know, no computer can carry out the limit in (2.47) in a finite amount of time. Further, each *step* in the limit is generally not finitely computable. (The “exact” preimages shown in Figure 2.5a are only finite approximations that are just fine enough to look smooth.) In general, we cannot hope to exactly measure the preimages of query and condition sets in finite time.

To solve this problem, not only does Chapter 8 interpret probabilistic programs as functions from a uniform random source to outputs, but it interprets programs as functions that compute preimages, and additionally as functions that compute *approximate* preimages. Chapter 9 further shows how to use approximate preimages of condition sets to efficiently sample within the exact preimages of condition sets. Figure 2.5b illustrates the idea behind sampling: to approximately answer a conditional query, count the proportion of uniform samples in the condition preimage that are also within the query preimage.

The semantics defined in Chapters 6 and 8 that interpret theories and programs are similar to compilers, in that they mechanically transform terms into a target language. If their exact interpretations are to be measure-theoretic models, the target language must be able to express real numbers, limits, infinite sets, probability measures, integration, and generally every other infinite value and infinitary operation used in measure-theoretic probability. If the approximate interpretations are to be implementable, the target language must have a computable sublanguage. Ideally, the target language’s computable sublanguage would be similar some programming language, and the target language would easily manipulate random variables, which are functions.

The foundation of typical mathematics is the language of first-order logic extended with sets and set operations, from which everything else is defined. Because measure theory is defined in this language, it clearly can be used to define measure-theoretic models. It has computable sublanguages; e.g. a set of natural numbers is recursively enumerable if and only if it can be defined by a logical formula $\exists n_1. \exists n_2. \cdots \exists n_k. \phi(n_1, n_2, \ldots, n_k, m)$ in which ϕ
contains only bounded quantifiers. But these computable sublanguages are not anything like programming languages. Further, typical mathematics lacks first-class functions and general recursion, making it awkward to define functions that manipulate functions.

Chapter 4 defines a new target language, λ_{ZFC}, by extending the foundations of mathematics with anonymous, first-class functions. The result is a powerful functional programming language capable of expressing all of the infinitary operations required to construct measure-theoretic models. It easily manipulates functions. Its computable sublanguage is similar to typical functional programming languages. Best of all, it allows us to exactly interpret theories and probabilistic programs as measure-theoretic models, and then obtain approximate, computable, directly implementable code just by replacing a few infinitary operations with approximating, computable, directly implementable operations.

The idea of using a λ-calculus as a target language and the tools for formally defining the interpretation of programs come from functional programming theory.

2.3 Functional Programming Theory

From functional programming theory, the requisite background includes the λ-calculus, big-step operational semantics, denotational semantics, categorical semantics, and abstract interpretation. We assume readers know basic computer science theory, including propositional logic, relations, functions, proof by induction, context-free grammars, and nondeterminism.

2.3.1 λ-Calculus

The following grammar defines a set of variable names X and a language E (a set of terms) called the pure λ-calculus.

$$
\begin{align*}
e & ::= x \mid e \ e \mid \lambda x. \ e \\
x & ::= \text{[variable names]}
\end{align*}
$$

Terms $\lambda x. \ e$ are unnamed functions of one argument, terms x refer to function arguments, and terms $e_1 \ e_2$ apply e_1 to e_2 (i.e. “call” function e_1 with argument e_2). For readers unused
to the λ-calculus but familiar with other mathematical languages, perhaps the most difficult thing to get used to is that juxtaposition means application instead of multiplication.

As in most mathematical languages, parentheses are optional. Lambda terms greedily enclose their bodies in implicit parentheses, so $\lambda x. \lambda y.e$ (with some assumed-meaningful function body e) is the same term as $\lambda x.(\lambda y.e)$: a function that receives an x and returns a function of y in which x is available. Application is left-associative, so $e_1 e_2 e_3$ is the same term as $(e_1 e_2) e_3$. Here, $e_1 e_2$ returns a function, which is applied to e_3.

This duality makes it easy to write two-argument functions using nested lambdas, and apply them using sequences of arguments. For example, $(\lambda x. \lambda y.e) e_x e_y$ defines a function of two arguments and applies it to e_x and e_y.

Like its younger brother the Turing machine, the pure λ-calculus is a universal model of computation. Also like the Turing machine, it would be quite painful to program with it. Unlike the Turing machine, it is easy to get something practical with a few extensions such as pairs and numbers, and a few primitive functions to operate on them.

In most programming languages, implementation details define the meaning of function application. It typically involves a jump from one machine address to another, and if the function returns, a jump back. However, in the pure λ-calculus and its extensions, there are no jumps or machine addresses. Function application is defined entirely in terms of substitution, as in algebra. For example, suppose $hypot$ is a term in a λ-calculus extended with real numbers, defined by

$$hypot = \lambda x. \lambda y. \sqrt{x^2 + y^2} \quad (2.49)$$

Applying $hypot$ eliminates lambdas by substituting their formal arguments with the supplied
actual arguments:

\[
\text{hypot } 3 \ 4 = \left(\lambda x. \lambda y. \sqrt{x^2 + y^2} \right) 3 \ 4 \\
= \left(\left(\lambda x. \left(\lambda y. \sqrt{x^2 + y^2} \right) \right) 3 \right) 4 \\
\equiv \left(\lambda y. \sqrt{3^2 + y^2} \right) 4 \\
\equiv \sqrt{3^2 + 4^2}
\]

The two equivalences at the end of (2.50) are called \textit{\(\beta\)-reductions}, or just \textit{reductions}. We would expect \(\sqrt{3^2 + 4^2}\) to further reduce to 5.

Computer implementations of an extended \(\lambda\)-calculus, such as the programming language Racket, necessarily use jumps and machine addresses to implement function application. However, the meanings of their programs are defined mathematically as the results of carrying out reductions. It is therefore possible to reason about programs algebraically and inductively, without having to consider complicating machine details.

It is sometimes convenient to define a \(\lambda\)-calculus whose variables refer to function arguments by \textit{number} instead of by \textit{name}. Such numeric references are called \textbf{De Bruijn indexes}.\footnote{Typically pronounced “deh brOIN,” and named after Dutch mathematician Nicolaas de Bruijn.} One form of the pure \(\lambda\)-calculus with De Bruijn indexes is

\[
ed ::= \text{env } n \mid e \ e \mid \lambda. \ e \\
n ::= 0 \mid 1 \mid 2 \mid \cdots
\]

where a “variable” term \text{env} 0 refers to the innermost lambda’s argument.

Suppose we define \textit{hypot} as a term in a \(\lambda\)-calculus with De Bruijn indexes, extended with real numbers:

\[
\text{hypot } = \lambda. \lambda. \sqrt{\text{env } 1)^2 + (\text{env } 0)^2}
\]

Here, \text{env} 1 (which was previously \(x\)) refers to the outer lambda’s argument and \text{env} 0 refers
to the inner lambda’s argument. Reducing an application of \(\text{hypot} \) proceeds this way:

\[
\text{hypot} \ 3 \ 4 = \left(\lambda. \lambda. \sqrt{(\text{env} \ 1)^2 + (\text{env} \ 0)^2} \right) \ 3 \ 4
\]

\[
\equiv \left(\lambda. \sqrt{3^2 + (\text{env} \ 0)^2} \right) \ 4
\]

\[
\equiv \sqrt{3^2 + 4^2}
\]

\((2.53) \)

2.3.2 Evaluation Order

So far, we have been taking a certain evaluation order for granted when manually computing reductions. To highlight an ambiguity, consider this lambda term, which returns 0 given any argument:

\[
\text{zero} = \lambda x. \ 0
\]

\((2.54) \)

Suppose \(1 \div 0 \) does not reduce to any value, as in algebra. Should \(\text{zero} \ (1 \div 0) \) reduce to 0, or likewise not reduce? In other words, should we accept this reduction:

\[
\text{zero} \ (1 \div 0) = (\lambda x. \ 0) \ (1 \div 0)
\]

\(\equiv 0 \)

\((2.55) \)

or should we require function arguments to reduce before substituting them? Always reducing function arguments first is call-by-value reduction, and substituting without reducing arguments is call-by-name. Both policies have their place, but we mostly use call-by-value reduction, in which \(\text{zero} \ (1 \div 0) \) does not reduce.

Instead of describing evaluation order using English phrases with scattered mathematical terms, we could instead give our \(\lambda \)-calculus a semantics: a precise mathematical definition of the meaning of its terms. To specify evaluation order and other operational aspects specifically, we would typically give it an operational semantics.
\[e ::= v | \text{add } e e \]
\[v ::= 0 \mid 1 \mid 2 \mid \cdots \]

(a) A grammar to define sets \(E \) and \(V \)

\[\frac{v \Downarrow v}{\text{val}} \quad \frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{\text{add} \ e_1 \ e_2 \Downarrow (v_1 + v_2)} \]

(b) Reduction rules to define \(\Downarrow \subseteq E \times V \)

Figure 2.6: A big-step operational semantics for a simple addition language.

2.3.3 Big-Step Operational Semantics

An operational semantics is defined by a \textbf{reduction relation}, which relates program terms to other program terms. There are two main kinds of operational semantics:

- **Small-step**, specified by a subset of \(E \times E \), where \(E \) is the set of program terms.
- **Big-step**, specified by a subset of \(E \times V \), where \(E \) is the set of program terms and \(V \subseteq E \) is the set of irreducible program values (e.g. the number 4, the pair \(\langle 10, 23 \rangle \)).

For example, suppose we have a lambda term

\[
inc = \lambda x. x + 1
\]

(2.56)

A small-step semantics would typically “stop” after a function application. If “\(\Rightarrow \)” is a small-step reduction relation, then \((inc \ 4) \Rightarrow (4 + 1)\) should be true, and also \((4 + 1) \Rightarrow 5\), so we can conclude \(inc \ 4\) reduces to 5 in two \textbf{small steps}. On the other hand, a big-step semantics cannot “stop” after most function applications. If “\(\Downarrow \)” is a big-step reduction relation, then we cannot expect \((inc \ 4) \Downarrow (4 + 1)\) because by any reasonable definition, the term \(4 + 1\) is an \textit{expression} but not a \textit{value}. We should expect, however, that \((inc \ 4) \Downarrow 5\) is true; i.e. \(inc\) reduces to 5 in one \textbf{big step}.

As with call-by-name and call-by-value, small-step and big-step semantics both have their place. However, as Chapter 4 contains the only operational semantics in this dissertation and it is a big-step semantics, we concentrate on big-step in this overview.

Figure 2.6 defines a language and its semantics by giving a grammar and a big-step reduction relation “\(\Downarrow \)”. The language is even simpler than the pure \(\lambda \)-calculus: its terms simply represent adding concrete numbers. The relation “\(\Downarrow \)” is defined by \textbf{reduction rules}.
in the form

\[
\frac{\text{premise}_1 \ \text{premise}_2 \ \cdots}{\text{conclusion}} \quad \text{(name)} \quad (2.57)
\]

Grammar nonterminals are implicitly universally quantified, premises are implicitly con-
juncted, and the rule is interpreted as an implication. For example, the (add) rule in
Figure 2.6b means “for all \(e_1, e_2 \in E \) and \(v_1, v_2 \in V \), if \(e_1 \) reduces to \(v_1 \) and \(e_2 \) reduces to \(v_2 \),
then \textbf{add} \(e_1 \ e_2 \) reduces to \(v_1 + v_2 \).” The (val) rule means “for all \(v \in V \), \(v \) reduces to \(v \)” or
equivalently, “for all \(v \in V \), \textbf{true} implies \(v \) reduces to \(v \).”

The reduction relation “\(\downarrow \)” is defined as the \textit{smallest} subset of \(E \times V \) for which the
reduction rules hold. Defining it as the smallest subset precludes unintended conclusions
such as \(4 \downarrow 5 \), which are not otherwise precluded by interpreting the rules as implications.
Equivalently, it restricts “\(\downarrow \)” to conclusions that are provable from the reduction rules.

Reduction rules can be used directly to build \textbf{derivation trees}, which represent both
computation steps and proofs of conclusions. For example, suppose we want to use the
reduction rules in Figure 2.6b to compute the value of \textbf{add} \((\text{add} \ 4 \ 5) \ 90 \). We start by writing
it as a conclusion without premises:

\[
(\text{add} \ (\text{add} \ 4 \ 5) \ 90) \downarrow v_1 \quad (2.58)
\]

There is only one rule (add) with a matching conclusion, so we add its premises, renaming
variables as appropriate:

\[
\frac{(\text{add} \ 4 \ 5) \downarrow v_2 \ 90 \downarrow v_3}{(\text{add} \ (\text{add} \ 4 \ 5) \ 90) \downarrow v_1} \quad (2.59)
\]

There is only one rule (val) matching the conclusion \(90 \downarrow v_3 \), and it has no premises. We thus
only add premises for the (add) rule matching \((\text{add} \ 4 \ 5) \downarrow v_1 \):

\[
\frac{4 \downarrow v_4 \ 5 \downarrow v_5}{(\text{add} \ 4 \ 5) \downarrow v_2 \ 90 \downarrow v_3} \quad (2.60)
\]

34
(define value? exact-nonnegative-integer?)
(struct add (e1 e2))

(define (reduce e)
 (match e
 [(? value? v) v]
 [(add e1 e2) (define v1 (reduce e1))
 (define v2 (reduce e2))
 (+ v1 v2)])

Figure 2.7: Racket implementation of the semantics defined in Figure 2.6.

It is easy to find values of \(v_3 \), \(v_4 \) and \(v_5 \) that make the leaf premises true, so we substitute them and recursively fill in the conclusions:

\[
\frac{\begin{array}{l}
4 \Downarrow 4 \quad 5 \Downarrow 5 \\
(\text{add} \ 4 \ 5) \Downarrow v_2 \\
(\text{add} \ (\text{add} \ 4 \ 5) \ 90) \Downarrow v_1
\end{array}}{\frac{\begin{array}{l}
4 \Downarrow 4 \quad 5 \Downarrow 5 \\
(\text{add} \ 4 \ 5) \Downarrow 90 \\
(\text{add} \ (\text{add} \ 4 \ 5) \ 90) \Downarrow v_1
\end{array}}{v_1}}
\]

Thus, the rightmost derivation tree in (2.61) is a proof that \((\text{add} \ (\text{add} \ 4 \ 5) \ 90) \Downarrow 99\).

In most cases, reduction relations can be mathematically constructed by iterating a function that uses the reduction rules to add more conclusions given known premises. A fixpoint is reachable in countably many iterations, and as a consequence, derivation trees are always finite. On the other hand, Chapter 4 defines a \(\lambda \)-calculus in which the iterating function must be applied uncountably many times to reach a fixpoint, and as a consequence, its derivation trees may be infinite. Despite this minor difference in size, the basic principles behind the reduction relation’s construction and use are the same.

If a big-step reduction relation “\(\Downarrow \)” relates each left-hand side term to exactly one right-hand side term, it is a total function, or \(\Downarrow : E \rightarrow V \). If it relates each left-hand side term to \textit{at most} one right-hand side term, it is a partial function, or \(\Downarrow : E \rightarrow V \). In either case, if its derivation trees are finite, it can be implemented as a recursive function.

Figure 2.7 gives a Racket implementation of “\(\Downarrow \)” in Figure 2.6b. (We say Racket is the implementation’s \textit{host language}.) The implementation defines a structure type \textit{add} to model \textit{add} expressions, and uses Racket’s built-in big integers to model \(V \). Computation
e ::= v | add e e | choose e e
v ::= 0 | 1 | 2 | ⋮

(a) A grammar to define sets E and V

v ⊢ v (val)
e₁ ⊢ v₁ e₂ ⊢ v₂ (add)

\(\text{add e₁ e₂} \downarrow (v₁ + v₂)\) (add)

\(e₁ ⊢ v₁\) (left)
\(e₂ ⊢ v₂\) (right)

\(\text{choose e₁ e₂} \downarrow v₁\)
\(\text{choose e₁ e₂} \downarrow v₂\)

(b) Reduction rules to define \(\downarrow \subseteq E \times V\)

Figure 2.8: Big-step operational semantics for a language with nondeterministic choice.

recursively reduces expressions, and proceeds similarly to the derivation tree construction in (2.58) through (2.61). As an example of use, at DrRacket’s Read-Eval-Print Loop (REPL), we get

\[> (\text{reduce (add (add 4 5) 90)})\]
\[99\]
as expected.

Figure 2.8 extends the present example language with nondeterministic choice, which results in a reduction relation that is not a function. The culprits are the new rules (left) and (right), which can both match the same conclusion. For example, suppose we want to use the reduction rules in Figure 2.8b to compute the value of \(\text{add (choose 4 5) 90}\). We start as before, by writing it as a conclusion without premises:

\(\text{(add (choose 4 5) 90)} \downarrow v₁\) (2.62)

We match the conclusion to the (add) rule and add its premises:

\(\text{(choose 4 5)} \downarrow v₂\)
\(\text{90} \downarrow v₃\)
\(\text{(add (choose 4 5) 90)} \downarrow v₁\) (2.63)

Again, there is only one rule (val) matching the conclusion \(\text{90} \downarrow v₃\), and it has no premises. For the conclusion \(\text{(choose 4 5)} \downarrow v₂\), however, we may choose either (left) or (right), leading
to two different derivation trees:

\[
\begin{align*}
4 & \triangleright v_4 \\
& \quad \begin{array}{c} \text{(choose 4 5)} \triangleright v_2 \quad 90 \triangleright v_3 \end{array} \\
5 & \triangleright v_5 \\
& \quad \begin{array}{c} \text{(choose 4 5)} \triangleright v_2 \quad 90 \triangleright v_3 \end{array}
\end{align*}
\]

(2.64)

After replacing \(v_3\), \(v_4\) and \(v_5\) with the only values that make the leaf premises true and recursively filling in the conclusions, we would find that both \((\text{add (choose 4 5) 90}) \triangleright 94\) and \((\text{add (choose 4 5) 90}) \triangleright 95\) are true, and would have derivation trees to prove these facts.

An implementation of a nondeterministic semantics would be correct if, for every interpretation of a term \(e\) that produced value \(v\), \(e \triangleright v\) were a valid conclusion. For \text{choose 4 5}, for example, a correct implementation may always choose 4, always choose 5, choose randomly, choose the number that gives the best or worst outcome according to some objective function, or always choose 4 on weekends or during the fall equinox. Its choice is simply not modeled by the semantics.

Suppose we wanted to compute results for every possible combination of nondeterministic choices. We could define a big-step relation \(\triangleright: E \rightarrow \mathcal{P} V\), which returns (when used as a function) a set of values, and implement it. However, we are saving that example for the next section.

2.3.4 Denotational Semantics

A denotational semantics is defined by a deterministic semantic function from language terms to values in another language. The other language is called the metalanguage or target language, and is often an axiomatic logic such as first-order set theory (i.e. ordinary mathematics).

Figure 2.9a defines a denotational semantics for the addition language without \text{choose} by defining a semantic function \([\cdot]: E \rightarrow \mathbb{N}\). The double square brackets are simply a different application syntax: they connote nothing mathematically, but serve as a visual cue to read applications of the semantic function as “the meaning of” or “the denotation of.” For example,
the meaning of \(\text{add} \ (\text{add} \ 4 \ 5) \ 90 \) is

\[
\begin{align*}
\text{add} \ (\text{add} \ 4 \ 5) \ 90 & = \ \text{add} \ 4 \ 5 + 90 \\
& = (4 + 5) + 90 \\
& = 99
\end{align*}
\]

The semantic function is **compositional**: it gives meaning to terms by combining the meanings of their direct subterms. Compositionality allows most proofs of program properties to be done by structural induction, as we will demonstrate shortly.

When the results of applying \([\cdot]\) are computable, because it is compositional, it is often easy to implement it as local syntax transformation or compilation. Figure 2.9b shows a Racket implementation of \([\cdot]\) as a transformation from meaningless parenthetical syntax (an \texttt{add} function does not exist) to runnable Racket syntax. The syntax transformer is barely more than a transcription of the semantic function’s definition, with a little extra code to signal to Racket that it is to be applied to the syntax of expressions before compiling or evaluating them (i.e. \texttt{define-synt... add} as a terminal symbol.

The results of compilation seem to be equivalent to the results of reduction:

\[
> \ \text{meaningof} \ (\text{add} \ (\text{add} \ 4 \ 5) \ 90)) \\
99
\]
\[
[.] : E \to \mathcal{P} \mathbb{N} \\
[v] = \{v\} \\
[\text{add } e_1 e_2] = \{v_1 + v_2 \mid v_1 \in [e_1], v_2 \in [e_2]\} \\
[\text{choose } e_1 e_2] = [e_1] \cup [e_2]
\]

Figure 2.10: A denotational semantics for the addition language with nondeterministic choice.

but the REPL does not show transformed syntax. Fortunately, `expand-syntax` can show it:

\[
> (\text{expand-syntax } \#'(\text{meaningof (add (add 4 5) 90})) \\
 \#'(+ (+ 4 5) 90))
\]

Figure 2.10 defines a compositional function \([.] : E \to \mathcal{P} \mathbb{N}\), which transforms the addition language with nondeterministic choice into sets of natural numbers. For example, the meaning of 4 is \(\{4\}\), the meaning of \(\text{choose } 4 5\) is \(\{4\} \cup \{5\} = \{4, 5\}\), and the meaning of \(\text{add (choose 4 5) 90}\) is

\[
[\text{add (choose 4 5) 90}] = \{v_1 + v_2 \mid v_1 \in [\text{choose 4 5}], v_2 \in [90]\} \\
= \{v_1 + v_2 \mid v_1 \in ([4] \cup [5]), v_2 \in [90]\} \\
= \{v_1 + v_2 \mid v_1 \in \{4\} \cup \{5\}, v_2 \in \{90\}\} \\
= \{v_1 + v_2 \mid v_1 \in \{4, 5\}, v_2 \in \{90\}\} \\
= \{4 + 90, 5 + 90\} \\
= \{94, 95\}
\]

We know that under “\(\downarrow\),” \(\text{add (choose 4 5) 90}\) reduces to both 94 and 95, so it appears \([.\)] is correct. It would be nice to know whether it is always correct. The following theorem states correctness precisely in terms of “\(\downarrow\),” and critically uses \([.\)]’s compositionality in a proof by induction on the structure of \(e\).

Theorem 2.1 (correctness). For all \(v \in V\) and \(e \in E\), \(v \in [e] \iff e \downarrow v\).

Proof. Let \(v \in V\) and \(e \in E\). The proof is by induction on the structure of \(e\).
Base case \(e \in V \). If \(e = v \), then \(v \in [e] = \{e\} = \{v\} \) by definition of \([\cdot]\), and \(e \Downarrow v \) by the (val) rule. Similarly, if \(e \neq v \), then \(v \not\in [e] \), and not \(e \Downarrow v \).

Inductive case \(e = \text{add} \ e_1 \ e_2 \) for some \(e_1 \in E \) and \(e_2 \in E \).

Suppose \(v \in [\text{add} \ e_1 \ e_2] \). By definition of \([\cdot]\), there exist \(v_1 \in [e_1] \), \(v_2 \in [e_2] \) such that \(v = v_1 + v_2 \). By the inductive hypothesis, \(e_1 \Downarrow v_1 \) and \(e_2 \Downarrow v_2 \). By the (add) rule, \((\text{add} \ e_1 \ e_2) \Downarrow v \).

Conversely, if \((\text{add} \ e_1 \ e_2) \Downarrow v \), by (add), there exist \(v_1, v_2 \) such that \(e_1 \Downarrow v_1 \), \(e_2 \Downarrow v_2 \) and \(v = v_1 + v_2 \). By hypothesis, \(v_1 \in [e_1] \) and \(v_2 \in [e_2] \). By definition of \([\cdot]\), \(v \in [\text{add} \ e_1 \ e_2] \).

Proof of the inductive case \(e = \text{choose} \ e_1 \ e_2 \) is similar to the preceding, though each “\(\iff \)” direction has an inner case for nondeterministic choice. \(\square \)

Now that we know \([\cdot]\) is correct, we can regard any implementation of it as an implementation of “\(\Downarrow \)” as well. In general, it is easy to transfer theorems about “\(\Downarrow \)” to a correct \([\cdot]\), and vice-versa.

What if we wanted to represent nondeterministic choices using lists instead of sets, or model a different computational effect, such as mutation or probabilistic choice? We could define a different semantic function for each model, but there is a more elegant way.

2.3.5 Categorical Semantics

When computer scientists from any area want to extend a fixed process without having to repeat themselves more than necessary, they **abstract**: they decouple the desired varying part from the fixed process, and parameterize the previously fixed process on the varying part. This characterizes modular, object-oriented, functional, and even semantic abstraction.

To abstract a denotational semantics, we parameterize its semantic function on the meaning it produces. The parameter takes the form of a **category**.\(^6\) In semantics, the category is comprised of a collection of objects called **computations** (i.e. possible program meanings) and operations on them called **combinators**.

\(^6\)The word “category” comes from category theory, an alternative axiomatization of mathematics. Fortunately, little knowledge of category theory is necessary to define or understand categorical semantics.
The appropriate category for the addition language with \texttt{choose} contains sets of numbers as computations, or $\mathcal{P} \mathbb{N}$, and operations on them. While there are many possible collections of combinators, one kind of collection that functional programmers and theorists have found very useful are \textbf{monads}.\footnote{Strictly speaking, in category theory, they are \textit{strong} monads.} The \textbf{set monad} operates on set-valued computations and is defined by these two combinators:

\begin{align}
\text{\texttt{return}}_{\text{set}} v &= \{v\} \\
\text{\texttt{bind}}_{\text{set}} A f &= \bigcup_{v \in A} f v
\end{align}

Evidently, from a semantic function $\llbracket \cdot \rrbracket_a$ parameterized on a monad a we should expect $\llbracket v \rrbracket_{\text{set}} = \text{\texttt{return}}_{\text{set}} v \equiv \{v\}$. How to use $\text{\texttt{bind}}_{\text{set}}$ is less clear, however. It apparently applies f to the objects in set A to yield a set for each, and collects these sets’ members in a big union. Turning the set comprehension in the definition of $\llbracket \text{add} e_1 e_2 \rrbracket$ into an indexed union (as in $\text{\texttt{bind}}_{\text{set}}$) makes its use clearer:

\begin{align}
\llbracket \text{add} e_1 e_2 \rrbracket &= \{v_1 + v_2 \mid v_1 \in \llbracket e_1 \rrbracket, v_2 \in \llbracket e_2 \rrbracket\} \\
&= \bigcup_{v_1 \in \llbracket e_1 \rrbracket} \bigcup_{v_2 \in \llbracket e_2 \rrbracket} \{v_1 + v_2\} \\
&\equiv \bigcup_{v_1 \in \llbracket e_1 \rrbracket} \bigcup_{v_2 \in \llbracket e_2 \rrbracket} \text{\texttt{return}}_{\text{set}} (v_1 + v_2) \\
&\equiv \bigcup_{v_1 \in \llbracket e_1 \rrbracket} \text{\texttt{bind}}_{\text{set}} \llbracket e_2 \rrbracket (\lambda v_2. \text{\texttt{return}}_{\text{set}} (v_1 + v_2)) \\
&\equiv \text{\texttt{bind}}_{\text{set}} \llbracket e_1 \rrbracket (\lambda v_1. \text{\texttt{bind}}_{\text{set}} \llbracket e_2 \rrbracket (\lambda v_2. \text{\texttt{return}}_{\text{set}} (v_1 + v_2)))
\end{align}

Thus, we expect $\llbracket \text{add} e_1 e_2 \rrbracket_{\text{set}} = \text{\texttt{bind}}_{\text{set}} \llbracket e_1 \rrbracket_{\text{set}} (\lambda v_1. \text{\texttt{bind}}_{\text{set}} \llbracket e_2 \rrbracket_{\text{set}} (\lambda v_2. \text{\texttt{return}}_{\text{set}} (v_1 + v_2)))$.

Finally, we need to extend the set monad with an operation for \texttt{choose} expressions. We define

$$
\text{\texttt{merge}}_{\text{set}} A_1 A_2 = A_1 \cup A_2
$$

so that $\llbracket \text{choose} e_1 e_2 \rrbracket_{\text{set}} = \text{\texttt{merge}}_{\text{set}} \llbracket e_1 \rrbracket_{\text{set}} \llbracket e_2 \rrbracket_{\text{set}}$.

In Figure 2.11, guided by our expectations for $\llbracket \cdot \rrbracket_{\text{set}}$, we define a categorical semantics...
for the addition language with \texttt{choose}, by defining a semantic function $[\cdot]_a$ parameterized on a target monad a. The parameterized function M_a returns the monad’s computations. If $M_{\text{set}} X = \mathcal{P} X$, then $[\cdot]_{\text{set}} : E \to M_{\text{set}} \mathbb{N}$ is equivalent to $[\cdot] : E \to \mathcal{P} \mathbb{N}$ as defined in Figure 2.10, as expected.

Because Figure 2.11 does not refer to sets or set operations, it is abstract enough to interpret programs as many different kinds of computations. For example, let $M_{\text{list}} X = [X]$, where $[X]$ denotes all the lists of X, and define the \textbf{list monad} extended with \textit{merge} by

$$
\begin{align*}
\text{return}_{\text{list}} v &= [v] \\
\text{bind}_{\text{list}} vs f &= \text{concat} \ (\text{map} \ f \ vs) \\
\text{merge}_{\text{list}} vs_1 vs_2 &= \text{append} \ vs_1 vs_2
\end{align*}
$$

(2.70)

Here, $[v]$ is a list containing just v, \textit{map} applies a function to every element in a list and returns the list of results, and \textit{concat} : $[[X]] \to [X]$ appends the elements in a list of lists. Now $[\cdot]_{\text{list}} : E \to \mathbb{N}$ models nondeterminism with lists of numbers instead of sets of numbers. For example, the meaning of \texttt{choose 4 5} as a list of nondeterministic choices is

$$
[\text{choose 4 5}]_{\text{list}} = \text{merge}_{\text{list}} [4]_{\text{list}} [5]_{\text{list}}
$$

$$
= \text{merge}_{\text{list}} (\text{return}_{\text{list}} 4) (\text{return}_{\text{list}} 5)
$$

$$
\equiv \text{merge}_{\text{list}} [4] [5]
$$

$$
\equiv \text{append} [4] [5]
$$

$$
\equiv [4, 5]
$$

(2.71)
The meaning of \(\text{add} \ (\text{choose} \ 4 \ 5) \ (\text{choose} \ 4 \ 5) \) is thus

\[
\llbracket \text{add} \ (\text{choose} \ 4 \ 5) \ (\text{choose} \ 4 \ 5) \rrbracket_{\text{list}} \\
\equiv \ \text{bind}_{\text{list}} \ [4, 5] \ (\lambda v_1. \text{bind}_{\text{list}} \ [4, 5] \ (\lambda v_2. \text{return}_{\text{list}} \ (v_1 + v_2))) \\
\equiv \ \text{concat} \ (\text{map} \ (\lambda v_1. \text{bind}_{\text{list}} \ [4, 5] \ (\lambda v_2. \text{return}_{\text{list}} \ (v_1 + v_2))) \ [4, 5] \\
\equiv \ \text{concat} \ [\text{bind}_{\text{list}} \ [4, 5] \ (\lambda v_2. \text{return}_{\text{list}} \ (4 + v_2))], \\
\text{bind}_{\text{list}} \ [4, 5] \ (\lambda v_2. \text{return}_{\text{list}} \ (5 + v_2)) \\
\equiv \ \text{concat} \ [\text{concat} \ (\text{map} \ (\lambda v_2. \text{return}_{\text{list}} \ (4 + v_2)) \ [4, 5]), \\
\text{concat} \ (\text{map} \ (\lambda v_2. \text{return}_{\text{list}} \ (5 + v_2)) \ [4, 5]) \\
\equiv \ \text{concat} \ [\text{concat} \ [\text{return}_{\text{list}} \ (4 + 4), \text{return}_{\text{list}} \ (4 + 5)], \\
\text{concat} \ [\text{return}_{\text{list}} \ (5 + 4), \text{return}_{\text{list}} \ (5 + 5)] \\
\equiv \ \text{concat} \ [\text{concat} \ [[8], [9]], \text{concat} \ [[9], [10]]] \\
\equiv \ \text{concat} \ [[8, 9], [9, 10]] \\
\equiv \ [8, 9, 9, 10]
\]

In contrast, \(\llbracket \text{add} \ (\text{choose} \ 4 \ 5) \ (\text{choose} \ 4 \ 5) \rrbracket_{\text{set}} \equiv \{8, 9, 10\} \).

The semantic function \(\llbracket . \rrbracket_a \) can be parameterized not just on the set and list monads, but any monad \(a \) for which \(\text{merge}_a \) can be sensibly defined. This includes monads for any kind of nondeterminism (e.g. all possibilities, angelic/demonic, random, probabilistic) with any kind of encoding for nondeterministic values (e.g. sets, lists, worst/best choices, execution paths, random values, probability distributions). It also includes monads that combine nondeterminism with other effects, such as input/output or backtracking search. Abstracting has granted the desired flexibility.

As evidenced by the long derivations in (2.71) and (2.72), like most other abstractions, semantic abstraction increases complexity in return for its flexibility and generalization. There are many ways to deal with this, including inferring the behavior of effects from computation types, and classifying effectful behaviors as belonging to different categories.
The programming language Haskell benefits greatly from categorical semantics by using them to hide the encodings of effects, which, being an implementation of an effect-free λ-calculus, it cannot compute directly, by design. Its primary way to deal with the increase in complexity is to use just one built-in, standard semantic function that targets any monad, which transforms syntax that many Haskell programmers find (or learn to find) intuitive.

Besides increasing complexity, abstraction affects the semantics in another way that we have only hinted at by using “≡” instead of “=” in some of our equations: it no longer targets first-order set theory. Instead, the semantic function \([\cdot]_a\) targets a λ-calculus.

Targeting a λ-calculus restricts a denotational semantics to be directly implementable as a syntax transformer. This restriction is generally regarded as good, because it makes the proof of the direct implementation’s correctness trivial. However, we want to define semantic functions for Bayesian notation, which often denotes uncountable things such as probability distributions over \(\mathbb{R}\). The entire reason for the work in Chapter 4 is to define a λ-calculus with a semantics that gives meaning to operations on infinite values of any size, so that we can define categorical semantics for probabilistic languages in Chapter 6 and Chapter 8.

Categorical abstraction has affected the semantics in a third way. Compare the rule for \(\text{add}\) in Figure 2.9a with the corresponding rule in Figure 2.11:

\[
\begin{align*}
\text{add } e_1 e_2 & = \{v_1 + v_2 \mid v_1 \in [e_1], v_2 \in [e_2]\} \\
\text{add } e_1 e_2}_a & = \text{bind}_a [e_1]_a (\lambda v_1. \text{bind}_a [e_2]_a (\lambda v_2. \text{return}_a (v_1 + v_2)))
\end{align*}
\] (2.73)

Because \([\text{add } e_1 e_2]\) does not specify the order of evaluating \([e_1]\) and \([e_2]\), an implementation is free to choose the order, evaluate them in parallel, or let the host language decide. On the other hand, \([e_1]_\text{list}\) must be evaluated first, because changing the evaluation order changes the results:

\[
\begin{align*}
\text{bind}_\text{list} [4, 5] (\lambda v_1. \text{bind}_\text{list} [1, 2, 3] (\lambda v_2. \text{return}_\text{list} (v_1 + v_2))) & \equiv [5, 6, 7, 6, 7, 8] \\
\text{bind}_\text{list} [1, 2, 3] (\lambda v_1. \text{bind}_\text{list} [4, 5] (\lambda v_2. \text{return}_\text{list} (v_1 + v_2))) & \equiv [5, 6, 6, 7, 7, 8]
\end{align*}
\] (2.74)

In general, parameterizing a semantics on a monad allows certain monads to impose a total
order on evaluation, regardless of the host language’s evaluation order.

The combinators in a category must obey certain laws. For example, to define a monad,
\(\text{return}_a \) and \(\text{bind}_a \) most obey these laws:

\[
\begin{align*}
\text{bind}_a (\text{return}_a x) f & \equiv f x & \text{left identity} \\
\text{bind}_a m \text{return}_a & \equiv m & \text{right identity} \\
\text{bind}_a (\text{bind}_a m f) g & \equiv \text{bind}_a m (\lambda x. \text{bind}_a (f x) g) & \text{associativity}
\end{align*}
\]

It is not necessary for readers to understand these laws deeply, just that they exist, are expected to hold, are occasionally useful, and that we interpret them a little more broadly than is typical. In particular, “\(\equiv \)” is almost always understood to be the default equivalence for the \(\lambda \)-calculus in which the combinators are defined. When programming in Haskell, this helpfully ensures that using the laws to transform programs maintains program equivalence.

When defining categorical semantics, however, there is no reason for “\(\equiv \)” to be defined so narrowly. In fact, it is often useful to define equivalence per-category. For example, we might say that two lists are equivalent when the sets of their elements are equal. In Chapter 4’s \textit{limit monad}, computations are infinite sequences, and are equivalent when they converge to the same value. Chapter 8 defines a notion of equivalence for each of the categories it uses to interpret probabilistic programs.

Two other kinds of categories besides monads are useful targets for categorical semantics: \textit{idioms} and \textit{arrows}. Each kind of category has its own combinators, orderings, and laws. We do not review them here because they are not as well-known in functional programming theory as monads, so the chapters that use them also review them.

2.3.6 Abstract Interpretation

When we want to discover something about \textit{every} evaluation of a program, we might do it with \textit{abstract interpretation}: evaluating by operating on just the properties of terms instead of their actual values. Equivalently, we can think of an abstract interpretation as
\[\mathcal{L}[\cdot] : E \rightarrow \mathbb{N} \]

\[\mathcal{L}[v] = 1 \]

\[\mathcal{L}[\text{add } e_1 e_2] = \mathcal{L}[e_1] \cdot \mathcal{L}[e_2] \]

\[\mathcal{L}[\text{choose } e_1 e_2] = \mathcal{L}[e_1] + \mathcal{L}[e_2] \]

Figure 2.12: An abstract semantics for the addition language with nondeterministic choice.

operating on sets of values for which those properties hold. The properties or sets of values are called **abstract values**. The actual values are called **concrete values**.

Perhaps the most common example of abstract interpretation is type checking. In this case, the abstract values are types, which represent properties such as “is a number” or “is a function from lists to natural numbers.” During abstract interpretation, expressions are not evaluated on concrete values, but are checked to determine whether they preserve the properties that concrete values should have.

As with concrete interpretation, abstract interpretation is specified by a semantics. As with concrete semantics, any of a language’s abstract semantics can be defined using rules or semantic functions. Type systems and type checkers are typically defined by rules with premises and conclusions similar to reduction rules. Because Chapters 8 and 9 define abstract interpretations using semantic functions, we give a small example of that approach here.

Figure 2.12 defines \(\mathcal{L}[\cdot] \), which defines an abstract semantics for the addition language with **choose**. (The prefix \(\mathcal{L} \) means nothing mathematically; it simply differentiates this semantic function from the others we have defined.) The abstract values are the lengths of lists or cardinalities of finite sets; i.e. natural numbers. The abstract meaning of a term is an **upper bound** on the number of nondeterministic values it computes. For example, the
abstract meaning of \texttt{add (choose 4 5) (choose 4 5)} is

\[
\mathcal{L}[\texttt{add (choose 4 5) (choose 4 5)}] = \mathcal{L}[\texttt{choose 4 5}] \cdot \mathcal{L}[\texttt{choose 4 5}] \\
= (\mathcal{L}[4] + \mathcal{L}[5]) \cdot (\mathcal{L}[4] + \mathcal{L}[5]) \\
= (1 + 1) \cdot (1 + 1) \\
= 4
\]

(2.76)

Indeed, \([\texttt{add (choose 4 5) (choose 4 5)}]_{\text{set}} \equiv \{8, 9, 10\}, which is no more than 4 values.

This example demonstrates a pervasive fact about abstract semantics: almost every abstract semantics trades precision to get efficiency, tractability, or even computability. Certainly \(|\{8, 9, 10\}| \neq 4.

Usually, we need abstract interpretations to be sound, which roughly means that the abstract values are always a conservative approximation of the concrete values. (There is a way to formalize this notion using Galois connections, but that brings in more complexity than we need.) When abstraction interpretations must be sound, the abstract semantics must have a soundness theorem relating it to a concrete semantics, such as the following.

\textbf{Theorem 2.2} (\mathcal{L}[\cdot] soundness). For all \(e \in E\), \(|[e]_{\text{set}}| \leq \mathcal{L}[e] \).

\textit{Proof.} By structural induction on \(e\).

A soundness theorem sometimes suggests how abstraction interpretations might be used. For a type system, soundness implies that accepted programs never compute concrete values with the wrong type, so operations on concrete values may be specialized in ways that would otherwise be unsafe or incorrect. (A child class's methods may be inlined, for example.) By Theorem 2.2, we can use \(\mathcal{L}[\cdot]\) to determine how much space to preallocate for results in a less direct but faster implementation of \([\cdot]_{\text{set}}\), and we will never allocate too little.

Sometimes the abstraction is both sound and precise, as \(\mathcal{L}[\cdot]\) is with respect to \([\cdot]_{\text{list}}\).

\textbf{Theorem 2.3} (\mathcal{L}[\cdot] soundness and precision). For all \(e \in E\), length \([e]_{\text{list}} = \mathcal{L}[e] \).

\textit{Proof.} By structural induction on \(e\).
Having both soundness and precision is unusual.

Abstract interpretation is often used for program analysis in which determining precise properties is only semidecidable or is undecidable. An example is determining which functions are applied at every application site in a program written in a λ-calculus. In these cases, another concrete semantics is created, whose concrete interpretations—if they could be evaluated on a computer—would collect the necessary information. An abstract semantics is then created, whose abstract interpretations are computable, and which overapproximate the necessary information.

Such analyses are sometimes said to “embrace the infinite.” In this work, we must do the same to interpret Bayesian notation—but instead embrace the uncountably infinite. Doing so with a concrete categorical semantics requires a powerful λ-calculus like the one we define in Chapter 4.
Chapter 3

Related Work

Probabilistic languages can be approximately placed into two groups: those defined by an implementation, and those defined by a semantics.

3.1 Implementations

Almost all of the languages defined by their implementations support conditional queries and compute converging approximations. The reports on these languages generally describe interpreters, compilers, and algorithms for sampling with probabilistic conditions. When they work correctly, they are useful.

Koller and Pfeffer [44] efficiently compute exact, discrete distributions for the outputs of programs in a Scheme-like language. BUGS [49] focuses on efficient approximate computation for probabilistic theories with a finitely many statements, and uses approximation methods that Bayesians typically use. BLOG [55] exists specifically to allow stating distributions over countably infinite vectors. BLAISE [11] allows stating both distributions and approximation methods for random variables. Church [31], a Scheme-like probabilistic language that carries out approximate inference by sampling, focuses on expressiveness. Kiselyov and Shan [42] embed a probabilistic language in O’Caml, using continuations to enumerate or sample random variable values. The language has a fail construct for the complement of conditioning. The sampler looks ahead for fail and can handle it efficiently.

Recent work in this group moves toward defining probabilistic languages semantically. For example, Wingate et al [81] define the semantics of nonstandard interpretations that
enable efficient inference, but do not define languages. They also define a nonstandard interpretation \[82\] much like our nonstandard interpretation in Chapter 9 (Figure 9.18). In both theirs and ours, the interpretations assign unique indexes to \textit{random} expressions based on their fixed positions in each execution trace.

3.2 Semantics

Early work in probabilistic language semantics is not motivated by Bayesian concerns, and thus does not address conditioning. Kozen \[45\] defines the meaning of bounded-space, imperative “while” programs as functions from probability measures to probability measures. Hurd \[39\] proves properties about programs with binary random choice by encoding programs and portions of measure theory in HOL. Jones \[40\] develops a domain-theoretic account of probability, and with it defines the probability monad, whose discrete version is a distribution-valued variation of the set or list monad.

Ramsey and Pfeffer \[65\] define the probability monad measure-theoretically but implement a language with only finite probabilistic choice. Their work is most similar to ours in its approach, in that it interprets a probabilistic language measure-theoretically, using a categorical semantics.

Using inverse transform sampling, Park \[60\] extends a \(\lambda\)-calculus with probabilistic choice according to any of a general class of probability measures. This is the same technique we use in Chapter 9 to turn uniform probabilistic choice into choice according to other distributions, though our abstract semantics enables efficient conditioning.

Recent work in this group defines probabilistic languages with conditioning. Pfeffer’s IBAL \[63\] is the earliest \(\lambda\)-calculus with finite probabilistic choice that also defines conditional queries. Borgström et al \[12\] develop Fun, a first-order functional language without recursion, extended with probabilistic choice and conditioning. Its semantics interprets programs as \textit{measure transformers} by transforming expressions into arrow-like combinators. The implementation generates a decomposition of the probability density represented by the
program, if it exists. Bhat et al [10] replaces Fun’s if with match, and interprets programs more directly as probability density functions by compositionally transforming expressions into an extension of the probability monad.

3.3 Somewhat Related Work

Any programming language research described by the words “bijective” or “reversible” might seem to have much in common with ours. Unfortunately, when we look more closely, we can usually draw only loose analogies and perhaps inspiration. An example is lenses [36], which are transformations from X to Y that can be run forwards and backwards, in a way that maintains some relationship between X and Y. Usually, a destructive, external process is assumed, so that, for example, a change from $y \in Y$ to $y' \in Y$ induces a corresponding change from $x \in X$ to some $x' \in X$. When transformations lose information, lenses must satisfy certain behavioral laws. In our work, no input or output is updated, and preimages are always definable regardless of non-injectivity.

Many multi-paradigm languages [34], especially constraint functional languages, bear a strong resemblance to our work. In fact, it is easy to add a fail expression to our semantics, or to transform constraints into boolean program outputs. The most obvious difference is evaluation strategy. The most important difference is that our evaluation of programs, to be useful in Bayesian inference, returns distributions of constrained outputs, rather than arbitrary single values that meet constraints.
Chapter 4

Computing in Cantor’s Paradise With λ_{ZFC}

This chapter is derived from work published at the 11th International Symposium on Functional and Logic Programming (FLOPS), 2012.

No one shall expel us from the Paradise that Cantor has created.

David Hilbert

4.1 Motivation

Georg Cantor first proved some of the surprising consequences of assuming infinite sets exist. David Hilbert passionately defended Cantor’s set theory as a mathematical foundation, coining the term “Cantor’s Paradise” to describe the universe of transfinite sets in which most mathematics now takes place.

The calculations done in Cantor’s Paradise range from computable to unimaginably uncomputable. Still, its inhabitants increasingly use computers to answer questions. We want to make domain-specific languages (DSLs) for writing these questions, with implementations that compute exact and approximate answers.

Such a DSL should have two meanings: an exact mathematical semantics, and an approximate computational one. A traditional, denotational approach is to give the exact as a transformation to first-order set theory, and because set theory is unlike any intended implementation language, the approximate as a transformation to a λ-calculus. However,
deriving approximations while switching target languages is rife with opportunities to commit errors.

A more certain way is to define the exact semantics in a proof assistant like HOL [46] or Coq [9], prove theorems, and extract programs. The type systems confer an advantage: if the right theorems are proved, the programs are certainly correct.

Unfortunately, reformulating and re-proving theorems in such an exacting way causes significant delays. For example, half of Joe Hurd’s 2002 dissertation on probabilistic algorithms [39] is devoted to formalizing early-1900s measure theory in HOL. Our work in Bayesian inference would require at least three times as much formalization, even given the work we could build on.

Some middle ground is clearly needed: something between the traditional, error-prone way and the slow, absolutely certain way.

Instead of using a typed, higher-order logic, suppose we defined, in first-order set theory, an untyped λ-calculus that contained infinite sets and operations on them. We could interpret DSL terms exactly as uncomputable programs in this λ-calculus. But instead of redoing a century of work to extract programs that compute approximations, we could directly reuse first-order theorems to derive them from the uncomputable programs.

Conversely, set theory, which lacks lambdas and general recursion, is an awkward target language for a semantics that is intended to be implemented. Suppose we extended set theory with untyped lambdas (as objects, not quantifiers). We could still interpret DSL terms as operations on infinite objects. But instead of leaping from infinite sets and operations on them to implementations, we could replace those operations with computable approximations a piece at a time.

If we had a λ-calculus with infinite sets as values, we could approach computability from above in a principled way, gradually changing programs for Cantor’s Paradise until they can be implemented in Church’s Purgatory.

We define that λ-calculus, \(\lambda_{ZFC} \), and a call-by-value, big-step reduction semantics. To
show that it is expressive enough, we code up the real numbers, arithmetic and limits, following standard analysis. To show that it simplifies language design, we define the uncomputable limit monad in λ_{ZFC}, and derive a computable, directly implementable replacement monad by applying standard topological theorems. When certain proof obligations are met, the outputs of programs that use the computable monad converge to the same values as the outputs of programs that use the uncomputable monad.

Readers interested only in probabilistic programming languages may skip to Chapter 5, which reviews this chapter’s highlights, without missing important prerequisites.

4.2 Language Tower and Terminology

λ_{ZFC}’s metalanguage is **first-order set theory**: first-order logic with equality extended with ZFC, or the Zermelo Fraenkel axioms and Choice (equivalently well-ordering). We also assume the existence of an inaccessible cardinal. Section 4.3 reviews the axioms, from which we will derive λ_{ZFC}’s primitives.

To help ensure λ_{ZFC}’s definition conservatively extends set theory, we encode its terms as sets. For example, ordered pairs of sets x and y are encoded as $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$, and $\langle t_P, \mathbb{R} \rangle = \{\{t_P\}, \{t_P, \mathbb{R}\}\}$ encodes the expression that applies the power set operator to \mathbb{R}.

λ_{ZFC}’s semantics reduces terms to terms; e.g. $\langle t_P, \mathbb{R} \rangle$ reduces to the actual powerset of \mathbb{R}. Thus, λ_{ZFC} contains infinite terms. Infinitary languages are useful and definable: the infinitary λ-calculus [41] is an example, and Aczel’s broadly used work [4] on inductive sets treats infinite inference rules explicitly.

For convenience, we define a language λ_{ZFC}^- of finite terms and a function $F[\cdot]$ from λ_{ZFC}^- to λ_{ZFC}. We can then write $\mathcal{P} \mathbb{R}$, meaning $F[\mathcal{P} \mathbb{R}] = \langle t_P, \mathbb{R} \rangle$.

Semantic functions like $F[\cdot]$ and the interpretation of BNF grammars are defined in set theory’s metalanguage, or the meta-metalanguage. Distinguishing metalanguages helps avoid paradoxes of definition such as Berry’s paradox, which are particularly easy to stumble onto when dealing with infinities.
We write λ_{ZFC} terms in sans serif font, and the metalanguage and meta-metalanguage in math font. We write common keywords in bold and invented keywords in bold italics. We abbreviate proofs for space.

4.3 Metalanguage: First-Order Set Theory

We assume readers are familiar with classical first-order logic with equality and its inference rules, but not set theory. Hrbacek and Jech [37] is a fine introduction.

Set theory extends classical first-order logic with equality, which distinguishes between truth-valued formulas ϕ and object-valued terms x. Set theory allows only sets as objects, and quantifiers like “\forall” may range only over sets.

We define predicates and functions using “$:\equiv$”; e.g. $\text{nand}(\phi_1, \phi_2) := \neg(\phi_1 \land \phi_2)$. They must be nonrecursive so they can be exhaustively applied. Such definitions are conservative extensions: they do not prove more theorems.

To develop set theory, we make proper extensions, which prove more theorems, by adding symbols and axioms to first-order logic. For example, we first add “\emptyset” and “\in”, and the empty set axiom $\forall x. x \notin \emptyset$.

We use “$:\equiv$” to define syntax; e.g. $\forall x \in A. P(x) :\equiv \forall x. (x \in A \Rightarrow P(x))$, where predicate application $P(x)$ represents a formula that may depend on x. We allow recursion in metametalanguage definitions if substitution terminates, so $\forall x_1 x_2 \ldots x_n. \phi :\equiv \forall x_1. \forall x_2 \ldots x_n. \phi$ can bind any number of names.

We already have Axiom 0 (empty set). Now for the rest.

Axiom 1 (extensionality). Define $A \subseteq B :\equiv \forall x \in A. x \in B$ and assume $A = B$ if A and B mutually are subsets; i.e. assume $\forall A B. (A \subseteq B \land B \subseteq A \Rightarrow A = B)$.

The converse follows from substituting A for B or B for A.

Axiom 2 (foundation). Define $A \not\in B :\equiv \forall x. (x \in A \Rightarrow x \notin B)$ (“A and B are disjoint”) and assume $\forall A. (A = \emptyset) \lor \exists x \in A. x \not\in A$.

55
Foundation implies that the following nondeterministic procedure always terminates:
If input $A = \emptyset$, return A; otherwise restart with any $A' \in A$. Thus, sets are roots of trees in which every upward path is unbounded but finite. Foundation is analogous to “all data constructors are strict.”

Axiom 3 (powerset). Add “\mathcal{P}” and assume $\forall A x. (x \in \mathcal{P}(A) \iff x \subseteq A)$.

A hereditarily finite set is finite and has only hereditarily finite members. Each such set first appears in some $\mathcal{P}(\mathcal{P}(\ldots \mathcal{P}(\emptyset) \ldots))$. For example, after $\{x, \ldots\}$ (literal set syntax) is defined, $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(\emptyset))$. $\{\mathcal{R}\}$ is not hereditarily finite.

Axiom 4 (union). Add “\bigcup” (“big” union) and assume arbitrary unions of sets of sets exist; i.e. $\forall A x. (x \in \bigcup A \iff \exists y. x \in y \land y \in A)$.

For example, after $\{x, \ldots\}$ is defined, $\bigcup\{\{x, y\}, \{y, z\}\} = \{x, y, z\}$. Also, because all objects are sets, “\bigcup” can extract the object in a singleton set: if $A = \{x\}$, then $x = \bigcup A$.

Axiom 5 (replacement schema). A binary predicate R can act as a function if it relates each x to exactly one y; i.e. $\forall x \in A. \exists! y. R(x, y)$, where “$\exists!$” means unique existence (read “there exists exactly one”). We cannot quantify over predicates in first-order logic, but we can assume, for each such definable R, that $\forall y. (y \in \{y' | x \in A \land R(x, y')\} \iff \exists x \in A. R(x, y))$.

Roughly, treating R as a function, if R’s domain is a set, its image (range) is also a set.

An axiom schema represents countably many axioms. If $R(n, m) \iff m = n + 1$, for example, then there is an instance of Axiom 5 for $R(n, m)$.

It is not hard to show by Axiom 5 that (after \mathbb{N} is defined) $\{m \mid n \in \mathbb{N} \land R(n, m)\}$ increments every natural number, yielding the set of positive naturals. But the syntax is cumbersome, so we define $\{F(x) \mid x \in A\} :\equiv \{y \mid x \in A \land y = F(x)\}$, analogous to map F A, for functional replacement. Now the more familiar $\{n + 1 \mid n \in \mathbb{N}\}$ is the positive naturals.

It might seem replacement should be defined functionally, but predicates allow powerful nonconstructivism. Suppose $Q(y)$ for exactly one y. The description operator

$$\iota y. Q(y) \equiv \bigcup\{y \mid x \in \mathcal{P}(\emptyset) \land Q(y)\} \quad (4.1)$$
finds “the \(y \) such that \(Q(y) \).”

From the six axioms so far, we can define \(A \cup B \) (binary union), \(\{ x, ... \} \) (literal finite sets), \(\langle x, y, z, ... \rangle \) (ordered pairs and lists), \(\{ x \in A \mid Q(x) \} \) (bounded selection), \(A \setminus B \) (relative complement), \(\bigcap A \) (“big” intersection), \(\bigcup_{x \in A} F(x) \) (indexed union), \(A \times B \) (cartesian product), and \(A \rightarrow B \) (total function spaces). For details, we recommend Paulson’s remarkably lucid development in HOL [61].

4.3.1 The Gateway to Cantor’s Paradise: Infinity

From the six axioms so far, we cannot construct a set that is closed under unboundedly many operations, such as the language of a recursive grammar.

Example 4.1 (interpreting a grammar). We want to interpret \(z ::= \emptyset \mid \langle \emptyset, z \rangle \). It should mean the least fixpoint of a function \(F_z \), which, given a subset of \(z \)’s language, returns a larger subset. To define \(F_z \), replace “|” with “\(\cup \)”, the terminal \(\emptyset \) with \(\{ \emptyset \} \), and the rule \(\langle \emptyset, z \rangle \) with functional replacement:

\[
F_z(Z) := \{ \emptyset \} \cup \{ \langle \emptyset, z \rangle \mid z \in Z \} \tag{4.2}
\]

We could define \(Z(0) := \emptyset \), then \(Z(1) := F_z(Z(0)) = \{ \emptyset, \langle \emptyset, \emptyset \rangle \} \), then \(Z(2) = F_z(Z(1)) = \{ \emptyset, \langle \emptyset, \emptyset \rangle, \langle \emptyset, \emptyset, \emptyset \rangle \} \), and so on. The language should be the union of all the \(Z(n) \), but we cannot construct it without a set of all \(n \).

We follow Von Neumann, defining \(0 := \emptyset \) as the **first ordinal number** and \(s(n) := n \cup \{ n \} \) to generate **successor ordinals**. Then \(1 := s(0) = \{ 0 \} \), \(2 := s(1) = \{ 0, 1 \} \), and \(3 := s(2) = \{ 0, 1, 2 \} \), and so on, so that every ordinal is defined as the set of its predecessors. The set of such numbers is the language of \(n ::= 0 \mid s(n) \), which should be the least fixpoint of \(F_n(N) := \{ 0 \} \cup \{ s(n) \mid n \in N \} \), similar to (4.2). Before we can prove this set exists, we must assume some fixpoint exists.

Axiom 6 (infinity). \(\exists I. I = F_n(I) \). \qed

57
is a bounding set, so it may contain more than just finite ordinals. But \(F_n \) is monotone in \(I \), so by the Knaster-Tarksi theorem (suitably restricted [62]),

\[
\omega := \bigcap\{N \subseteq I \mid N = F_n(N)\}
\]

is the least fixpoint of \(F_n \): the finite ordinals, a model of the natural numbers.

Example 4.2 (interpreting a grammar). We build the language defined by \(z ::= \emptyset \mid \langle \emptyset, z \rangle \) recursively:

\[
\begin{align*}
Z(0) &= \emptyset \\
Z(s(n)) &= F_z(Z(n)), \; n \in \omega \\
Z(\omega) &= \bigcup_{n \in \omega} Z(n)
\end{align*}
\]

By induction, \(Z(n) \) exists for every \(n \in \omega \); therefore \(Z(\omega) \) exists, so (4.4) is a conservative extension of set theory. It is not hard to prove (also by induction) that \(Z(\omega) \) is the set of all finite lists of \(\emptyset \), and that it is the least fixpoint of \(F_z \).

Similarly to building the language \(Z(\omega) \) of \(z \) in (4.4), we can build the set \(V(\omega) \) of all hereditarily finite sets (see Axiom 3) by iterating \(P \) instead of \(F_z \):

\[
\begin{align*}
V(0) &= \emptyset \\
V(s(n)) &= P(V(n)), \; n \in \omega \\
V(\omega) &= \bigcup_{n \in \omega} V(n)
\end{align*}
\]

The set \(\omega \) is not just a model of the natural numbers. It is also a number itself: the **first countable ordinal**. Indeed, \(\omega \) is strikingly similar to every finite ordinal in two ways. First, it is defined as the set of its predecessors. Second, it has a successor \(s(\omega) = \omega \cup \{\omega\} \). (Imagine it as \(\{0, 1, 2, \ldots, \omega\} \).) However, unlike finite, nonzero ordinals, \(\omega \) has no immediate predecessor—it is a **limit ordinal**.

Defining more limit ordinals allows iterating \(P \) further. It is not hard to build \(\omega + \omega, \omega^2 \).
and \(\omega^\omega \) as least fixpoints. The **Von Neumann hierarchy** generalizes (4.5):

\[
\begin{align*}
\mathcal{V}(0) &= \emptyset \\
\mathcal{V}(s(\alpha)) &= \mathcal{P}(\mathcal{V}(\alpha)), \text{ ordinal } \alpha \\
\mathcal{V}(\beta) &= \bigcup_{\alpha \in \beta} \mathcal{V}(\alpha), \text{ limit ordinal } \beta
\end{align*}
\]

(4.6)

It is a theorem of ZFC that every set first appears in \(\mathcal{V}(\alpha) \) for some ordinal \(\alpha \).

Equations (4.4,4.5,4.6) demonstrate **transfinite recursion**, set theory’s **unfold**: defining a function \(\mathcal{V} \) on ordinals, with \(\mathcal{V}(\beta) \) in terms of \(\mathcal{V}(\alpha) \) for every \(\alpha \in \beta \).

4.3.2 Every Set Can Be Sequenced: Well-Ordering

A **sequence** is a total function from an ordinal to a codomain; e.g. \(f \in 3 \to A \) is a length-3 sequence of \(A \)'s elements. (An ordinal is comprised of its predecessors, so \(3 = \{0, 1, 2\} \).) A **well-order** of \(A \) is a bijective sequence of \(A \)'s elements.

Axiom 7 (well-ordering). Suppose the predicate \(\text{Ord} \) identifies ordinals and \(B \leftrightarrow A \) is the set of all bijective mappings from \(B \) to \(A \). Assume \(\forall A. \exists \alpha. \text{Ord}(\alpha) \land f \in \alpha \leftrightarrow A \); i.e. every set can be well-ordered.

Because the bijective sequence \(f \) is not unique, a well-ordering primitive could make \(\lambda_{\text{ZFC}} \)'s semantics nondeterministic. Fortunately, the existence of a cardinality operator is equivalent to well-ordering [76], so we will give \(\lambda_{\text{ZFC}} \) a cardinality primitive.

The **cardinality** of a set \(A \) is the smallest ordinal that can be put in bijection with \(A \). Formally, if \(F \) is the set of \(A \)'s well-orderings, then \(|A| = \cap \{\text{domain}(f) \mid f \in F\} \).

4.3.3 Infinity’s Infinity: An Inaccessible Cardinal

The set \(\mathcal{V}(\omega) \) of hereditarily finite sets is closed under powerset, union, replacement (with predicates restricted to \(\mathcal{V}(\omega) \)), and cardinality. It is also **transitive**: if \(A \in \mathcal{V}(\omega) \), then \(x \in \mathcal{V}(\omega) \) for all \(x \in A \). These closure properties make it a **Grothendieck universe**: a set that acts like a set of all sets.
\[e ::= n \mid v \mid e e \mid \text{if } e e e \mid e \in e \mid \bigcup e \mid \text{take } e \mid \mathcal{P} e \mid \text{image } e e \mid \text{card } e \]

\[v ::= \text{false} \mid \text{true} \mid \lambda e \mid \emptyset \mid \omega \]

\[n ::= 0 \mid 1 \mid 2 \mid \cdots \]

Figure 4.1: The definition of \(\lambda_{\text{ZFC}} \), which represents countably many \(\lambda_{\text{ZFC}} \) terms.

\(\lambda_{\text{ZFC}} \)'s values should contain \(\omega \) and be closed under its primitives. But a Grothendieck universe containing \(\omega \) cannot be proved from the typical axioms. If it exists, it must be equal to \(\mathcal{V}(\kappa) \) for some \textbf{inaccessible cardinal} \(\kappa \).

Axiom 8 (inaccessible cardinal). Suppose \(GU(V) \) if and only if \(V \) is a Grothendieck universe. Add “\(\kappa \)” and assume \(\text{Ord}(\kappa) \land (\kappa > \omega) \land GU(\mathcal{V}(\kappa)) \).

We call the sets in \(\mathcal{V}(\kappa) \) \textbf{hereditarily accessible}.

Inaccessible cardinals are not usually assumed but are widely believed consistent. Set theorists regard them as no more dangerous than \(\omega \). Interpreting category theory with small and large categories, second-order set theory, or CIC in first-order set theory requires at least one inaccessible cardinal [7, 77, 80].

Constructing a set \(A \not\in \mathcal{V}(\kappa) \) requires assuming \(\kappa \) or an equivalent, so \(\mathcal{V}(\kappa) \) easily contains most mathematics. In fact, most can be modeled well within \(\mathcal{V}(2^\omega) \); e.g. the model of \(\mathbb{R} \) we define in Section 4.7 is in \(\mathcal{V}(\omega + 11) \). Besides, if \(\lambda_{\text{ZFC}} \) needed to contain large cardinals, we could always assume even larger ones.

4.4 \(\lambda_{\text{ZFC}} \)'s Grammar

We define \(\lambda_{\text{ZFC}} \)'s terms in three steps. First, we define \(\lambda_{\text{ZFC}}^- \), a language of finite terms with primitives that correspond with the ZFC axioms. Second, we encode these terms as sets. Third, guided by the first two steps, we define \(\lambda_{\text{ZFC}} \) by defining its terms, most of which are infinite, as sets in \(\mathcal{V}(\kappa) \).

Figure 4.1 shows \(\lambda_{\text{ZFC}}^- \)'s grammar. Expressions \(e \) are typical: variables, values, application, if, and domain-specific primitives, for membership, union, extraction (\text{take}), powerset,
Distinct $t_{\text{var}}, t_{\text{app}}, t_{\text{if}}, t_{\text{e}}, t_{\text{∪}}, t_{\text{take}}, t_{\text{p}}, t_{\text{image}}, t_{\text{card}}, t_{\text{set}}, t_{\text{atom}}, t_{\lambda}, t_{\text{false}}, t_{\text{true}}$

\[
\begin{align*}
F[n] & := \langle t_{\text{var}}, n \rangle \\
F[e_f e_x] & := \langle t_{\text{app}}, F[e_f], F[e_x] \rangle \\
F[e_x \in e_A] & := \langle t_{\text{∈}}, F[e_x], F[e_A] \rangle \\
& \quad \vdots \\
F[\emptyset] & := \text{set}(\emptyset) \\
F[\omega] & := \text{set}(\omega) \\
F[\text{false}] & := \langle t_{\text{atom}}, t_{\text{false}} \rangle \\
F[\text{true}] & := \langle t_{\text{atom}}, t_{\text{true}} \rangle \\
\text{set}(A) & = \langle t_{\text{set}}, \{\text{set}(x) \mid x \in A\} \rangle
\end{align*}
\]

Figure 4.2: The semantic function $F[\cdot]$ from λ_{ZF} terms to λ_{ZFC} terms.

Functional replacement (image), and cardinality. Values v are also typical: booleans and lambdas, and the domain-specific constants \emptyset and ω.

In set theory, $\bigcup \{A\} = A$ holds for all A, so \bigcup can extract the element from a singleton. In λ_{ZFC}, the encoding of $\bigcup \{A\}$ reduces to A only if A is an encoded set. Therefore, the primitives must include take, which extracts A from $\{A\}$. In particular, extracting a lambda from an ordered pair requires take.

We use De Bruijn indexes with 0 referring to the innermost binding. Because we will define λ_{ZFC} terms as well-founded sets, by Axiom 2, countably many indexes is sufficient for λ_{ZFC} as well as λ_{ZF}.

Figure 4.2 shows part of the meta-metalanguage function $F[\cdot]$ that encodes λ_{ZF} terms as λ_{ZFC} terms. It distinguishes sorts of terms in the standard way, by pairing them with tags; e.g. if t_{set} is the “set” tag, then $\langle t_{\text{set}}, \emptyset \rangle$ encodes \emptyset.

To recursively tag sets, we add the axiom $\text{set}(A) = \langle t_{\text{set}}, \{\text{set}(x) \mid x \in A\} \rangle$. The well-founded recursion theorem proves that for all A, $\text{set}(A)$ exists, so this axiom is a conservative extension. The actual proof is tedious, but in short, set is structurally recursive. Now $\text{set}(\emptyset) = \langle t_{\text{set}}, \emptyset \rangle$ and $\text{set}(\omega)$ encodes ω.

4.4.1 An Infinite Set Rule For Finite BNF Grammars

There is no sensible reduction relation for λ_{ZF}. (For example, $\mathcal{P} \emptyset$ cannot correctly reduce to a value because no value in λ_{ZF} corresponds to $\{\emptyset\}$.) The easiest way to ensure a reduction
relation exists for λ_{ZFC} is to include encodings of all the sets in $\mathcal{V}(\kappa)$ as values.

To define λ_{ZFC}’s terms, we first extend BNF with a set rule: $\{y^\alpha\}$, where α is a cardinal number. Roughly, it means sets comprised of no more than α terms from the language of y. Formally, it means $\mathcal{P}_<(Y, \alpha)$, where Y is a subset of y’s language generated while building a least fixpoint, and the bounded powerset operation is defined by

$$\mathcal{P}_<(Y, \alpha) := \{x \in \mathcal{P}(Y) \mid |x| < \alpha\}$$

meaning $\mathcal{P}_<(Y, \alpha)$ returns all subsets of Y with cardinality less than α.

Example 4.3 (finite sets). The grammar $h ::= \{h^\omega\}$ should represent all hereditarily finite sets, or $\mathcal{V}(\omega)$. Intuitively, the single rule for h should be equivalent to countably many rules $h ::= \{\} \mid \{h\} \mid \{h, h\} \mid \{h, h, h\} \mid \cdots$.

Its language is the least fixpoint of $F_h(H) := \mathcal{P}_<(H, \omega)$. Further on, we will prove that F_h’s least fixpoint is $\mathcal{V}(\omega)$ using a general theorem. ◊

Example 4.4 (accessible sets). The language of $a ::= \{a^\kappa\}$ is the least fixpoint of $F_a(A) := \mathcal{P}_<(A, \kappa)$, which should be $\mathcal{V}(\kappa)$. ◊

The following theorem schemas will make it easy to find least fixpoints.

Theorem 4.5. Let F be a unary function. Define V by transfinite recursion:

$$V(0) = \emptyset$$

$$V(s(\alpha)) = F(V(\alpha))$$

$$V(\beta) = \bigcup_{\alpha \in \beta} V(\alpha), \text{ limit ordinal } \beta$$

Let γ be an ordinal. If F is monotone on $V(\gamma)$, V is monotone on γ, and $V(\gamma)$ is a fixpoint of F, then $V(\gamma)$ is also the **least** fixpoint of F.

Proof. By induction: successor case by monotonicity; limit by a property of \bigcup. □
All the Fs we define are monotone. In particular, the interpretations of $\{y^{*\alpha}\}$ rules are monotone because P is monotone. Further, all the Fs we define give rise to a monotone V. Grammar terminals “seed” every iteration with singleton sets, and $\{y^{*\alpha}\}$ rules seed every iteration with \emptyset.

From here on, we write F^α instead of $V(\alpha)$ to mean α iterations of F.

Theorem 4.6. Suppose a grammar with $\{y^{*\alpha}\}$ rules and iterating function F. The language of the grammar, F’s least fixpoint, is F^γ, where γ is a regular cardinal not less than any α.

Proof. Fixpoint by Aczel [4, Theorem 1.3.4]; least fixpoint by Theorem 4.5. □

Example 4.7 (finite sets). Because ω is regular, by Theorem 4.6, F_h’s least fixpoint is F_h^ω. Further, $F_h(H) = P(H)$ for all hereditarily finite H, and $V(\omega)$ is closed under P, so $F_h^\omega = V(\omega)$, the set of all hereditarily finite sets. ◊

Example 4.8 (accessible sets). By a similar argument, F_a’s least fixpoint is $F_a^\kappa = V(\kappa)$, the set of all hereditarily accessible sets. ◊

Example 4.9 (encoded accessible sets). The language of $v ::= \langle t_{\text{set}}, \{v^{*\kappa}\} \rangle$ is comprised of the encodings of all the hereditarily accessible sets. ◊

4.4.2 The Grammar of Infinite, Encoded Terms

There are three main differences between λ_{ZFC}’s grammar in Fig. 4.3 and $\lambda_{\overline{\text{ZFC}}}$’s grammar in Fig. 4.1. First, λ_{ZFC}’s grammar defines a language of terms that are already encoded as sets. Second, instead of the symbols \emptyset and ω, it includes, as values, encoded sets of values. Most of these value terms are infinite, such as the encoding of ω. Third, it includes encoded sets of expressions.

The language of n is $N ::= \{\langle t_{\text{var}}, i \rangle \mid i \in \omega\}$. The rules for e and v are mutually recursive.
\[
\begin{align*}
e & ::= n \mid v \mid \langle t_{\text{app}}, e, e \rangle \mid \langle t_{\text{if}}, e, e, e \rangle \mid \langle t_{\in}, e, e \rangle \mid \langle t_{\cup}, e \rangle \mid \langle t_{\text{take}}, e \rangle \mid \langle t_{\text{p}}, e \rangle \mid \langle t_{\text{image}}, e, e \rangle \mid \langle t_{\text{card}}, e \rangle \mid \langle t_{\text{set}}, \{e^\kappa\} \rangle \\
v & ::= a_{\text{false}} \mid a_{\text{true}} \mid \langle t_{\lambda}, e \rangle \mid \langle t_{\text{set}}, \{v^\kappa\} \rangle \\
n & ::= \langle t_{\text{var}}, 0 \rangle \mid \langle t_{\text{var}}, 1 \rangle \mid \cdots
\end{align*}
\]

Figure 4.3: \(\lambda_{\text{ZFC}}\)'s grammar. Here, \(\{e^\kappa\}\) means sets comprised of no more than \(\kappa\) terms from the language of \(e\).

Interpreted, but leaving out some of \(e\)'s rules, they are

\[
\begin{align*}
F_e(E, V) & := N \cup V \cup \{\langle t_{\text{app}}, e_f, e_x \rangle \mid (e_f, e_x) \in E \times E\} \cup \cdots \cup \{\langle t_{\text{set}}, e \rangle \mid e \in \mathcal{P}_<(E, \kappa)\} \\
F_v(E, V) & := \{a_{\text{false}}, a_{\text{true}}\} \cup \{\langle t_{\lambda}, e \rangle \mid e \in E\} \cup \{\langle t_{\text{set}}, v \rangle \mid v \in \mathcal{P}_<(V, \kappa)\}
\end{align*}
\]

(4.9)

To use Theorem 4.6, we need to iterate a single function. Note that the language pair \(\langle E, V \rangle = \langle \{e, \ldots\}, \{v, \ldots\} \rangle\) is isomorphic to the single set of tagged terms \(EV = \{\langle 0, e \rangle, \ldots, \langle 1, v \rangle, \ldots\}\). Binary \textbf{disjoint union}, denoted \(E \sqcup V\), creates such sets. We define \(F_{ev}\) by \(F_{ev}(E \sqcup V) = F_e(E, V) \sqcup F_v(E, V)\). By Theorem 4.6, its least fixpoint is \(F_{ev}^\kappa\), so we define \(E\) and \(V\) by \(E \sqcup V = F_{ev}^\kappa\).

To make well-founded substitution easy, we will use capturing substitution, which does not capture when used on closed terms. Let \(Cl(e)\) indicate whether a term is closed—this is structurally recursive. Then \(E' := \{e \in E \mid Cl(e)\}\) and \(V' := \{v \in V \mid Cl(v)\}\) contain only closed terms. Lastly, we define \(\lambda_{\text{ZFC}} := E'\).

4.5 \(\lambda_{\text{ZFC}}\)'s Big-Step Reduction Semantics

We distinguish sets from other expressions using \(E_{\text{set}}\) and \(V_{\text{set}}\), which merely check tags. We also lift set constructors to operate on encoded sets. For example, for cardinality, \(\hat{\mathcal{C}}(v_A) := \text{set}(\text{snd}(v_A)))\) extracts the tagged set from \(v_A\), applies \(|\cdot|\), and recursively tags the
resulting cardinal number. The rest are

\[
\begin{align*}
\text{(ap)} & \quad e_f \downarrow \langle \lambda \alpha, e_y \rangle \quad e_x \downarrow v_x \quad e_y[0\backslash v_x] \downarrow v_y \\
(\text{if}) & \quad e_c \downarrow a_{\text{true}} \quad e_l \downarrow v_l \quad e_c \downarrow a_{\text{false}} \quad e_f \downarrow v_f
\end{align*}
\]

\[
\begin{align*}
\text{(val)} & \quad v \downarrow v \\
\text{(in)} & \quad e_A \downarrow v_A \quad V_{\text{set}}(v_A) \quad e_x \downarrow v_x \quad v_x \in \text{snd}(v_A) \\
\text{(union)} & \quad e_A \downarrow v_A \quad V_{\text{set}}(v_A) \quad \forall v_x \in \text{snd}(v_A). V_{\text{set}}(v_x) \\
\text{(image)} & \quad e_A \downarrow v_A \quad V_{\text{set}}(v_A) \quad e \downarrow \langle \lambda \alpha, e_y \rangle \quad \hat{I}(\langle \lambda \alpha, e_y \rangle, v_A) \downarrow v_y \\
\text{(set)} & \quad e_A \downarrow \{\text{set}, \{v_x \mid e_x \in \text{snd}(e_A) \land e_x \downarrow v_x\}\} \\
\text{(pow)} & \quad e_A \downarrow v_A \quad V_{\text{set}}(v_A) \quad \langle t_P, e_A \rangle \downarrow \hat{P}(v_A) \\
\text{(card)} & \quad e_A \downarrow v_A \quad V_{\text{set}}(v_A) \quad \langle t_{\text{card}}, e_A \rangle \downarrow \hat{C}(v_A) \\
\text{(take)} & \quad e_A \downarrow \{\text{take}, \{v_x\}\} \quad \langle t_{\text{set}}, e_A \rangle \downarrow v_x
\end{align*}
\]

\[
\begin{align*}
\hat{P}(v_A) & := \langle t_{\text{set}}, \{t_{\text{set}}, v_x \mid v_x \in \mathcal{P}(\text{snd}(v_A))\}\rangle \\
\hat{\bigcup}(v_A) & := \langle t_{\text{set}}, \bigcup \{\text{snd}(v_x) \mid v_x \in \text{snd}(v_A)\}\rangle \\
\hat{I}(v_f, v_A) & := \langle t_{\text{set}}, \{t_{\text{app}}, v_f, v_x \mid v_x \in \text{snd}(v_A)\}\rangle
\end{align*}
\]

All but \(\hat{I}\) return values. Sets returned by \(\hat{I}\) are intended to be reduced further.

We use \(\epsilon[n\backslash v]\) for De Bruijn substitution. Because \(e\) and \(v\) are closed, it is easy to define it using simple structural recursion on terms; it is thus conservative.

Figure 4.4 shows the reduction rules that define the reduction relation “\(\downarrow\)”. Figure 4.4a has standard call-by-value rules: values reduce to themselves, and applications reduce by substitution. Figure 4.4b has the \(\lambda_{ZFC}\)-specific rules. Most simply use \(V_{\text{set}}\) to check tags before applying a lifted operator. The (image) rule replaces each value \(v_x\) in the set \(v_A\) with an application, generating a set expression, and the (set) rule reduces all the terms inside a set expression.
To define “⇓” as a least fixpoint, we adapt Aczel’s treatment [4]. We first define a bounding set for “⇓” using closed terms, or $U := E' \times V'$, so that $\downarrow \subseteq U$.

The rules in Fig. 4.4 can be used to define a predicate $D(R, \langle e, v \rangle)$. This predicate indicates whether some reduction rule, after replacing every “⇓” in its premise with the approximation R, derives the conclusion $e \downarrow v$.\footnote{\textit{D} is definable in first-order logic, but its definition does not aid understanding much.} Using D, we define a function that derives new conclusions from the known conclusions in R:

$$F_{\downarrow}(R) := \{ c \in U \mid D(R, c) \}$$

(4.11)

For example, $F_{\downarrow}(\varnothing) = \{(v, v) \mid v \in V\}$, by the (val) rule. $F_{\downarrow}(F_{\downarrow}(\varnothing))$ includes all pairs of non-value expressions and the values they reduce to in one derivation, as well as $\{(v, v) \mid v \in V\}$. Generally, (val) ensures that iterating F_{\downarrow} is monotone.

For F_{\downarrow} itself to be nonmonotone, for some $R \subseteq R' \subseteq U$, there would have to be a conclusion $c \in F_{\downarrow}(R)$ that is not in $F_{\downarrow}(R')$. In other words, having more known conclusions could falsify a premise. None of the rules in Fig. 4.4 can do so.

Because F_{\downarrow} is monotone and iterating it is monotone, we can define $\downarrow := F_{\downarrow}^\gamma$ for some ordinal γ. If λ_{ZFC} had only finite terms, $\gamma = \omega$ iterations would reach a fixpoint. But a simple countable term shows why “⇓” cannot be F_{\downarrow}^ω.

Example 4.10 (countably infinite term). If s is the successor function in λ_{ZFC}, the term $t := \langle \text{set}, \{0, \langle \text{app}, s, 0 \rangle, \langle \text{app}, s, \langle \text{app}, s, 0 \rangle \}, \ldots \rangle \rangle$ should reduce to $\text{set}(\omega)$. The (set) rule’s premises require each of t’s subterms to reduce—using at least F_{\downarrow}^ω because each subterm requires a finite, unbounded number of (ap) derivations. Though $F_{\downarrow}^{s(\omega)}$ reduces t, for larger terms, we must iterate F_{\downarrow} much further. \[\checkmark\]

Theorem 4.11. $\downarrow := F_{\downarrow}^\kappa$ is the least fixpoint of F_{\downarrow}.

Proof. Fixpoint by Aczel [4, Theorem 1.3.4]; least fixpoint by Theorem 4.5. \[\square\]

Lastly, ZFC theorems that do not depend on κ can be applied to λ_{ZFC} terms.
Theorem 4.12. λZFC’s set values and $\langle t_{\in}, \cdot, \cdot \rangle$ are a model of ZFC-κ.

Proof. $\mathcal{V}(\kappa)$, a model of ZFC-κ, is isomorphic to $v := \langle t_{\text{set}}, \{v^*\} \rangle$.

4.6 Syntactic Sugar and a Small Set Library

From here on, we write only $\lambda\text{-ZFC}$ terms, assume $\mathcal{F}[\cdot]$ is applied, and no longer distinguish $\lambda\text{-ZFC}$ from λZFC.

We use names instead of De Bruijn indexes and assume names are converted. We get alpha equivalence for free; for example, $\lambda x. x = \langle t_{\lambda}, \langle t_{\text{var}}, 0 \rangle \rangle = \lambda y. y$.

λZFC does not contain terms with free variables. To get around this technical limitation, we assume free variables are metalanguage names for closed terms.

We allow the primitives $(\in), \bigcup, \text{take}, \mathcal{P}, \text{image}$ and card to be used as if they were functions. Enclosing infix operators in parentheses refers to them as functions, as in (\in). We partially apply infix functions using Haskell-like sectioning rules, so $(x \in) \text{ means } \lambda A. x \in A$ and $(\in A) \text{ means } \lambda x. x \in A$.

We define first-order objects using “$:\text{=}”$, as in $0 := \emptyset$, and syntax with “$:\text{=}\equiv$”, as in $\lambda x_1 x_2 \ldots x_n. e := \lambda x_1. \lambda x_2 \ldots x_n. e$ to automatically curry. Function definitions expand to lambdas (using fixpoint combinators for recursion); for example, $x = y := x \in \{y\}$ and $(\text{=}) := \lambda x y. x \in \{y\}$ equivalently define (=) in terms of (\in). We destructure pairs implicitly in binding patterns, as in $\lambda \langle x, y \rangle. f \times y$.

To do anything useful, we need a small set library. The definitions are similar to the metalanguage definitions we omitted in Section 4.3, and we similarly elide most of the λZFC definitions. However, some deserve special mention.

Because λZFC has only functional replacement, we cannot define unbounded “\forall” and
But we can define bounded quantifiers in terms of bounded selection, or

\[
\text{select } f \ A := \bigcup (\text{image } (\lambda x. \text{if } (f \ x) \{x\} \emptyset) \ A)
\]

\[
\forall x \in e_A. \ e_f := (\text{select } (\lambda x. \ e_f) \ e_A) = e_A
\]

(4.12)

\[
\exists x \in e_A. \ e_f := (\text{select } (\lambda x. \ e_f) \ e_A) = \emptyset
\]

We also define a bounded description operator using the filter-like select:

\[
\iota x \in e_A. \ e_f := \text{take } (\text{select } (\lambda x. \ e_f) \ e_A)
\]

(4.13)

Note \(\iota x \in e_A. \ e_f\) reduces only if \(e_f \triangledown \text{true}\) for exactly one \(x \in e_A\).

Unlike in first-order logic, converting a predicate to an object in \(\lambda_{\text{ZFC}}\) requires a bounding set as well as unique existence. For example, if

\[
\langle e_x, e_y \rangle := \{\{e_x\}, \{e_x, e_y\}\}
\]

(4.14)

defines ordered pairs, then

\[
fst p := \iota x \in (\bigcup p). \exists y \in (\bigcup p). \ p = \langle x, y \rangle
\]

(4.15)

takes the first element by identifying it in the bounding set \(\bigcup p\) using a predicate.

The \textbf{set monad} simulates nondeterministic choice. We define it by

\[
\text{return}_{\text{set}} \ a := \{a\}
\]

\[
\text{bind}_{\text{set}} A \ f := \bigcup (\text{image } f \ A)
\]

(4.16)

Using \(\text{bind } m \ f = \text{join } (\text{lift } f m)\), evidently \(\text{lift}_{\text{set}} := \text{image}\) and \(\text{join}_{\text{set}} := \bigcup\). The proofs of the monad laws follow the proofs for the list monad. We also define

\[
\{x \in e_A\}. \ e_f := \text{bind}_{\text{set}} (\lambda x. \ e_f) \ e_A
\]

(4.17)
read “choose \(x \) in \(e_A \), then \(e_f \)” For example, binary cartesian product is defined by

\[
A \times B := \{x \in A\}. \{y \in B\}. \text{return}_{\text{set}} \langle x, y \rangle
\]

(4.18)

Every \(f \in A \to B \) is shaped \(f = \{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \ldots\} \) and is total on \(A \). To distinguish these hash tables from lambdas, we call them mappings. Mappings can be applied by

\[
\text{ap } f \ x := \{ y \in (\text{range } f). \langle x, y \rangle \in f \}, \text{ but we write just } f \ x.
\]

We define

\[
\text{mapping } f \ A := \text{image } (\lambda x. \langle x, f \ x \rangle) \ A
\]

(4.19)

to convert a lambda to a mapping or to restrict a mapping to \(A \). We usually use

\[
\lambda x \in e_A. \ e_y \equiv \text{mapping } (\lambda x. \langle x, f \ x \rangle) \ e_A
\]

(4.20)

to define mappings.

A sequence of \(A \) is a mapping \(xs \in \alpha \to A \) for some ordinal \(\alpha \). For example, \(ns := \lambda n \in \omega. n \) is a countable sequence in \(\omega \to \omega \) of increasing finite ordinals. We assume useful sequence functions like \text{map}, \text{map2} and \text{drop} are defined.

4.7 Example: The Reals From the Rationals

Here, we demonstrate that \(\lambda_{\text{ZFC}} \) is computationally powerful enough to construct the real numbers. For a clear, well-motivated, rigorous treatment in first-order set theory without lambdas, we recommend Abbott’s excellent introductory text [3].

Assume we have a model \(\mathbb{Q}, +_\mathbb{Q}, -_\mathbb{Q}, \times_\mathbb{Q}, \div_\mathbb{Q} \) of the rationals and rational arithmetic.\(^2\)

To get the reals, we close the rationals under countable limits.

We represent limits of rationals with sequences in \(\omega \to \mathbb{Q} \). To select only the converging ones, we must define what convergence means. We start with convergence to zero and

\(^2\) Though the \(\lambda_{\text{ZFC}} \) development of \(\mathbb{Q} \) is short and elegant, it does not fit in this paper.
equivalence. Given \(Q^+ \), ‘\(<_Q\)’ and \(| \cdot |_Q \), define

\[
\text{conv-zero}^?_R \, \mathsf{xs} := \forall \varepsilon \in Q^+. \exists N \in \omega. \forall n \in \omega. (N \in n \Rightarrow |\mathsf{xs}_n|_Q < \varepsilon) \\
\mathsf{xs} =_R \mathsf{ys} := \text{conv-zero}^?_R (\text{map}^2 (-_Q) \, \mathsf{xs} \, \mathsf{ys})
\]

(4.21)

So a sequence \(\mathsf{xs} \in \omega \rightarrow Q \) converges to zero if, for any positive \(\varepsilon \), there is some index \(N \) after which all \(\mathsf{xs} \) are smaller than \(\varepsilon \). Two sequences are equivalent (\(=_R \)) if their pointwise difference converges to zero.

We should be able to drop finitely many elements from a converging sequence without changing its limit. Therefore, a sequence of rationals converges to *something* when it is equivalent to all of its suffixes. We thus define an equivalent to the Cauchy convergence test, and use it to select the converging sequences:

\[
\text{conv}^?_R \, \mathsf{xs} := \forall n \in \omega. \mathsf{xs} =_R (\text{drop} \, n \, \mathsf{xs}) \\
R := \text{select conv}^?_R (\omega \rightarrow Q)
\]

(4.22)

But \(R \) (equipped with the equivalence relation \(=_R \)) is not the real numbers as they are normally defined: converging sequences in \(R \) may be equivalent but not equal. To decide real equality using \(\lambda_{\mathsf{ZFC}} \)’s “\(= \)”, we partition \(R \) into disjoint sets of equivalent sequences—we make a quotient space. Thus,

\[
\text{quotient } A \ (=^A) := \text{image} (\lambda x. \text{select } (=^A \, x) \, A) \, A \\
R := \text{quotient } R \ (=^R)
\]

(4.23)

defines the reals with extensional equality.

To define real arithmetic, we must lift rational arithmetic to sequences and then to sets of sequences. The \(\text{map}^2 \) function lifts, say, \(+_Q \) to sequences, as in \((+_R) := \text{map}^2 \, (+_Q) \). To lift \(+_R \) to sets of sequences, note that sets of sequences are models of nondeterministic sequences, suggesting the set monad. We define \(\text{lift}^2_{\text{set}} \, f \, A \, B := \{a \in A\}. \{b \in B\}. \text{return}^\text{set} (f \, a \, b) \) to lift two-argument functions to the set monad. Now \(+ := \text{lift}^2_{\text{set}} \, (+_R) \), and similarly for the other operators.
Using lift\textsubscript{2}set is atypical, so we prove that $A + B \in \mathbb{R}$ when $A \in \mathbb{R}$ and $B \in \mathbb{R}$, and similarly for the other operators. It follows from the fact that the rational operators lifted to sequences are surjective morphisms, and this theorem:

Theorem 4.13. Suppose \equiv_X is an equivalence relation on X, and define its quotient $X := \text{quotient } X (\equiv_X)$. If op is surjective on X and a binary morphism for \equiv_X, then $(\text{lift}\textsubscript{2}set \text{op} A B) \in X$ for all $A \in X$ and $B \in X$.

Proof. Reduce to an equality. Case “⊆” by morphism; case “⊇” by surjection. □

Now for real limits. If \mathbb{R}^+, ‘$<$’, and $|\cdot|$ are defined, we can define conv-zero?\textsubscript{R}, which is like (4.21) but operates on real sequences $xs \in \omega \to \mathbb{R}$. We then define $\text{limit}_\mathbb{R} xs := \iota y \in \mathbb{R}. \text{conv-zero?}_\mathbb{R} (\text{map} (-y) xs)$ to calculate their limits.

From here, it is not difficult to treat \mathbb{Q} and \mathbb{R} uniformly by redefining $\mathbb{Q} \subset \mathbb{R}$.

4.8 Example: Computable Real Limits

Exact real computation has been around since Turing’s seminal paper [75]. The novelty here is how we do it. We define the limit monad in λZFC for expressing calculations involving limits, with bind_lim defined in terms of a general limit. We then derive a limit-free, computable replacement bind'_lim. Replacing bind_lim with bind'_lim in a λZFC term incurs proof obligations. If they can be met, the computable λZFC term has the same limit as the original, uncomputable term.

In other words, entirely in λZFC, we define uncomputable things, and gradually turn them into computable, directly implementable approximations.

The proof obligations are related to topological theorems [56] that we will import as lemmas. By Theorem 4.12, we are allowed to use them directly.

At this point, it is helpful to have a simple, informal type system, which we can easily add to the untyped λZFC. $A \Rightarrow B$ is a lambda or mapping type. $A \to B$ is the set of total mappings from A to B. A set is a membership proposition.
4.8.1 The Limit Monad

We first need a universe \(U \) of values that is closed under sequencing; i.e. if \(A \subset U \) then so is \(\omega \to A \). Define \(U \) as the language of \(u ::= R \mid \omega \to u \). A complete product metric \(\delta : U \Rightarrow U \Rightarrow R \) exists; therefore, a function \(\text{limit} : (\omega \to U) \Rightarrow U \) similar to \(\text{limit}_R \) exists that calculates limits. These are all \(\lambda_{\text{ZFC}} \)-definable.

The limit monad’s computations are of type \(\omega \to U \). The type does not imply convergence, which must be proved separately. Its \(\text{run} \) function is \(\text{limit} \).

Example 4.14 (infinite series). Define \(\text{partial-sums} : (\omega \to R) \Rightarrow (\omega \to R) \) first by \(\text{partial-sums'} \ xs := \lambda n. \text{if } (n = 0) \ (xs \ 0) \ ((xs \ n) + (\text{partial-sums'} \ xs \ (n - 1))) \). (The sequence is recursively defined, so we cannot use \(\lambda n \in \omega. e \) to immediately create it.) Then convert it to a mapping: \(\text{partial-sums} \ xs := \text{mapping} \ (\text{partial-sums'} \ xs) \ \omega \).

Now \(\sum_{n \in \omega} e \equiv \text{limit} \ (\text{partial-sums} \ \lambda n \in \omega. e) \), or the limit of partial sums. Even if \(xs \) converges, \(\text{partial-sums} \ xs \) may not; e.g. if \(xs = \lambda n \in \omega. \frac{1}{n+1} \).

The limit monad’s \(\text{return}_{\text{lim}} : U \Rightarrow (\omega \to U) \) creates constant sequences, and its \(\text{bind}_{\text{lim}} : (\omega \to U) \Rightarrow (U \Rightarrow (\omega \to U)) \Rightarrow (\omega \to U) \) simply takes a limit:

\[
\begin{align*}
\text{return}_{\text{lim}} \ x & := \lambda n \in \omega. x \\
\text{bind}_{\text{lim}} \ xs \ f & := f \ (\text{limit} \ xs)
\end{align*}
\]

(4.24)

The left identity and associativity monad laws hold using “=" for equivalence. However, right identity holds only in the limit, so we define equivalence by \(xs =_{\text{lim}} ys := \text{limit} \ xs = \text{limit} \ ys \).

Example 4.15 (lifting). Define \(\text{lift}_{\text{lim}} \ f \ xs := \text{bind}_{\text{lim}} \ xs \ \lambda x. \text{return}_{\text{lim}} \ (f \ x) \), as is typical. Substituting \(\text{bind}_{\text{lim}} \) and reducing reveals that \(f \ (\text{limit} \ xs) = \text{limit} \ (\text{lift}_{\text{lim}} \ f \ xs) \). That is, using \(\text{lift}_{\text{lim}} \) pulls limit out of \(f \)'s argument.

Example 4.16 (exponential). The Taylor series expansion of the exponential function is \(\text{exp-seq} : R \Rightarrow (\omega \to R) \), defined by \(\text{exp-seq} \ x := \text{partial-sums} \ \lambda n \in \omega. \frac{x^n}{n!} \). It always converges,
so limit (exp-seq x) = \sum_{n \in \omega} \frac{x^n}{n!} = \exp x \text{ for } x \in \mathbb{R}. \text{ To exponentiate converging sequences, define } \exp_{\text{lim}} xs := \text{bind}_{\text{lim}} xs \text{ exp-seq.}

\[\boxdot\]

4.8.2 The Computable Limit Monad

We derive the computable limit monad in two steps. In the first, longest step, we replace the limit monad’s defining functions with those that do not use limit. But computations will still have type \(\omega \to \mathbb{U}\), whose inhabitants are not directly implementable, so in the second step, we give them a lambda type.

We define \(\text{return}'_{\text{lim}} := \text{return}_{\text{lim}}\). A drop-in, limit-free replacement for \(\text{bind}_{\text{lim}}\) does not exist, but there is one that incurs three proof obligations. Without imposing rigid constraints on using \(\text{bind}_{\text{lim}}\), we cannot meet them automatically. But we can separate them by factoring \(\text{bind}_{\text{lim}}\) into \(\text{lift}_{\text{lim}}\) and \(\text{join}_{\text{lim}}\).

Limit-Free Lift. Substituting to get \(\text{lift}_{\text{lim}} f xs = \text{return}_{\text{lim}} (f (\text{limit} xs))\) exposes the use of limit. Removing it requires continuity and definedness.

Lemma 4.17 (continuity in metric spaces). Let \(f : A \Rightarrow B\) with \(A\) a metric space. Then \(f\) is continuous at \(x \in A\) if and only if for all \(xs \in \omega \to A\) for which \(\text{limit} xs = x\) and \(f\) is defined on all elements of \(xs\), \(f (\text{limit} xs) = \text{limit} (\text{map} f xs)\).

So if \(f : \mathbb{U} \Rightarrow \mathbb{U}\) is continuous at \(\text{limit} xs\), and \(f\) is defined on all \(xs\), then

\[
\text{limit} (\text{lift}_{\text{lim}} f xs) = \text{limit} (\text{return}_{\text{lim}} (f (\text{limit} xs))) \\
= \text{limit} (\text{return}_{\text{lim}} (\text{limit} (\text{map} f xs))) \\
= \text{limit} (\text{map} f xs)
\]

(4.25)

Thus, \(\text{lift}_{\text{lim}} f xs =_{\text{lim}} \text{map} f xs\), so \(\text{lift}'_{\text{lim}} f xs := \text{map} f xs\). Using \(\text{lift}_{\text{lim}} f xs\) instead of \(\text{lift}'_{\text{lim}} f xs\) requires \(f\) to be continuous at \(\text{limit} xs\) and defined on all \(xs\).

Limit-Free Join. Using the monad identity \(\text{join} xss = \text{bind} xss \lambda xs. \text{xs}\) results in \(\text{join}_{\text{lim}} = \text{limit}\). Removing limit might seem hopeless—until we distribute it pointwise over \(xss\).
Lemma 4.18 (limits of double sequences). Let \(\mathbf{xss} \in \omega \rightarrow \omega \rightarrow A \), where \(\omega \rightarrow A \) has a product topology. Then \(\text{limit } \mathbf{xss} = \lambda n \in \omega. \text{limit} (\text{flip } \mathbf{xss} n) \), where \(\text{flip } f \times y := f y x \).

A countable product metric defines a product topology; therefore we have \(\text{join}_\text{lim} \mathbf{xss} = \lambda n \in \omega. \text{limit} (\text{flip } \mathbf{xss} n) \). Now we can remove \(\text{limit} \) by placing conditions on \(\text{join}_\text{lim} \)'s argument.

Definition 4.19 (uniform convergence). A double sequence \(\mathbf{xss} \in \omega \rightarrow \omega \rightarrow U \) converges uniformly if \(\forall \varepsilon \in \mathbb{R}^+ \exists N \in \omega. \forall n, m > N. (\delta (\mathbf{xss} n m) (\text{limit } (\mathbf{xss} n))) < \varepsilon \).

Lemma 4.20 (collapsing limits). If \(\mathbf{xss} \in \omega \rightarrow \omega \rightarrow U \) converges uniformly, and \(r, s : \omega \Rightarrow \omega \) increase, then \(\text{limit } \lambda n \in \omega. \text{limit } (\mathbf{xss} n) = \text{limit } \lambda n \in \omega. \mathbf{xss} (r n) (s n) \).

So if \(\text{flip } \mathbf{xss} \) converges uniformly, then

\[
\text{limit } (\text{join}_\text{lim} \mathbf{xss}) = \text{limit } \lambda n \in \omega. \text{limit } (\text{flip } \mathbf{xss} n) = \text{limit } \lambda n \in \omega. \text{flip } \mathbf{xss} (r n) (s n)
\]

(4.26)

We define \(\text{join}_{\text{lim}}' : (\omega \rightarrow \omega \rightarrow U) \Rightarrow (\omega \rightarrow U) \) by \(\text{join}_{\text{lim}}' \mathbf{xss} := \lambda n \in \omega. \mathbf{xss} n n \). Replacing \(\text{join}_\text{lim} \mathbf{xss} \) with \(\text{join}_{\text{lim}}' \mathbf{xss} \) requires that \(\text{flip } \mathbf{xss} \) converge uniformly.

Limit-Free Bind. Define \(\text{bind}_{\text{lim}}' \mathbf{xs} f := \text{join}_{\text{lim}}' (\text{lift}_{\text{lim}}' f \mathbf{xs}) \). It inherits obligations to prove that \(f \) is continuous at \(\text{limit } \mathbf{xs} \) and defined on all \(\mathbf{xs} \), and to prove that \(\text{flip } (\text{map } f \mathbf{xs}) \) converges uniformly.

Example 4.21 (exponential cont.). Define \(\text{exp}_{\text{lim}}' \) by replacing \(\text{bind}_{\text{lim}} \) by \(\text{bind}_{\text{lim}}' \) in \(\text{exp}_{\text{lim}} \); so \(\text{exp}_{\text{lim}}' \mathbf{xs} := \text{bind}_{\text{lim}}' \mathbf{xs} \text{ exp-seq} \). We now meet the proof obligations.

Lemma 4.22. Let \(f : A \Rightarrow (\omega \rightarrow B) \). If \(\omega \rightarrow B \) has a product topology, then \(f \) is continuous if and only if (flip \(f \)) \(n \) is continuous for every \(n \in \omega \).

We have a product topology, so for the first obligation, pointwise continuity is enough. Let \(g := \text{flip exp-seq} \). Every \(g n \) is a finite polynomial, and thus continuous. The second obligation, that \(\text{exp-seq} \) is defined on all \(\mathbf{xs} \), is obvious. The third, that \(\text{flip } (\text{map } \text{exp-seq} \mathbf{xs}) \) converges uniformly, can be proved using the Weierstrass M test [3, Theorem 6.4.5].

\[\diamond \]
Example 4.23 (π). The definition of arctan_{\lim} is like exp_{\lim}'s. Defining arctan'_{\lim}, including proving correctness, is like defining exp'_{\lim}. To compute π, we use

$$
\pi_{\lim} := \left(\left(\text{return}_{\lim} 16 \times_{\lim} \left(\text{arctan}_{\lim} \left(\text{return}_{\lim} \frac{1}{\pi} \right) \right) \right) -_{\lim} \left(\left(\text{return}_{\lim} 4 \times_{\lim} \left(\text{arctan}_{\lim} \left(\text{return}_{\lim} \frac{1}{239} \right) \right) \right) \right) \right)
$$

where $(\cdot)_{\lim}$ are lifted arithmetic operators. Because (4.27) does not directly use bind_{\lim}, defining the limit-free π'_{\lim} imposes no proof obligations.

In general, using functions defined in terms of bind'_{\lim} requires little more work than using functions on finite values. The implicit limits are pulled outward and collapse on their own, hidden within monadic computations.

Computable Sequences. Lambdas are the simplest model of $\omega \to \mathbb{U}$. After manipulating some terms, we define the final, computable limit monad by $\text{return}'_{\lim} x := \lambda n. x$ and $\text{bind}'_{\lim} xs f := \lambda n. f (xs n) n$. Computations have type $\omega \Rightarrow \mathbb{U}'$, where \mathbb{U}' contains countable sequences of rationals.

Implementation. We have transliterated return'_{\lim}, bind'_{\lim}, exp'_{\lim}, arctan'_{\lim} and π'_{\lim} into Racket [27], using its built-in models of ω and \mathbb{Q}. Even without optimizations, π'_{\lim} 141 yields a rational approximation in a few milliseconds that is correct to 200 digits. More importantly, exp'_{\lim}, arctan'_{\lim} and π'_{\lim} are almost identical to their counterparts in the uncomputable limit monad, and meet their proof obligations. The code is clean, short, correct and reasonably fast, and resides in a directory named flops2012 at https://github.com/ntoronto/plt-stuff/.

4.9 Related Work

O’Connor’s completion monad [58] is quite similar to the limit monad. Both operate on general metric spaces and compute to arbitrary precision. O’Connor starts with computable
approximations and completes them using a monad. Implementing it in Coq took five months. It is certainly correct.

We start with a monad for exact values and define a computable replacement. It was two weeks from conception to implementation. Between directly using well-known theorems, and deriving the computable monad from the uncomputable monad without switching languages, we are as certain as we can be without mechanically verifying it. We have found our middle ground.

Higher-order logics such as HOL [46], CIC [9], MT [8] (Map Theory) and EFL* [26] continue Church’s programme to found mathematics on the λ-calculus. Like λ_{ZFC}, interpreting them in set theory seems to require a slightly stronger theory than plain ZFC. HOL and CIC ensure consistency using types, and use the Curry-Howard correspondence to extract programs.

MT and EFL* are more like λ_{ZFC} in that they are untyped. MT ensures consistency partly by making nontermination a truth value, and EFL* partly by tagging propositions. Both support classical reasoning. MT and EFL* are interpreted in set theory using a straightforward extension of Scott-style denotational semantics to κ-sized domains, while λ_{ZFC} is interpreted in set theory using a straightforward extension of operational semantics to κ-sized relations.

The key difference between λ_{ZFC} and these higher-order logics is that λ_{ZFC} is not a logic. It is a programming language with infinite terms, which by design includes a transitive model of set theory (Theorem 4.12). Therefore, ZFC theorems can be applied to its set-valued terms with only trivial interpretation, whereas the interpretation it takes to apply ZFC theorems to lambda terms that represent sets in MT or EFL* can be nontrivial. Applying a ZFC theorem in HOL or CIC requires re-proving it to the satisfaction of a type checker.

The infinitary λ-calculus [41] has “infinitely deep” terms. Although it exists for investigating laziness, cyclic data, and undefinedness in finitary languages, it is possible to encode uncomputable mathematics in it. In λ_{ZFC}, such up-front encodings are unnecessary.
Hypercomputation [59] describes many Turing machine extensions, including completion of transfinite computations. Much of the research is devoted to discovering the properties of computation in physically plausible extensions. While \(\lambda_{ZFC} \) might offer a civilized way to program such machines, we do not think of our work as hypercomputation, but as approaching computability from above.

4.10 Conclusions

We defined \(\lambda_{ZFC} \), which can express essentially anything constructible in contemporary mathematics, in a way that makes it compatible with existing first-order theorems. We demonstrated that it makes deriving computational meaning easier by defining the limit monad in it, deriving a computable replacement, and computing real numbers to arbitrary accuracy with acceptable speed.

Now that we have a suitably expressive target language for exact and approximating categorical semantics, we can get back to defining languages for Bayesian modeling and inference. But more generally, we no longer have to hold back when a set-theoretic construction could be defined elegantly with untyped lambdas or recursion, or generalized precisely with higher-order functions. If we can derive a computable replacement, we might help someone in Cantor’s Paradise compute the apparently uncomputable.
Chapter 5

Using λ_{ZFC}

The previous chapter defined λ_{ZFC}, an untyped, call-by-value, operational λ-calculus. It is designed for deriving implementable programs from programs that carry out infinite computations. We will mostly use it as a target language for categorical semantics.

There are two reasonably accurate, short characterizations of λ_{ZFC}. First, it can be regarded as contemporary mathematics (Zermelo-Fraenkel set theory with the axiom of Choice, or ZFC) with well-defined lambdas. Second, it can be regarded as a pure functional programming language with infinite sets. The previous chapter defines λ_{ZFC} in a way that makes these characterizations absolutely precise.

Fortunately, understanding and writing λ_{ZFC} code, and knowing how to prove λ_{ZFC} code correct, requires much less detail. We review the important details here.

5.1 Computations and Values

In λ_{ZFC}, essentially every set is a value, as well as every lambda and every set of lambdas. For example, these are all λ_{ZFC} values:

\[
\{1, 2, 3\}
\]

\[
\{(\lambda a. a), (\lambda b. b + 1), (\lambda c. \{c, c + 1\})\}
\]

\[
\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R}^N, \mathbb{R}^R
\]

(We generally write λ_{ZFC} terms in sans serif.) All primitive operations on values, including operations on infinite sets, are assumed to complete instantly if they terminate.
Nonterminating \(\lambda_{ZFC}\) programs are similar to nonterminating programs in any other call-by-value \(\lambda\)-calculus. For example, a function that does not terminate on any input because of runaway recursion (i.e. an infinite loop) is

\[
count-from\ n := count-from\ (n + 1) \tag{5.2}
\]

We could say that \texttt{count-from 0} does not terminate because it attempts “infinitely deep” computation. Prohibiting infinitely deep computation is necessary; for example, it prevents \(\lambda_{ZFC}\) from having a program that solves its own halting problem, which would make its definition inconsistent.

Infinite computations that terminate are “infinitely wide,” as in either of these equivalent expressions:

\[
\text{image } (\lambda n. n + 1)\ \mathbb{N} \quad \{n + 1 \mid n \in \mathbb{N}\} \tag{5.3}
\]

Both yield the set of all positive natural numbers. It is usually fine to think of terminating, infinite computations as being run in parallel.

As in ZFC, in \(\lambda_{ZFC}\), all algebraic data structures are encoded as sets; e.g. the pair \(\langle x, y \rangle\) can be encoded as \(\{\{x\}, \{x, y\}\}\). Only the \textit{existence} of encodings into sets is important, as it means data structures inherit a defining characteristic of sets: strictness. More precisely, in every data structure, every path between the root and a leaf must have finite length. Less precisely, as with computations, values may be “infinitely wide,” such as \(\mathbb{N}\) and \(\mathbb{R}\), but not “infinitely deep,” such as infinite trees and infinite lists made from nested pairs.

5.2 Auxiliary Type Systems

Though \(\lambda_{ZFC}\) is untyped, it often helps to define an auxiliary type system. When we use a type system, we use a manually checked, polymorphic one characterized by these rules:

- A free type variable is universally quantified; if uppercase, it denotes a set.
- A set denotes a member of that set.
• \(x \Rightarrow y \) denotes a partial function.

• \(\langle x, y \rangle \) denotes a pair of values with types \(x \) and \(y \).

• \(\text{Set } x \) denotes a set with members of type \(x \).

Because the type \(\text{Set } X \) denotes the same values as the set \(\mathcal{P} X \) (i.e. subsets of the set \(X \)) we regard them as equivalent types. Similarly, \(\langle X, Y \rangle \) and \(X \times Y \) are equivalent types.

All function arrows are right-associative. Recall that in a \(\lambda \)-calculus, application is left-associative. This duality makes writing multi-argument function types easy. For example, \(f : N \Rightarrow (N \Rightarrow N) \) denotes that function \(f \) returns a \(N \Rightarrow N \) function. If \(m : N \) and \(n : N \) (equivalently \(m \in N \) and \(n \in N \)), then \(f \) can be applied twice using \((f \ m) \ n \). Alternatively, it can be applied using \(f \ m \ n \), and its type may be written \(f : N \Rightarrow N \Rightarrow N \).

Other examples of types are those of the \(\lambda_{\text{ZFC}} \) primitives powerset \(\mathcal{P} : \text{Set } x \Rightarrow \text{Set } (\text{Set } x) \), its left inverse, big union \(\bigcup : \text{Set } (\text{Set } x) \Rightarrow \text{Set } x \), and the map-like image \(: (x \Rightarrow y) \Rightarrow \text{Set } x \Rightarrow \text{Set } y \).

It is often helpful to create type aliases. For example, to avoid repeatedly writing “\(\bigcup \{\bot\} \)” we might define

\[
X \leadsto_{\bot} Y := X \Rightarrow Y \cup \{\bot\}
\] (5.4)

so that \(f : X \leadsto_{\bot} Y \) and \(f : X \Rightarrow Y \cup \{\bot\} \) are equivalent type-level statements.

5.3 Using ZFC Values and Theorems

Almost everything definable in ZFC can be defined by a finite \(\lambda_{\text{ZFC}} \) program. The previous chapter, for example, defined the real numbers, arithmetic, and limits. The only ZFC values that cannot are those that must be defined nonconstructively: by proving existence and uniqueness, without giving a bound (no matter how loose) on the length or cardinality of the value. Mathematicians avoid such nonconstructive definitions, and most would consider that definition of “nonconstructive” too liberal.\(^1\)

\(^1\)Constructivists would object to allowing the law of excluded middle, which is derivable from \(\lambda_{\text{ZFC}} \)'s if, and almost everyone else would object to allowing choice functions.
Almost all known ZFC theorems apply to λ_{ZFC}’s set values without alteration.2 Proofs about λ_{ZFC}’s set values apply directly to ZFC sets.3

We often import well-known ZFC theorems as lemmas; for example:

Lemma 5.1 (set equality is extensional). For all $A : \text{Set} \times$ and $B : \text{Set} \times$, $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$.

Or, $A = B$ if and only if they contain the same members.

5.4 Internal Equality and External Equivalence

Any λ_{ZFC} term e used as a truth statement means “e reduces to true” or “e evaluates to true.” Therefore, the terms $(\lambda a. a) 1$ and 1 are (externally) unequal, but $(\lambda a. a) 1 = 1$.

Because of the way λ_{ZFC}’s lambda terms are defined, lambda equality is alpha equivalence, or equivalence up to renaming identifiers. For example, $(\lambda a. a) = (\lambda b. b)$ reduces to true, but $(\lambda a. 2) = (\lambda a. 1 + 1)$ is false.

If $e_1 = e_2$, then e_1 and e_2 both terminate, and substituting one for the other in an expression does not change its value. Substitution is also safe if both e_1 and e_2 do not terminate, leading to a coarser notion of equivalence.

Definition 5.2 (observational equivalence). For terms e_1 and e_2, $e_1 \equiv e_2$ when $e_1 = e_2$, or both e_1 and e_2 do not terminate.

It might seem helpful to define basic equivalence even more coarsely, so that we can say $\lambda a. 2$ is equivalent to $\lambda a. 1 + 1$. However, we want internal equality and basic external equivalence to be similar, and we want to be able to extend “\equiv” with type-specific rules.

2The only exceptions are theorems that rely critically on the existence of an inaccessible cardinal.

3Assuming the existence of an inaccessible cardinal, which is a modest assumption, as ZFC+κ is a smaller theory than Coq’s [7].
5.5 Additional Functions and Syntactic Forms

We use heavily sugared syntax, with automatic currying (including primitive applications, so image \(\text{fst} \) means \(\lambda A. \text{image fst} A \)), binding forms such as indexed unions \(\bigcup_{x \in e} e \), destructuring binds as in \(\text{swap} \langle a, b \rangle := \langle b, a \rangle \), and comprehensions like \(\{ a \in A \mid a \in B \} \). We assume logical operators, bounded quantifiers, and typical set operations are defined. To refer to binary operators as values, we enclose them in parentheses, as in \((\in) \) and \((\subseteq) \).

A less typical set operation we use is disjoint union:

\[
(\sqcup): \text{Set } x \Rightarrow \text{Set } x \Rightarrow \text{Set } x
\]

\[
A \sqcup B := \text{if } (A \cap B = \emptyset) \ (A \cup B) \ (\text{take } \emptyset)
\]

The primitive \(\text{take} : \text{Set } x \Rightarrow x \) returns the element in a singleton set, and does not reduce when applied to a non-singleton set. Thus, \(A \sqcup B \) is well-defined only when \(A \) and \(B \) are disjoint.

Operator precedence is the same as in ordinary mathematics; e.g. \(a + b \cdot c = a + (b \cdot c) \). Application has the highest precedence, so \(f \ a + g \ b = (f \ a) + (g \ b) \).

5.6 Extensional Functions

In mathematics, logic, and computer science, there are two general classes of functions:

- **Extensional**: functions whose equality, like that of sets, is determined only by their external properties, and not by how they are defined or constructed.
- **Intensional**: functions whose equality is determined only by their internal properties, or by how they are defined or constructed.

In \(\lambda_{\text{ZFC}} \), lambda equality is decided by comparing body expressions, so lambdas are intensional.

In ZFC and \(\lambda_{\text{ZFC}} \), function extensionality is achieved by encoding functions as sets of input-output pairs. For example, the increment function for the natural numbers is \(\{ \langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \ldots \} \). (It is fine to think of such encodings as infinite hash tables.) We call these encodings **mappings**. We use **function** to mean either a lambda or a mapping, and
use adjacency (e.g. \((f\ a)\) or \(f\ a\)) to apply either kind.

Syntax for constructing unnamed mappings is defined by

\[
\lambda x_a \in e_A.\ e_b := \text{mapping} (\lambda x_a.\ e_b) \ e_A
\]

\(5.6\)

\[
\text{mapping} : (X \to Y) \to \text{Set} X \to (X \to Y)
\]

\(5.7\)

\[
\text{mapping f A} := \text{image} (\lambda a.\ (a, f\ a)) \ A
\]

For symmetry with partial functions \(x \Rightarrow y\), \text{mapping} returns a member of the set \(X \rightarrow Y\) of all partial mappings from \(X\) to \(Y\); i.e. if \(g : X \rightarrow Y\), then \(g\)'s domain may be a subset of \(X\).

Two common partial mapping operations we use in the next chapter are

\[
\text{domain} : (X \rightarrow Y) \Rightarrow \text{Set} X
\]

\(5.8\)

\[
\text{domain g} := \text{image} \ \text{fst g}
\]

\[
\text{preimage} : (X \rightarrow Y) \Rightarrow \text{Set} Y \Rightarrow \text{Set} X
\]

\(5.9\)

\[
\text{preimage g B} := \{a \in \text{domain g} \mid g\ a \in B\}
\]

The \text{preimage} function finds \(g\)'s inputs whose corresponding outputs are in \(B\).

The set \(J \rightarrow X\) contains all the total mappings from \(J\) to \(X\); equivalently, all the vectors of \(X\) indexed by \(J\), which may be infinite. We use infinite vectors of type \(J \rightarrow [0, 1]\) in Chapter 8 as infinite sources of uniformly random numbers.

In short, in addition to lambdas in \(\lambda_{ZFC}\), we have every necessary mathematical object and theorem at our disposal.
Chapter 6
Countable Models and Implementation

This chapter is derived from work published at the 22nd Symposium on Implementation and Application of Functional Languages (IFL), 2010.

An approximate answer to the right question is worth a good deal more than the exact answer to an approximate problem.

John W. Tukey

6.1 Introduction

Bayesians write theories without regard to whether future calculations are closed-form or tractable. They are loath to make simplifying assumptions. (If answering questions about some probabilistic process involves an unsolvable integral, so be it.) When they must approximate, they often create two theories: an “ideal” theory first, and a second that approximates it.

Because they create theories without regard to future calculations, they usually must accept approximate answers to queries about them. Typically, they adapt algorithms that compute converging approximations in programming languages they are familiar with. The process is tedious and error-prone, and involves much performance tuning and manual optimization. It is by far the most time-consuming part of their work—and also the most automatable part.
They follow this process to adhere to an overriding philosophy: an approximate answer to the right question is worth more than an exact answer to an approximate question. Thus, they put off approximating as long as possible.

We must also adhere to this philosophy because Bayesian practitioners are unlikely to use a language that requires them to approximate early, or that approximates earlier than they would. We have found that a good way to put the philosophy into practice in language design is to create two semantics: an “ideal,” or exact semantics first, and a converging, approximating semantics.

Approach Measure-theoretic probability is the most successful theory of probability in precision, maturity, and explanatory power. In particular, it is believed to explain every Bayesian theory. We therefore define the exact semantics as a transformation from Bayesian notation to measure-theoretic calculations.

Measure theory treats finite, countably infinite, and uncountably infinite probabilistic outcomes uniformly, but with significant complexity. Though there are relatively few important Bayesian models that require countably many outcomes but not uncountably many, in our preliminary work, we deal with only countable sets. This choice avoids most of measure theory’s complexity while retaining its functional structure, and still requires approximation.

For three syntactic categories of Bayesian notation, we

1. Manually interpret an unambiguous subclass of common notation.
2. Mechanize the interpretation with a semantic function.
3. If necessary, create an approximation and prove convergence.
4. Implement the approximation in Racket [27].

This approach is most effective if the target language can express measure-theoretic calculations and is similar to Racket in structure and semantics. We therefore use \(\lambda_{ZFC} \).

The Bayesian notation we interpret falls into these syntactic categories:

- **Expressions**, which have no side effects, interpreted by \(R[\cdot] \).
• **Statements**, which create side effects, interpreted by \(\mathcal{M}[\cdot] \).

• **Queries**, which observe side effects, interpreted by \(\mathcal{P}[\cdot] \) and \(\mathcal{D}[\cdot] \).

We write Bayesian notation in *italics*, Racket in **fixed width**, common keywords in **bold** and invented keywords in **bold italics**. We omit proofs for space.

6.2 The Expression Language

6.2.1 Background Theory: Random Variables

Most practitioners of probability understand random variables as free variables whose values have ambient probabilities. But measure-theoretic probability defines a random variable \(X \) as a total mapping

\[
X : \Omega \rightarrow S_X
\]

(6.1)

where \(\Omega \) and \(S_X \) are sets called **sample spaces**, with elements called **outcomes**. Random variables define and limit what is observable about any outcome \(\omega \in \Omega \), so we call outcomes in \(S_X \) **observable outcomes**.

Example 6.1. Suppose we want to encode, as a random variable \(E \), the act of observing whether the outcome of a die roll is even or odd.

A complicated way is to define \(\Omega \) as the possible states of the universe. \(E : \Omega \rightarrow \{\text{even, odd}\} \) must simulate the universe until the die is still, and then recognize the outcome. Hopefully, the probability that \(E \omega = \text{even} \) is close to \(\frac{1}{2} \).

A tractable way defines \(\Omega := \{1, 2, 3, 4, 5, 6\} \) and \(E : \Omega \rightarrow \{\text{even, odd}\} \) so that \(E \omega = \text{even} \) if \(\omega \in \{2, 4, 6\} \), otherwise odd. The probability that \(E \omega = \text{even} \) is the sum of probabilities of every even \(\omega \in \Omega \), or \(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \).

If we are interested in observing only evenness, we can define \(\Omega := \{\text{even, odd}\} \), each with probability \(\frac{1}{2} \), and \(E \omega := \omega \).

Random variables enable a kind of probabilistic abstraction. The example does it twice. The first makes calculating the probability that \(E \omega = \text{even} \) tractable. The second is an
optimization. In fact, redefining Ω, the random variables, and the probabilities of outcomes—without changing the probabilities of observable outcomes—is the essence of measure-theoretic optimization.

Defining random variables as functions is also a good factorization: it separates non-determinism from assigning probabilities. It allows us to interpret expressions involving random variables without considering probabilities at all.

6.2.2 Interpreting Random Variable Expressions As Computations

When random variables are regarded as free variables, arithmetic with random variables is no different from deterministic arithmetic. Measure-theoretic probability uses the same notation, but regards it as implicit pointwise lifting (as in vector arithmetic). For example, if $A, B, C : \Omega \rightarrow \mathbb{R}$ are random variables, $C := A + B$ means $C \omega := (A \omega) + (B \omega)$, and $B := 4 + A$ means $B \omega := 4 + (A \omega)$.

Because we use λ_{ZFC}, we can extend the class of random variables from $\Omega \rightarrow S_X$ to $\Omega \Rightarrow S_X$. Including lambdas as well as mappings makes it easy to interpret unnamed random variables: $4 + A$, or in prefix form $((+) 4 A)$, means $\lambda \omega.((+) 4 (A \omega))$. Lifting constants allows us to interpret expressions uniformly: if we interpret $+$ as $\text{Plus} := \lambda \omega. (+)$ and 4 as $\text{Four} := \lambda \omega. 4$, then $((+) 4 A)$ means

$$
\lambda \omega.((\text{Plus} \omega) (\text{Four} \omega) (A \omega))
$$

(6.2)

We abstract lifting and application with these combinators:

$$
\text{pure}_{rv} c := \lambda \omega.c
$$

(6.3)

$$
\text{ap}_{rv} F X_1 \ldots X_n := \lambda \omega.((F \omega) (X_1 \omega) \ldots (X_n \omega))
$$
\[
\mathcal{R}[X] := X \\
\mathcal{R}[x] := \text{pure}_{rv} \, x \\
\mathcal{R}[v] := \text{pure}_{rv} \, v \\
\mathcal{R}[e_1 \ldots e_n] := \text{ap}^*_{rv} \, \mathcal{R}[e_1] \ldots \mathcal{R}[e_n] \\
\mathcal{R}[\lambda x_1 \ldots x_n, e] := \lambda \omega. \lambda x_1 \ldots x_n. (\mathcal{R}[e] \, \omega) \\
\text{pure}_{rv} \, c := \lambda \omega. \, c \\
\text{ap}^*_{rv} \, F \, X_1 \ldots X_n := \lambda \omega. ((F \, \omega) \, (X_1 \, \omega) \ldots (X_n \, \omega))
\]

Figure 6.1: Random variable expression semantics. The source and target language are both \(\lambda_{ZFC}\). Conditionals and primitive operators are trivial special cases of application.

In terms of \(\text{pure}_{rv}\) and \(\text{ap}^*_{rv}\), \(4 + A\) means

\[
\text{ap}^*_{rv} \left(\text{pure}_{rv} \, (+)\right) \left(\text{pure}_{rv} \, 4\right) \, A \equiv \text{ap}^*_{rv} \left(\lambda \omega. \, (+)\right) \left(\lambda \omega. \, 4\right) \, A \\
\equiv \lambda \omega. \left(\left(\lambda \omega. \, (+)\right) \, \omega\right) \left(\left(\lambda \omega. \, 4\right) \, \omega\right) \left(A \, \omega\right) \\
\equiv \lambda \omega. \, (+) \, 4 \left(A \, \omega\right) \\
= \lambda \omega. \, 4 + \left(A \, \omega\right)
\]

as desired. These combinators define an \textbf{idiom} [53], which is like a monad but can impose a partial order on computations. The \textbf{random variable idiom} instantiates the environment idiom with the type constructor \(I \, a := \Omega \Rightarrow a\) for some \(\Omega\).

\(\mathcal{R}[]\) (Figure 6.1), the semantic function that interprets random variable expressions, targets this idiom. It does mechanically what we have done manually, and additionally interprets lambdas. For simplicity, it follows probability convention by assuming single uppercase letters are random variables. Figure 6.1 assumes syntactic sugar has been replaced; e.g. that application is in prefix form.

\(\mathcal{R}[]\) may return lambdas that do not terminate when applied to an \(\omega\). For now, we assume they terminate for all \(\omega \in \Omega\). (Chapter 8 deals with nonterminating programs.)

We will be able to recover mappings using the \textbf{mapping} function, which, given a domain, converts a lambda or mapping to a mapping, as in \textbf{mapping} \(\mathcal{R}[4 + A] \, \Omega\).
6.2.3 Implementation in Racket

Figure 6.2 shows RV and a snippet of RV/kernel, the macros that implement $\mathcal{R}[\cdot]$. RV fully expands expressions into Racket’s kernel language, allowing RV/kernel to transform any pure Racket expression into a random variable. Both use Racket’s new syntax-parse library [18]. RV/kernel raises a syntax error on set!, but there is no way to disallow applying functions that have effects.

Rather than differentiate between kinds of identifiers, RV takes a list of known random variable identifiers as an additional argument. It wraps other identifiers with pure, allowing arbitrary Racket values to be random variables.

6.3 The Query Language

It is best to regard statements in Bayesian theories as specifications for the results of later observations. We therefore interpret queries before interpreting statements. First, however, we must define the state objects that queries observe.
6.3.1 Background Theory: Probability Spaces

In practice, functions called distributions assign probabilities or probability densities to observable outcomes. Practitioners state distributions for certain random variables, and then calculate the distributions of others.

Measure-theoretic probability generalizes assigning probabilities and densities using probability measures, which assign probabilities to sets of outcomes. There are typically no special random variables: all random variable distributions are calculated from one global probability measure.

It is generally not possible to assign meaningful probabilities to all subsets of a sample space Ω—except when Ω is countable. We thus deal here with discrete probability measures $P : \text{Set} \, \Omega \rightarrow [0,1]$, where Ω is countable. Any discrete probability measure is uniquely determined by its value on singleton sets, or by a probability mass function $p : \Omega \rightarrow [0,1]$. It is easy to convert p to a probability measure:

$$\sum p_A := \sum_{\omega \in A} p_\omega$$

Then $P = \sum p$. Converting the other direction is also easy: $p_e = P \{e\}$.

A discrete probability space $\langle \Omega, p \rangle$ embodies all probabilistic nondeterminism introduced by theory statements. It is fine to think of Ω as the set of all possible states of a write-once memory, with p assigning a probability to each state.

6.3.2 Background Theory: Queries

Any probability can be calculated from $\langle \Omega, p \rangle$. For example, suppose we want to calculate, as in Example 6.1, the probability of an even die outcome. We must apply P to the correct subset of Ω. Suppose $\Omega := \{1, 2, 3, 4, 5, 6\}$ and that $p := [1, 2, 3, 4, 5, 6 \rightarrow \frac{1}{6}]$ determines P.

The probability that E outputs even is

$$P \{\omega \in \Omega \mid E \omega = \text{even}\} = P \{2, 4, 6\} = \sum p \{2, 4, 6\} = \frac{1}{2}$$

(6.6)
This is a probability query.

Alternatively, we could use a distribution query to calculate E’s distribution \(P_E \), and then apply it to \{\text{even}\}. Measure-theoretic probability elegantly defines \(P_E \) as \(P \circ (\text{preimage } E) \), but for now we do not need a measure. We only need the probability mass function \(p_E : \{\text{even, odd}\} \rightarrow [0, 1] \), defined by \(p_E \text{ e} = \sum p (\text{preimage } E \{\text{e}\}) \). Applying it to \text{even} yields

\[
p_{\text{E even}} = \sum p (\text{preimage } E \{\text{even}\}) = \sum p \{2, 4, 6\} = \frac{1}{2}
\]

More abstractly, we can calculate discrete distribution queries using

\[
\text{dist } X (\Omega, p) := \text{let } S_X := \text{image } X \Omega \\
\text{in } \lambda x \in S_X. \sum p (\text{preimage (mapping } X \Omega \{x\}))
\]

Now \(p_E = \text{dist } E (\Omega, p) \). Recall that the special syntax \(\lambda x \in e_A. e \) creates an unnamed mapping with domain \(e_A \), and \(\text{mapping } X \Omega \) converts \(X \), which may be a lambda, to a mapping with domain \(\Omega \), on which preimages are well-defined.

6.3.3 Interpreting Query Notation

When random variables are regarded as free variables, special notation \(\Pr[\cdot] \) replaces applying the probability measure \(P \) and sets become propositions. For example, a common way to write “the probability of an even die outcome” in practice is \(\Pr[E = \text{even}] \).

The semantic function \(\mathcal{R}[\cdot] \) turns propositions about random variables into predicates on \(\Omega \). The set corresponding to the proposition is the preimage of \{\text{true}\}. For the proposition \(E = \text{even} \), for example, it is \(\text{preimage (mapping } \mathcal{R}[E = \text{even}] \Omega \{\text{true}\}) \). In general,

\[
\sum p (\text{preimage (mapping } \mathcal{R}[e] \Omega \{\text{true}\})) = \text{dist } \mathcal{R}[e] (\Omega, p) \text{ true}
\]

calculates \(\Pr[e] \) when \(e \) is a proposition; i.e. when \(\mathcal{R}[e] : \Omega \Rightarrow \{\text{true, false}\} \).

Although probability queries have common notation, there seems to be no common notation that denotes distributions per se. The typical workarounds are to write implicit formulas like \(\Pr[E = e] \) and to give distributions suggestive names like \(p_E \). Some theorists
use $\mathcal{L}[\cdot]$, with \mathcal{L} for law, an obscure synonym of distribution. We define $\mathbf{D}[\cdot]$ in place of $\mathcal{L}[\cdot]$. Then $\mathbf{D}[E]$ denotes E’s distribution.

Though we could define semantic functions $\mathbf{P}[\cdot]$ and $\mathbf{D}[\cdot]$ right now, we are putting them off until after interpreting statements.

6.3.4 Approximating Queries

Probabilities are real numbers. They remain real in the approximating semantics; we use floating-point approximation and exact rationals in the implementation.

Arbitrary countable sets are not finitely representable. In the approximating semantics, we restrict Ω to recursively enumerable sets. The implementation encodes them as lazy lists. We trust users to not create “sets” with duplicates.

When A is infinite, $\sum p A$ is an infinite series. With A represented by a lazy list, it is easy to compute a converging approximation—but then approximate answers to distribution queries sum to values less than 1. Instead, we approximate Ω and normalize p, which makes the sum finite and the distributions proper.

Suppose $\langle \omega_1, \omega_2, \ldots \rangle$ is an enumeration of Ω. Let $z \in \mathbb{N}^+$ be the length of the prefix $\Omega_z := \{\omega_1, \ldots, \omega_z\}$ and define $p_z : \Omega \to [0, 1]$ by $p_z \omega = (p \omega) / (\sum p \Omega_z)$ if $\omega \in \Omega_z$; otherwise 0. Then p_z converges to p pointwise. We define $\text{finitize} \langle \Omega, p \rangle := \langle \Omega_z, p_z \rangle$ with $z \in \mathbb{N}$ as a free variable.

6.3.5 Implementation in Racket

Figure 6.3 shows the implementations of finitize and dist in Racket. The free variable z appears as a parameter appx-z: a variable with static scope but dynamic extent. The cotake procedure returns the prefix of a lazy list as a finite list.

To implement dist, we need to represent mappings in Racket. The applicable struct type mapping represents lazy mappings with possibly infinite domains. A mapping named f can be applied with $(f x)$. We do not ensure x is in the domain because checking is semidecidable.
and nontermination is a terrible error message. For distributions, checking is not important; the observable domain is.

However, we do not want \texttt{dist} to return lazy mappings. Doing so is inefficient: every application of the mapping would filter \(\Omega \). Further, \texttt{dist} always receives a \texttt{finitized} probability space. We therefore define \texttt{fmapping} for mappings that are constant on all but a finite set. For these values, \texttt{dist} builds a hash table by computing the probabilities of all preimages in one pass through \(\Omega \).

We do use \texttt{mapping}, but only for probability spaces and stated distributions.

6.4 Conditional Queries

For Bayesian practitioners, the most meaningful queries are \textbf{conditional} queries: those \textit{conditioned on}, or \textit{given}, some random variable’s value. (For example, the probability an email is spam given it contains words like “madam,” or the distribution over suspects given security footage.) A probabilistic language without conditional queries is of little more use to them than a general-purpose language with a \texttt{random} primitive.
Measure-theoretic conditional probability is too involved to accurately summarize here. When P is discrete, however, the conditional probability of set A given set B (i.e. asserting that $\omega \in B$), simplifies to

$$\Pr[A \mid B] = \frac{P(A \cap B)}{P(B)} \quad (6.10)$$

In theory and practice, $\Pr[\cdot \mid \cdot]$ is special notation. As with $\Pr[\cdot]$, practitioners apply $\Pr[\cdot \mid \cdot]$ to propositions, and define it with $\Pr[e_A \mid e_B] := \frac{\Pr[e_A \land e_B]}{\Pr[e_B]}$.

Example 6.2. Extend Example 6.1 with random variable $L : \Omega \to \{\text{low}, \text{high}\}$ defined by $L(\omega) = \text{if } (\omega \leq 3) \text{ low high}$. The probability that $E = \text{even}$ given $L = \text{low}$ is

$$\Pr[E = \text{even} \mid L = \text{low}] = \frac{\Pr[E = \text{even} \land L = \text{low}]}{\Pr[L = \text{low}]} = \frac{\sum_{\omega \in \{2\}} P(\omega)}{\sum_{\omega \in \{1,2,3\}} P(\omega)} = \frac{1}{\frac{3}{2}} = \frac{1}{3} \quad (6.11)$$

Similarly, $\Pr[E = \text{odd} \mid L = \text{low}] = \frac{2}{3}$. Less precisely, there are proportionally fewer even outcomes when $L = \text{low}$.

Conditional distribution queries ask how one random variable’s output influences the distribution of another. As with unconditional distribution queries, practitioners work around a lack of common notation. For example, they might write the distribution of E given L as $\Pr[E = e \mid L = l]$ or $p_{E|L}$.

It is tempting to define $P[\cdot \mid \cdot]$ in terms of $P[\cdot]$, and $D[\cdot \mid \cdot]$ in terms of $D[\cdot]$. However, defining conditioning as an operation on probability spaces instead of on queries is more flexible. The following abstraction returns a discrete probability space in which Ω is restricted to the subset where random variable Y returns y:

$$\text{cond } Y \ y \ \langle \Omega, p \rangle := \text{let } \Omega' := \text{preimage (mapping } Y \ \Omega \ \{y\}) \ \text{ in } \langle \Omega', p' \rangle \quad (6.12)$$

Then $\Pr[E = \text{even} \mid L = \text{low}]$ means $\text{dist } E (\text{cond } L \ \text{low } \langle \Omega, p \rangle)$ even.

We approximate cond by applying finitize to the probability space first. Its implementation uses finite list procedures instead of set operators.
6.5 The Statement Language

Random variables influence each other through global probability spaces. However, because practitioners regard random variables as free variables instead of as functions of a probability space, they state facts about random variable distributions instead of facts about probability spaces. Though they call such collections of statements models, to us they are probabilistic theories. A model is a probability space and random variables that imply the stated facts.

Discrete conditional theories can always be written to conform to

\[t_i := X_i \sim e_i; \quad t_{i+1} \mid X_i := e_i; \quad t_{i+1} \mid e_a = e_b; \quad t_{i+1} \mid \epsilon \quad (6.13) \]

Further, they can always be made well-formed: an \(e_j \) may refer to some \(X_i \) only when \(j > i \) (i.e., no circular bindings). We start by interpreting the most common kind of Bayesian theories, which contain only distribution statements.

6.5.1 Interpreting Common Conditional Theories

Example 6.3. Suppose we want to know only whether a die outcome is even or odd, high or low. If \(L \)'s distribution is \(p_L := \{ \text{low} \mapsto \frac{1}{2}, \text{high} \mapsto \frac{1}{2} \} \), then \(E \)'s distribution depends on \(L \)'s output.

Define \(p_{E|L} : S_L \rightarrow S_E \rightarrow [0, 1] \) by \(p_{E|L} \text{ low} = [\text{even} \mapsto \frac{1}{3}, \text{odd} \mapsto \frac{2}{3}] \) and \(p_{E|L} \text{ high} = [\text{even} \mapsto \frac{2}{3}, \text{odd} \mapsto \frac{1}{3}] \). The conditional theory could be written

\[L \sim p_L; \quad E \sim (p_{E|L} L) \quad (6.14) \]

If \(L \) is a measure-theoretic random variable, \((p_{E|L} L) \) does not typecheck: \(L : \Omega \rightarrow S_L \) is clearly not in \(S_L \). The intent is that \(p_{E|L} \) specifies how \(E \)'s distribution depends on \(L \).

We can regard \(L \sim p_L \) as a constraint on models: \(\text{dist} L \langle \Omega, p \rangle \) must be \(p_L \) for every model \(\langle \Omega, p, L \rangle \). Similarly, \(E \sim (p_{E|L} L) \) means \(E \)'s conditional distribution is \(p_{E|L} \). We have been using the model \(\Omega := \{1, 2, 3, 4, 5, 6\} \), \(p := [1, 2, 3, 4, 5, 6 \mapsto \frac{1}{6}] \), and the obvious \(E \) and \(L \).

1In the colloquial sense, probably to emphasize their essential incompleteness.

2Usually, \(P_{E|L} : S_E \times S_L \rightarrow [0, 1] \). We reorder and curry to simplify interpretation.
It is not hard to verify that this is also a model:

\[\Omega := \{\text{low, high}\} \times \{\text{even, odd}\} \]

\[L(\omega_1, \omega_2) := \omega_1 \]

\[E(\omega_1, \omega_2) := \omega_2 \]

\[p := [\langle \text{low, even}, \text{high, odd}\rangle \mapsto \frac{1}{6}, \langle \text{low, odd}, \text{high, even}\rangle \mapsto \frac{2}{6}] \]

The construction of \(\Omega, L \) and \(E \) in (6.15) clearly generalizes, but \(p \) is trickier. Fully justifying the generalization (including that it meets implicit independence assumptions that we have not mentioned) is rather tedious, so we do not do it here. But, for the present example, it is not hard to check these facts:

\[p = \lambda \omega \in \Omega. (p_L(L\omega)) \cdot (p_E|_L(E\omega)) \]

\[= \text{mapping } \mathcal{R}[(p_L L) \cdot ((p|_E L) E)] \Omega \]

(6.16)

Let \(K_L := \mathcal{R}[p_L] \) and \(K_E := \mathcal{R}[p_E|_L L] \), which interpret (6.14)'s statements' right-hand sides. Then \(p = \text{mapping } \mathcal{R}[(K_L L) \cdot (K_E E)] \Omega \). This can be generalized.

Definition 6.4 (discrete product model). Given a well-formed, discrete conditional theory \(X_1 \sim e_1; \ldots; X_n \sim e_n \), let \(K_i : \Omega \to S_i \to [0, 1] \), defined by \(K_i = \mathcal{R}[e_i] \) for each \(1 \leq i \leq n \). The **discrete product model** of the theory is

\[\Omega := S_1 \times \ldots \times S_n \]

\[X_i(\omega_1, \ldots, \omega_i, \ldots, \omega_n) := \omega_i \quad (1 \leq i \leq n) \]

\[p := \text{mapping } \mathcal{R}[(K_1 X_1) \cdot \ldots \cdot (K_n X_n)] \Omega \]

(6.17)

Theorem 6.5 (semantic intent). The discrete product model induces the stated conditional distributions and meets implicit independence assumptions.

When writing distribution statements, practitioners tend to apply first-order distributions to simple random variables. But the discrete product model allows any \(\lambda_{\text{ZFC}} \) term \(e_i \) whose interpretation is a discrete transition kernel \(\mathcal{R}[e_i] : \Omega \to S_i \to [0, 1] \). In measure theory,
transition kernels are used to build **product spaces** such as \(\langle \Omega, p \rangle \). Thus, \(\mathcal{R}[] \) links Bayesian practice to measure theory and represents an increase in expressive power in specifying distributions, by turning properly typed \(\lambda ZFC \) terms into precisely what measure theory requires.

6.5.2 Interpreting Statements as Monadic Computations

Some conditional theories state more than just distributions [51, 74]. Interpreting theories with different kinds of statements requires recursive, rather than whole-theory, interpretation. Fortunately, well-formedness amounts to lexical scope, making it straightforward to interpret statements as monadic computations.

We use the state monad with probability-space-valued state: computations are functions from probability spaces to probability spaces paired with a statement-specific value. The

Figure 6.4: State monad functions that represent queries and statements. The state is probability-space-valued.
probability space monad’s return and bind are defined as

\[
\text{return}_{\text{ps}} \times \langle \Omega, p \rangle := \langle \Omega, p, x \rangle \\
\text{bind}_{\text{ps}} \ m \ f \langle \Omega, p \rangle := \text{let } \langle \Omega', p', x \rangle := m \langle \Omega, p \rangle \text{ in } f \times \langle \Omega', p' \rangle
\] (6.18)

Figure 6.4 shows the additional \(\text{dist}_{\text{ps}}, \text{cond}_{\text{ps}} \) and \(\text{extend}_{\text{ps}} \). The first two simply reimplement \(\text{dist} \) and \(\text{cond} \). But \(\text{extend}_{\text{ps}} \), which interprets statements, needs more explanation.

According to (6.17), interpreting \(X_i \sim e_i \) results in \(\Omega_i = \Omega_{i-1} \times S_i \), with \(S_i \) extracted from \(K_i : \Omega_{i-1} \to S_i \to [0, 1] \). A more precise type for \(K_i \) is the dependent type \((\omega : \Omega_{i-1}) \to (S_i' \omega) \to [0, 1]\), which reveals a complication. To extract \(S_i \), we first must extract the random variable \(S_i' : \Omega_{i-1} \to \text{Set} \ S_i \). So let \(S_i' \omega = \text{domain} (K_i \omega) \); then \(S_i = \bigcup (\text{image} S_i' \Omega_{i-1}) \).

But this makes query implementation inefficient: if the union has little overlap or is disjoint, \(p \) will assign 0 to most \(\omega \). In more general terms, we actually have a dependent cartesian product \((\omega \in \Omega_{i-1}) \times (S_i' \omega)\), a generalization of the cartesian product.\(^3\) To extend \(\Omega \), \(\text{extend}_{\text{ps}} \) calculates this product instead.

Dependent cartesian products are elegantly expressed using the set monad:

\[
\text{return}_{\text{set}} \ a := \{a\} \\
\text{bind}_{\text{set}} \ A \ f := \bigcup (\text{image} f \ A)
\] (6.19)

Then \((a \in A) \times (B \ a) = \text{bind}_{\text{set}} \ A \ a. \text{bind}_{\text{set}} (B \ a) \ a. \text{return}_{\text{set}} \ (a, b)\).

Figure 6.5 defines \(\mathcal{M}[\cdot] \), which interprets conditional theories containing definition, distribution, and conditioning statements as probability space monad computations. After it exhausts the statements, it returns the random variables. Returning their names as well would be an obfuscating complication, which we avoid by implicitly extracting them from the theory before interpretation. (However, the implementation explicitly extracts and returns names.)

Figure 6.5 also defines semantic functions for queries. \(\mathcal{D}[e] \) expands to a distribution-valued computation and runs it with a probability space with the single outcome \(\langle \rangle \). \(\mathcal{D}[e_X | e_Y] \)

\(^3\)The dependent cartesian product also generalizes disjoint union to arbitrary index sets. It is often called a dependent sum and denoted \(\Sigma a : A. (B \ a) \).

98
\[M[X_i := e_i; t_{i+1}] := \text{bind}_{ps} (\text{return}_{ps} R[e_i]) \lambda X_i. M[t_{i+1}] \]
\[M[X_i \sim e_i; t_{i+1}] := \text{bind}_{ps} (\text{extend}_{ps} R[e_i]) \lambda X_i. M[t_{i+1}] \]
\[M[e_a = e_b; t_{i+1}] := \text{bind}_{ps} (\text{cond}_{ps} R[e_a] R[e_b]) \lambda _. M[t_{i+1}] \]
\[M[e] := \text{return}_{ps} (X_1, ..., X_n) \]
\[D[e] \ m := \text{run}_{ps} (\text{bind}_{ps} \ m \lambda (X_1, ..., X_n). \text{dist}_{ps} R[e]) \]
\[D[e_X \mid e_Y] \ m := \lambda y. D[e_X] (\text{bind}_{ps} \ m \lambda (X_1, ..., X_n). M[e_Y = y]) \]
\[P[e] \ m := D[e] \ m \text{ true} \]
\[P[e_A \mid e_B] \ m := D[e_A \mid e_B] \ m \text{ true true} \]

Figure 6.5: The conditional theory and query semantic functions.

conditions the probability space and hands off to \(D[e_X] \). \(P[..] \) is defined in terms of \(D[..] \).

6.5.3 Approximating Models and Queries

We compute dependent cartesian products of sets represented by lazy lists in a way similar to enumerating \(N \times N \). (It cannot be done with a monad as in the exact semantics, but we do not need it to.) The approximating versions of \(\text{dist}_{ps} \) and \(\text{cond}_{ps} \) apply \text{finitize} to the probability space.

6.5.4 Implementation in Racket

\(M[..] \)'s implementation is \text{MDL}. Like \text{RV}, it passes random variable identifiers; unlike \text{RV}, \text{MDL} accumulates them. For example, \((\text{MDL} [] ([X \sim Px]])\) expands to

\(([[X] \ (\text{bind}_{ps} \ (\text{extend}_{ps} \ (\text{RV} [] Px)) \ (\lambda (X) \ (\text{ret}_{ps} \ (\text{list} X))))])\)

where \([X]\) is the updated list of identifiers and the rest is a model computation.

We store theories in transformer bindings so queries can expand them later. For example, \((\text{define-model die-roll} \ [L \sim P1] \ [E \sim (Pe/1 L)])\) expands to

\((\text{define-syntax die-roll} #'(\text{MDL} [] ([L \sim P1] [E \sim (Pe/1 L)])))\)
The macro `with-model` introduces a scope in which a theory’s variables are visible. For example, `(with-model die-roll (Dist L E))` looks up `die-roll` and expands it into its identifiers and computation. Using the identifiers as lambda arguments, `Dist` (the implementation of $D_J \cdot K$) builds a query computation as in Figure 6.5, and runs it with `(mapping (list empty) (\(\omega\) 1))`, the empty probability space.

Using these identifiers would break hygiene, except that `Dist` replaces the lambda arguments’ lexical context. This puts the theory’s exported identifiers in scope, even when the theory and query are defined in separate modules. Because queries can access only the exported identifiers, it is safe.

Aside from passing identifiers and monkeying with hygiene, the macros are almost transcribed from the semantic functions.

6.5.5 Examples

Consider a conditional distribution with the first-order definition

```lisp
(define (Geometric p)
  (mapping N1 (\(n\) (* p (expt (- 1 p) (- n 1))))))
```

where `N1` is a lazy list of natural numbers starting at 1. Nahin gives a delightfully morbid use for `Geometric` in his book of probability puzzlers [57].

Two idiots duel with one gun. They put only one bullet in it, and take turns spinning the chamber and firing at each other. They know that if they each take one shot at a time, player one usually wins. Therefore, player one takes one shot, and after that, the next player takes one more shot than the previous player, spinning the chamber before each shot. How probable is player two’s demise?

The distribution over the number of shots when the gun fires is `(Geometric 1/6)`. Using this procedure to determine whether player one fires shot n:
(define (p1-fires? n [shots 1])
 (cond [(n . <= . 0) #f]
 [else (not (p1-fires? (- n shots) (add1 shots)))]))

we compute the probability that player one wins with

(with-model (model [winning-shot ∼ (Geometric 1/6)])
 (Pr (p1-fires? winning-shot)))

Nahin computes 0.5239191275550995247919843—25 decimal digits—\(with \) custom MATLAB code. At \(appx-z \geq 321 \), our solution computes the same digits. (Though it appends \(\) digits 9...\(\), so Nahin should have rounded up.) Implementing it took about five minutes. But the problem is not Bayesian.

This is: suppose player one slyly suggests a single coin flip to determine whether they spin the chamber before each shot. You do not see the duel, but learn that player two won. What is the probability they spun the chamber?

Suppose that the well-known Bernoulli and discrete Uniform conditional distributions are defined. Using these first-order conditional distributions and Racket’s cond, we can state a fairly direct theory of the duel:

(define-model half-idiot-duel
 [spin? ∼ (Bernoulli 1/2)]
 [winning-shot ∼ (cond [spin? (Geometric 1/6)]
 [else (Uniform 1 6)])])

Then \((Pr \ spin? \ (not \ (p1-fires? \ winning-shot))) \) converges to about 0.588.

Bayesian practitioners would normally create a new first-order conditional distribution WinningShot, and then state \(\text{[winning-shot ∼ (WinningShot spin?)]} \). Most would like to state something more direct—such as the above theory, which plainly shows how spin?’s value affects winning-shot’s distribution. However, without a semantics, they cannot be sure that using the value of a cond (or of any if-like expression) as a distribution is well-defined. That winning-shot has a different range for each value of spin? makes things more uncertain.
As specified by $\mathcal{R}[\cdot]$, our implementation interprets $(\text{cond } \ldots)$ above as a stochastic transition kernel. As specified by $\mathcal{M}[\cdot]$, it builds the probability space using dependent cartesian products. Thus, the direct theory really is well-defined.

6.6 Why Separate Statements and Queries?

Whether queries should be allowed inside theories is a decision with subtle effects.

Theories are sets of facts. Well-formedness imposes a partial order, but every linearization should be interpreted equivalently. Thus, we can determine whether two kinds of statements can coexist in theories by determining whether they can be exchanged without changing the interpretation. This is equivalent to determining whether the corresponding monad functions commute.

The following definitions suppose a conditional theory $t_1; \ldots; t_n$ in which exchanging some t_i and t_{i+1} (where $i < n$) is well-formed. Applying semantic functions in the definitions yields definitions that are independent of syntax but difficult to read, so we give the syntactic versions.

Definition 6.6 (commutativity). We say that t_i and t_{i+1} **commute** when

$$\mathcal{M}[t_1; \ldots; t_i; t_{i+1}; \ldots; t_n] \langle \Omega_0, p_0 \rangle = \mathcal{M}[t_i; \ldots; t_{i+1}; t_i; \ldots; t_n] \langle \Omega_0, p_0 \rangle.$$

Unfortunately, this notion of commutativity is usually too strong: distribution statements could never commute with each other. We need a weaker test than equality, based on observable outcomes.

Definition 6.7 (equivalence in distribution). Suppose X_1, \ldots, X_k are defined in t_1, \ldots, t_n. Let $m := \mathcal{M}[t_1, \ldots, t_n]$, and m' be a (usually different) probability space monad computation. We write $m \equiv_D m'$ and call m and m' **equivalent in distribution** when $\mathcal{D}[X_1, \ldots, X_k] m = \mathcal{D}[X_1, \ldots, X_k] m'$.

The following theorem says \equiv_D is like observational equivalence with query contexts:
Theorem 6.8 (context). $D[e_X | e_Y] m = D[e_X | e_Y] m'$ for all random variables $R[e_X]$ and $R[e_Y]$ if and only if $m \equiv_D m'$.

Definition 6.9 (commutativity in distribution). We say t_i and t_{i+1} commute in distribution when $M[t_1; \ldots; t_i; t_{i+1}; \ldots; t_n] \equiv_D M[t_1; \ldots; t_i+1; t_i; \ldots; t_n]$.

Theorem 6.10. The following table summarizes commutativity of cond_{ps}, dist_{ps} and extend_{ps} in the probability space monad:

<table>
<thead>
<tr>
<th>cond_{ps}</th>
<th>\equiv</th>
<th>\equiv_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>extend_{ps}</td>
<td>\equiv</td>
<td>\equiv_D</td>
</tr>
<tr>
<td>dist_{ps}</td>
<td>$\not\equiv_D$</td>
<td>$=$</td>
</tr>
</tbody>
</table>

By Thm. 6.10, if we are to maintain the idea that theories are sets of facts, we cannot allow both conditioning and query statements.

6.7 Conclusions

For discrete Bayesian theories, we explained a large subclass of notation as measure-theoretic calculations by transformation into λ_{ZFC}. There is now at least one precisely defined set of expressions that denote discrete conditional distributions in conditional theories, and it is very large and expressive. We gave a converging approximating semantics and implemented it in Racket.

We could have interpreted notation as first-order set theory, in which measure theory is developed. Defining the exact semantics compositionally would have been difficult, and deriving an implementation from the semantics would have involved much hand-waving. By targeting λ_{ZFC} instead, the path from notation to exact meaning to approximation to implementation is clear.
Now that we are satisfied that using λ_{ZFC} as a target language for categorical semantics of constructive theories and queries works, we turn our attention to uncountable sample spaces and theories with general recursion.

It seems that, having followed measure-theoretic structure so far, the extension to uncountable sample spaces should be fairly smooth. Discrete probability spaces, probability mass functions, summation, conditioning, and discrete transition kernels all have uncountable analogues that can be composed in much the same way. The probability space monad thus has an uncountable analogue that can be used as a target for a categorical semantics for Bayesian notation. There are two difficulties, however.

The first difficulty is practical. As with the discrete probability space monad, we would like to derive an implementable semantics by approximating the target category. Unfortunately, this is complicated by the fact that the uncountable computations have large cardinalities. For example, a general probability space on \mathbb{R} is defined as a triple $\langle \mathbb{R}, \Sigma, P \rangle$, where Σ is a subset of $\mathcal{P} \mathbb{R}$ and $P : \Sigma \to [0, 1]$.

The second difficulty is theoretical. Suppose we define the following recursive function in a language with probabilistic choice, which counts the number of times $\text{random} < p$:

$$\text{geometric } p := \text{if } (\text{random} < p) 0 (1 + \text{geometric } p)$$

(7.1)

To interpret $\text{geometric } p$ using the uncountable probability space monad, we must interpret both branches of the if as probability spaces and merge them. Unfortunately, doing so
naïvely results in nontermination, as geometric p is applied in the else branch at every recurrence. Dealing with nontermination requires complicated fixpoint constructions, which, with uncountable probability spaces, would put us on the frontier of research in mathematics instead of in computer science.

Fortunately, we can take a hint from measure-theoretic probability’s general approach to infinite processes: define them with respect to a canonical, infinite-dimensional probability space, and encode branching and other complexities into the random variables. The next chapter takes this approach by interpreting whole programs as random variables in which every random expression indexes an infinite, uniformly random tree.
Chapter 8

Preimage Computation Theory: Running Programs Backwards

I am so in favor of the actual infinite that instead of admitting that Nature abhors it, as is commonly said, I hold that Nature makes frequent use of it everywhere, in order to show more effectively the perfections of its Author.

Georg Cantor

8.1 Introduction

Measure-theoretic probability [43] is widely believed to be able to define every reasonable distribution, including distributions arising from discontinuous transformations and distributions on infinite spaces. It mainly does this by assigning probabilities to sets instead of points. Functions that do so are probability measures.

If a probability measure P assigns probabilities to subsets of X and $g : X \rightarrow Y$, then the distribution over subsets of Y is defined by

$$\Pr[B] = P \left(\text{preimage} \ g \ B \right)$$ \hspace{1cm} (8.1)

where $\text{preimage} \ g \ B = \{ a \in \text{domain} \ g \ | \ g \ a \in B \}$ is the subset of X for which g yields a value in B. It is well-defined for any g and B.

Measure-theoretic probability supports any kind of condition. If $Pr[B] > 0$, the probability of $B' \subseteq Y$ given $B \subseteq Y$ is

$$\Pr[B' \mid B] = \frac{\Pr[B' \cap B]}{\Pr[B]}$$ \hspace{1cm} (8.2)
If \(\Pr[B] = 0 \), conditional probabilities can be calculated as the limit of \(\Pr[B' \mid B_n] \) for certain positive-probability \(B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots \) whose intersection is \(B \) [67]. For example, if \(Y = \mathbb{R} \times \mathbb{R} \), the distribution of \(\langle x, y \rangle \in Y \) given \(x + y = 0 \) can be calculated using the descending sequence \(B_n = \{ \langle x, y \rangle \in Y \mid |x + y| < 2^{-n} \} \).

Only special families of measurable sets can be assigned probabilities. Proving measurability, taking limits, and other complications tend to make measure-theoretic probability less attractive, even though it is strictly more powerful.

8.1.1 Measure-Theoretic Semantics

Most purely functional languages allow only nontermination as a side effect, and not probabilistic choice. Programmers therefore encode probabilistic programs as functions from random sources to outputs. Monads and other categorical classes such as idioms (i.e. applicative functors) can make doing so easier [39, 72].

It seems this approach should make it easy to interpret probabilistic programs measure-theoretically. For a probabilistic program \(g : X \to Y \), the probability measure on output sets \(B \subseteq Y \) should be defined by preimages of \(B \) under \(g \) and the probability measure on \(X \). Unfortunately, it is difficult to turn this simple-sounding idea into a compositional semantics, for the following reasons.

1. Preimages are definable only for functions with observable domains, which excludes lambdas.
2. If subsets of \(X \) and \(Y \) must be measurable, taking preimages under \(g \) must preserve measurability (we say \(g \) itself is measurable). Proving the conditions under which this is true is difficult, especially if \(g \) may not terminate.
3. It is difficult to define useful probability measures for arbitrary spaces of measurable functions [6].

Implementing a language based on such a semantics is complicated because

4. Contemporary mathematics is unlike any implementation’s host language.
5. It requires running Turing-equivalent programs backwards, efficiently, on possibly uncountable sets of outputs.

We address 1 and 4 by developing our semantics in λ_{ZFC} [73], a λ-calculus with infinite sets, and both extensional and intensional functions. We address 5 by deriving and implementing a conservative approximation of the semantics.

There seems to be no way to simplify difficulty 2, so we work through a proof of measurability. The outcome is worth it: all probabilistic programs are measurable, regardless of the inputs on which they do not terminate. This includes uncomputable programs; for example, those that contain real equality tests and limits. We believe this result is the first of its kind, and is general enough to apply to almost all past and future work on probabilistic programming languages. To maintain the flow of this chapter, we put it off until Appendix A.

For difficulty 3, we have discovered that the “first-orderness” of arrows [38] is a perfect fit for the “first-orderness” of measure theory.

8.1.2 Arrow Solution Overview

Using arrows, we define an exact semantics and an approximating semantics. The exact semantics includes

- A semantic function which, like the arrow calculus semantic function [48], transforms first-order programs into the computations of an arbitrary arrow.
- Arrows for evaluating expressions in different ways.

This commutative diagram describes the relationships among the six arrows used to define the exact semantics:

\[
\begin{align*}
X \rightsquigarrow \bot \ Y & \xrightarrow{\text{lift}_{\text{map}}} X \rightsquigarrow \text{map} \ Y \xrightarrow{\text{lift}_{\text{pre}}} X \rightsquigarrow \text{pre} \ Y \\
\eta_{\bot} & \downarrow \eta_{\text{map}} \downarrow \eta_{\text{pre}} \\
X \rightsquigarrow \bot^* \ Y & \xrightarrow{\text{lift}_{\text{map}}^*} X \rightsquigarrow \text{map}^* \ Y \xrightarrow{\text{lift}_{\text{pre}}^*} X \rightsquigarrow \text{pre}^* \ Y
\end{align*}
\] (8.3)

At the top-left, $X \rightsquigarrow \bot \ Y$ computations (or “bottom arrow computations”) are intensional functions that may raise errors (i.e. return \bot, which is read “bottom”). From bottom arrow
computations, the \(\text{lift}_{\text{map}} \) combinator produces \(X \rightsquigarrow_{\text{map}} Y \) computations, which create equivalent extensional functions, or mappings. From mapping arrow computations, the \(\text{lift}_{\text{pre}} \) combinator produces \(X \rightsquigarrow_{\text{pre}} Y \) computations, which compute preimages.

Instances of arrows in the bottom row are like those in the top row, except they thread an infinite store of random values, and can be constructed to always terminate.

Most of our correctness theorems rely on proofs that every combinator in (8.3) is a homomorphism; for example, that \(\text{lift}_{\text{map}} \) distributes over all bottom arrow combinators.

The approximating semantics uses the same semantic function, but its arrows \(X \rightsquigarrow_{\text{pre}}' Y \) and \(X \rightsquigarrow_{\text{pre}*}' Y \) compute conservative approximations. Given a library for representing and operating on rectangular sets, it is directly implementable.

8.2 Arrows and First-Order Semantics

Like monads [79] and idioms [53], arrows [38] thread effects through computations in a way that imposes structure. But arrow computations are always

- Function-like: An arrow computation of type \(x \rightsquigarrow_{a} y \) must behave like a corresponding function of type \(x \Rightarrow y \) (in a sense we explain shortly).
- First-order: There is no way to derive a computation \(\text{app}_{a} : \langle x \rightsquigarrow_{a} y, x \rangle \rightsquigarrow_{a} y \) from the arrow \(a \)'s minimal definition, so it is not possible for an arrow computation to apply another arrow computation.

The first property makes arrows a good fit for a compositional translation from expressions to pure functions that operate on random sources. The second property makes arrows a good fit for a measure-theoretic semantics in particular, as it is difficult to define useful measurable sets of functions that make \(\text{app} \)'s corresponding function measurable [6].

8.2.1 Alternative Arrow Definitions and Laws

To make applying measure-theoretic theorems easier, and to simplify interpreting let-calculus expressions as arrow computations, we do not give typical minimal arrow definitions. For
each arrow \textit{a}, instead of \textit{first}_a, we define \((\&\&_a)\). This combinator is typically called \textit{fanout}, but its use will be clearer if we call it \textit{pairing}. One way to strengthen an arrow \textit{a} is to define an additional combinator \textit{left}_a, which can be used to choose an arrow computation based on the result of another. Again, we define a different combinator, \textit{ifte}_a (“if-then-else”).

In a nonstrict \(\lambda\)-calculus, defining a choice combinator allows writing recursive functions using nothing but arrow combinators and lifted, pure functions. However, a strict \(\lambda\)-calculus needs an extra combinator \textit{lazy} for deferring conditional branches. For example, define the function \textit{arrow} with choice, in which \(x \rightsquigarrow y ::= x \Rightarrow y\):

\[
\begin{align*}
\text{arr } f & := f \\
\text{lift } f & := \lambda a. f a \\
\text{composition } f_1 & \gg f_2 := \lambda a. f_1 (f_2 a) \\
\text{pairing } f_1 & \& f_2 := \lambda a. (f_1 a, f_2 a) \\
\text{if-then-else } f_1 & \text{ f}_2 f_3 := \lambda a. \text{if} (f_1 a) (f_2 a) (f_3 a) \\
\text{laziness } f & := \lambda a. f 0 a
\end{align*}
\]

and try to define the following recursive function:

\[
\begin{align*}
\text{halt-on-true : } \text{Bool} & \rightsquigarrow \text{Bool} \quad \text{(i.e. halt-on-true : } \text{Bool} \Rightarrow \text{Bool)} \\
\text{halt-on-true} & := \text{ifte } (\text{arr } \text{id}) (\text{arr } \text{id}) \text{ halt-on-true} \\
& \equiv \text{ifte } \text{id } \text{id } (\text{ifte } (\text{arr } \text{id}) (\text{arr } \text{id}) \text{ halt-on-true}) \\
& \equiv \text{ifte } \text{id } \text{id } (\text{ifte } \text{id } \text{id } (\text{ifte } (\text{arr } \text{id}) (\text{arr } \text{id}) \text{ halt-on-true}))
\end{align*}
\]

In a strict \(\lambda\)-calculus, the defining expression does not terminate. But the following is
well-defined in λ_{ZFC}, and loops only when applied to false:

$$\text{halt-on-true} := \text{ifte (arr id) (arr id) (lazy } \lambda 0. \text{halt-on-true)}$$

$$\equiv \text{ifte id id (} \lambda a. (\lambda 0. \text{halt-on-true)) 0 a)$$

$$\equiv \lambda a. \text{if (id a) (id a) } ((\lambda a. (\lambda 0. \text{halt-on-true)) 0 a) a)$$

$$\equiv \lambda a. \text{if a a } ((\lambda a. \text{halt-on-true a}) a)$$

$$\equiv \lambda a. \text{if a a (} \text{halt-on-true a) }$$

All of our arrows are arrows with choice and lazy, so we simply call them arrows.

Definition 8.1 (arrow). Let $1 := \{0\}$ (Section 4.3.1). A binary type constructor $\Rightarrow a$ and

$$\text{arr}_a : (x \Rightarrow y) \Rightarrow (x \Rightarrow_a y)$$

$$\text{lift}$$

$$\Rightarrow\Rightarrow a : (x \Rightarrow_a y) \Rightarrow (y \Rightarrow_a z) \Rightarrow (x \Rightarrow_a z)$$

$$\text{composition}$$

$$\&\& a : (x \Rightarrow_a y) \Rightarrow (x \Rightarrow_a z) \Rightarrow (x \Rightarrow_a (y, z))$$

$$\text{pairing}$$

$$\text{ifte}_a : (x \Rightarrow_a \text{Bool}) \Rightarrow (x \Rightarrow_a y) \Rightarrow (x \Rightarrow_a y) \Rightarrow (x \Rightarrow_a y)$$

$$\text{if-then-else}$$

$$\text{lazy}_a : (1 \Rightarrow (x \Rightarrow_a y)) \Rightarrow (x \Rightarrow_a y)$$

$$\text{laziness}$$

define an arrow if certain monoid, homomorphism, and structural laws hold.

The arrow homomorphism laws can be put in terms of more general homomorphism properties that deal with distributing an arrow-to-arrow lift, which we use extensively to prove correctness.

Definition 8.2 (arrow homomorphism). A function $\text{lift}_b : (x \Rightarrow_a y) \Rightarrow (x \Rightarrow_b y)$ is an arrow homomorphism from arrow a to arrow b if the following distributive laws hold for
appropriately typed \(f, f_1, f_2 \) and \(f_3 \):

\[
\begin{align*}
\text{lift}_b (\text{arr}_a f) & \equiv \text{arr}_b f \\
\text{lift}_b (f_1 \gg a f_2) & \equiv (\text{lift}_b f_1) \gg b (\text{lift}_b f_2) \\
\text{lift}_b (f_1 \& \& a f_2) & \equiv (\text{lift}_b f_1) \& \& b (\text{lift}_b f_2) \\
\text{lift}_b (\text{ifte}_a f_1 f_2 f_3) & \equiv \text{ifte}_b (\text{lift}_b f_1) (\text{lift}_b f_2) (\text{lift}_b f_3) \\
\text{lift}_b (\text{lazy}_a f) & \equiv \text{lazy}_b \lambda 0. \text{lift}_b (f 0)
\end{align*}
\]

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

The arrow homomorphism laws state that \(\text{arr}_a : (x \Rightarrow y) \Rightarrow (x \Rightarrow a y) \) must be a homomorphism from the function arrow (8.4) to arrow \(a \). Roughly, arrow computations that do not use additional combinators can be transformed into \(\text{arr}_a \) applied to a pure computation. They must be \textit{function-like}.

Only a few of the other arrow laws play a role in our semantics and its correctness. We need associativity of \((\gg a)\) and a pair extraction law:

\[
(f_1 \gg a f_2) \gg a f_3 \equiv f_1 \gg a (f_2 \gg a f_3)
\]

(8.13)

\[
(\text{arr}_a f_1 \& \& a f_2) \gg a \text{arr}_a \text{snd} \equiv f_2
\]

(8.14)

and distribution of pure computations over effectful:

\[
\begin{align*}
\text{arr}_a f_1 \gg a (f_2 \& \& a f_3) & \equiv (\text{arr}_a f_1 \gg a f_2) \& \& a (\text{arr}_a f_1 \gg a f_3) \\
\text{arr}_a f_1 \gg a \text{ifte}_a f_2 f_3 f_4 & \equiv \text{ifte}_a (\text{arr}_a f_1 \gg a f_2) \\
& \quad (\text{arr}_a f_1 \gg a f_3) \\
& \quad (\text{arr}_a f_1 \gg a f_4) \\
\text{arr}_a f_1 \gg a \text{lazy}_a f_2 & \equiv \text{lazy}_a \lambda 0. \text{arr}_a f_1 \gg a f_2 0
\end{align*}
\]

(8.15)

(8.16)

(8.17)

Equivalence between different arrow representations is usually proved in a strongly normalizing \(\lambda \)-calculus [47, 48], in which every function is free of effects, including nontermination. Such a \(\lambda \)-calculus has no need for \(\text{lazy}_a \), so we could not derive (8.17) from existing arrow laws. We follow Hughes’s reasoning [38] for the original arrow laws: it is a function-like property.
(i.e. it holds for the function arrow), and it cannot not lose, reorder or duplicate effects.

The pair extraction law (8.14), which can be derived from existing arrow laws, is a more
problematic, in nonstrict λ-calculi as well as \(\lambda_{ZFC} \). If \(f_1 \) does not always terminate, using (8.14) to transform a computation can turn a nonterminating expression into a terminating one, or
vice-versa. We could require \(f_1 \) in the pair extraction law to always terminate. Instead, we
require every argument to \(\text{arr}_a \) to terminate, which simplifies more proofs.

Rather than prove each arrow law for each arrow, we prove arrows are epimorphic to
arrows for which the laws are known to hold. (Isomorphism is sufficient but not necessary.)

Definition 8.3 (arrow epimorphism). An arrow homomorphism \(\text{lift}_b : (x \sim_a y) \Rightarrow (x \sim_b y) \)
that has a right inverse is an arrow epimorphism from \(a \) to \(b \).

Theorem 8.4 (epimorphism implies arrow laws). If \(\text{lift}_b : (x \sim_a y) \Rightarrow (x \sim_b y) \) is an arrow
epimorphism and the combinators of \(a \) define an arrow, then the combinators of \(b \) define an
arrow.

Proof. Let \(\text{lift}_b^{-1} \) be \(\text{lift}_b \)'s right inverse. For the pair extraction law (8.14),

\[
\text{arr}_b f_1 \text{arr}_b f_2 \Rightarrow \text{arr}_b \text{snd} \quad (8.18)
\]

\[
\equiv (\text{lift}_b (\text{arr}_a f_1) \text{arr}_b (\text{lift}_b^{-1} f_2)) \Rightarrow \text{arr}_b \text{snd} \quad \text{Rewrite with lift}_b
\]

\[
\equiv \text{lift}_b (\text{arr}_a f_1 \text{arr}_b \text{lift}_b^{-1} f_2) \Rightarrow \text{arr}_b \text{snd} \quad \text{Homomorphism (8.10)}
\]

\[
\equiv \text{lift}_b ((\text{arr}_a f_1 \text{arr}_b \text{lift}_b^{-1} f_2) \Rightarrow \text{arr}_a \text{snd}) \quad \text{Homomorphism (8.9)}
\]

\[
\equiv \text{lift}_b (\text{lift}_b^{-1} f_2) \quad \text{Pair extraction (8.14)}
\]

\[
\equiv f_2 \quad \text{Right inverse}
\]

The proofs for every other law are similar. \(\square \)

8.2.2 First-Order Let-Calculus Semantics

Figure 8.1 defines a transformation from a first-order let-calculus to arrow computations for
any arrow \(a \). A program is a sequence of definition statements followed by a final expression.
\[
\begin{align*}
p &::= x := e; \ldots ; e \\
e &::= x | \text{let } e e | \text{env } n | (e, e) | \text{fst } e | \text{snd } e | \text{if } e e e | v \\
v &::= \text{[first-order constants]}
\end{align*}
\]

\[
\begin{align*}
[x := e; \ldots ; e]_a &::= x := [e]_a; \ldots ; [e]_a \\
[(e_1, e_2)]_a &::= [e_1]_a \triangleleft \triangleleft [e_2]_a \\
[\text{fst } e]_a &::= [e]_a \triangleright [\text{arr}_a \text{ fst}]_a \\
[\text{snd } e]_a &::= [e]_a \triangleright [\text{arr}_a \text{ snd}]_a \\
[v]_a &::= \text{arr}_a (\text{const } v) \\
\text{id} &::= \lambda a. a \\
\text{const } b &::= \lambda a. b
\end{align*}
\]

subject to \([p]_a : () \leadsto y \) for some \(y \)

Figure 8.1: Interpretation of a let-calculus with first-order definitions and De-Bruijn-indexed bindings as arrow \(a \) computations.

The semantic function \([\cdot]_a\) transforms each defining expression and the final expression into arrow computations. Functions are named, but local variables and arguments are not. Instead, variables are referred to by De Bruijn indexes, with 0 referring to the innermost binding.

We call this style of interpretation **stack-passing style**. The final expression has type \(() \leadsto y \), where \(y \) is the type of the program’s output and \(() \) denotes the empty stack. A let expression uses pairing \(\triangleleft \triangleleft \) to push a value onto the stack and composition \(\triangleright \triangleright \) to pass the resulting stack to its body. First-order functions have type \((x, () \leadsto y) \) where \(x \) is the argument type and \(y \) is the return type. Application passes a stack with just an \(x \) using pairing and composition.

We generally regard programs as if they were their final expressions. Thus, the following definition applies to both programs and expressions.

Definition 8.5 (well-defined expression). An expression \(e \) is **well-defined** under arrow \(a \) if \([e]_a : x \leadsto y \) for some \(x \) and \(y \), and \([e]_a \) terminates.

From here on, we assume all expressions are well-defined. (The arrow \(a \) will be clear from context.) Well-definedness does not guarantee that running an interpretation terminates. It
just simplifies statements about expressions, such as the following theorem, on which most of our semantic correctness results rely.

Theorem 8.6 (homomorphisms distribute over expressions). Let \(\text{lift}_b : (x \sim_a y) \Rightarrow (x \sim_b y) \) be an arrow homomorphism. For all \(e \), \([e]_b \equiv \text{lift}_b \ [e]_a\).

Proof. By structural induction. Base cases proceed by expansion and using \(\text{arr}_b \equiv \text{lift}_b \circ \text{arr}_a \) (8.8). For example, for constants:

\[
[v]_b \equiv \text{arr}_b \ (\text{const } v) \quad \text{Def of } [\cdot]_b \quad (8.19)
\]

\[
\equiv \text{lift}_b \ (\text{arr}_a \ (\text{const } v)) \quad \text{Homomorphism } (8.8)
\]

\[
\equiv \text{lift}_b \ [v]_a \quad \text{Def of } [\cdot]_a
\]

Inductive cases proceed by expansion, applying the inductive hypothesis on subterms, and applying distributive laws (8.9)–(8.12). For example, for pairing:

\[
[(e_1, e_2)]_b \equiv [e_1]_b \ & \& \ & \& \& \ & \& [e_2]_b \quad \text{Def of } [\cdot]_b \quad (8.20)
\]

\[
\equiv (\text{lift}_b \ [e_1]_a) \ & \& \ & \& \ & \& (\text{lift}_b \ [e_2]_a) \quad \text{Ind hypothesis}
\]

\[
\equiv \text{lift}_b \ ([e_1]_a \ & \& \ & \& \ & \& [e_2]_a) \quad \text{Homomorphism } (8.10)
\]

\[
\equiv \text{lift}_b \ [(e_1, e_2)]_a \quad \text{Def of } [\cdot]_a
\]

It is not hard to check the remaining cases. \(\square \)

If we assume \(\text{lift}_b \) defines correct behavior for arrow \(b \) in terms of arrow \(a \), and prove that \(\text{lift}_b \) is a homomorphism, then by Theorem 8.6, \([\cdot]_b \) is correct.
\[
\begin{align*}
X \sim_{\bot} Y &::= X \Rightarrow Y_{\bot} \\
\text{arr}_{\bot} &::= (X \Rightarrow Y) \Rightarrow (X \sim_{\bot} Y) \\
\text{arr}_{\bot} f &::= f \\
(\gggg_{\bot}) &::= (X \sim_{\bot} Y) \Rightarrow (Y \sim_{\bot} Z) \Rightarrow (X \sim_{\bot} Z) \\
(f_1 \gggg_{\bot} f_2) a &::= \text{if } (f_1 a = \bot) \text{ then } (f_2 (f_1 a)) \text{ else } \bot \\
(f_1 \gggg_{\bot} f_2) a &::= \text{let } b_1 ::= f_1 a \\
&\quad b_2 ::= f_2 a \\
&\text{ in } \text{if } (b_1 = \bot \text{ or } b_2 = \bot) \text{ then } \bot \text{ else } (b_1, b_2)
\end{align*}
\]

Through Section 8.6, we move across the top to \(X \sim_{\text{pre}} Y\).

To use Theorem 8.6 to prove correct the interpretations of expressions as preimage arrow computations, we need the preimage arrow to be homomorphic to a simpler arrow with easily understood behavior. The function arrow (8.4) is an obvious candidate. However, we will need to explicitly handle nontermination as an error value, so we need a slightly more complicated arrow.

Figure 8.2 defines the \textit{bottom arrow}. Its computations have type \(X \sim_{\bot} Y ::= X \Rightarrow Y_{\bot}\), where \(Y_{\bot} ::= Y \cup \{\bot\}\) and \(\bot\) is a distinguished error value. The type \(\text{Bool}_{\bot}\), for example, denotes the members of \(\text{Bool} \cup \{\bot\} = \{\text{true}, \text{false}, \bot\}\).

To prove the arrow laws, we need a coarser notion of equivalence.

\begin{definition}[bottom arrow equivalence] Two computations \(f_1 : X \sim_{\bot} Y\) and \(f_2 : X \sim_{\bot} Y\) are equivalent, or \(f_1 \equiv f_2\), when \(f_1 a \equiv f_2 a\) for all \(a \in X\).
\end{definition}
Theorem 8.8. $\text{arr}_{\bot}, (\&\&_{\bot}), (\gg\gg_{\bot}), \text{ifte}_{\bot}$ and lazy_{\bot} define an arrow.

Proof. The bottom arrow is epimorphic to (in fact, isomorphic to) the maybe monad’s Kleisli arrow.

8.4 Deriving the Mapping Arrow

Computing preimages requires an observable domain, which lambdas do not have. Further, theorems about functions in set theory tend to be about mappings, not about lambdas that may raise errors. As an intermediate step, then, we need an arrow whose computations produce mappings or are mappings themselves.

It is tempting to try to make the mapping arrow’s computations mapping-valued; i.e. $X \mapsto Y := X \rightarrow Y$. Unfortunately, we could not define $\text{arr}_{\text{map}} : (X \Rightarrow Y) \Rightarrow (X \rightarrow Y)$: to define a mapping, we need a domain, but lambdas’ domains are unobservable.

To parameterize mapping arrow computations on a domain, we define the mapping arrow computation type as

$$
X \mapsto_{\text{map}} Y ::= \text{Set} X \Rightarrow (X \rightarrow Y)
$$

The absence of \bot in $\text{Set} X \Rightarrow (X \rightarrow Y)$, and the fact that type parameters X and Y denote sets, will make it easier to apply well-known theorems from measure theory, which know nothing of lambda types and propagating error values.

To use Theorem 8.6 to prove that expressions interpreted using $\llbracket \cdot \rrbracket_{\text{map}}$ behave correctly with respect to $\llbracket \cdot \rrbracket_{\bot}$, we need to define correctness using a lift from the bottom arrow to the mapping arrow. It is helpful to have a standalone function domain_{\bot} that computes the subset of A on which f does not return \bot. We define that first, and then define lift_{map} in terms of it:

$$
\text{domain}_{\bot} : (X \mapsto_{\bot} Y) \Rightarrow \text{Set} X \Rightarrow \text{Set} X
$$

$$
\text{domain}_{\bot} f A := \{ a \in A \mid f a \neq \bot \}
$$
range : (X → Y) ⇒ Set Y

range g := image snd g

c_map : (Y → Z) ⇒ (X → Y) ⇒ (X → Z)
g2 c_map g1 := let A := preimage g1 (domain g2)
in λa ∈ A. g2 (g1 a)

Definition 8.9 (mapping arrow equivalence). *Two computations* g1 : X c_map Y and g2 : X c_map Y *are equivalent*, or g1 ≡ g2, *when* g1 A ≡ g2 A *for all* A ⊆ X.

Clearly arr_map := lift_map ◦ arr_⊥ meets the first homomorphism law (8.8). The remainder of this section derives (c_map), (*⇒* map), ifte_map and lazy_map from bottom arrow combinators, in a way that ensures lift_map is an arrow homomorphism. Figure 8.3 defines the additional

lift_map : (X ⊢⊥ Y) ⇒ (X c_map Y)
lift_map f A := mapping f (domain⊥ f A) (8.24)
necessary mapping operations range, composition, pairing, and disjoint union, and Figure 8.4 contains the resulting mapping arrow combinators.

8.4.1 Composition

Starting with the left side of (8.9), we expand definitions, simplify \(f \) by restricting it to a set for which \(f_1 \ a \neq \perp \):

\[
\text{lift}_{\text{map}} \ (f_1 \ggg \perp_f \ f_2) \ A
\]

\[
\equiv \text{let } f := \lambda a. \text{if } (f_1 \ a = \perp) \perp (f_2 \ (f_1 \ a)) \quad \text{Def of } \text{lift}_{\text{map}}, \ (\ggg \perp) \\
A' := \text{domain}_\perp f \ A \\
in \text{mapping } f \ A'
\]

\[
\equiv \text{let } f := \lambda a. f_2 \ (f_1 \ a) \quad \text{Simplify } f \\
A' := \text{domain}_\perp f \ (\text{domain}_\perp f_1 \ A) \\
in \text{mapping } f \ A'
\]

\[
\equiv \text{let } A' := \{ a \in \text{domain}_\perp f_1 \ A \mid f_2 \ (f_1 \ a) \neq \perp \} \\
in \lambda a \in A'. f_2 \ (f_1 \ a) \quad \text{Def of } \text{domain}_\perp, \text{mapping}
\]

We finish by converting bottom arrow computations to the mapping arrow and rewriting in terms of mapping composition (\(\circ_{\text{map}} \)):

\[
\equiv \text{let } g_1 := \text{lift}_{\text{map}} f_1 \ A \\
A' := \text{preimage } g_1 \ (\text{domain}_\perp f_2 \ (\text{range } g_1)) \\
in \lambda a \in A'. f_2 \ (g_1 \ a) \quad \text{Rewrite with } \text{lift}_{\text{map}}
\]

\[
\equiv \text{let } g_1 := \text{lift}_{\text{map}} f_1 \ A \\
g_2 := \text{lift}_{\text{map}} f_2 \ (\text{range } g_1) \\
A' := \text{preimage } g_1 \ (\text{domain } g_2) \\
in \lambda a \in A'. g_2 \ (g_1 \ a) \quad \text{Rewrite with } \text{lift}_{\text{map}}
\]

\[
\equiv \text{let } g_1 := \text{lift}_{\text{map}} f_1 \ A \\
g_2 := \text{lift}_{\text{map}} f_2 \ (\text{range } g_1) \\
in g_2 \circ_{\text{map}} g_1 \quad \text{Rewrite with } (\circ_{\text{map}})
\]

Substituting \(g_1 \) for \(\text{lift}_{\text{map}} f_1 \) and \(g_2 \) for \(\text{lift}_{\text{map}} f_2 \) gives a definition for \((\ggg_{\text{map}}) \) (Figure 8.4) for which (8.9) holds.
8.4.2 Pairing

Starting with the left side of (8.10), we expand definitions, and simplify \(f \) by restricting it to a set for which \(f_1 \ a \neq \bot \) and \(f_2 \ a \neq \bot \):

\[
\text{lift}_{\text{map}} \ (f_1 \ & & f_2) \ A
\]

\[\equiv \text{let } \ f := \lambda a. \text{let } b_1 := f_1 \ a \text{ in if } (b_1 = \bot \text{ or } b_2 = \bot) \bot \langle b_1, b_2 \rangle \text{ in mapping } f \ A' \]

\[\equiv \text{let } \ f := \lambda a. \langle f_1 \ a, f_2 \ a \rangle \text{ Simplify } f \]

\[A' := \text{domain} \bot f \ A \]

\[\text{in mapping } f \ A' \]

\[\equiv \text{let } A' := \text{domain} \bot f_1 \ A \cap \text{domain} \bot f_2 \ A \text{ Def of mapping} \]

\[\text{in } \lambda a \in A'. \langle f_1 \ a, f_2 \ a \rangle \]

We finish by converting bottom arrow computations to the mapping arrow and rewriting in terms of \(\langle \cdot, \cdot \rangle_{\text{map}} \):

\[\equiv \text{let } g_1 := \text{lift}_{\text{map}} f_1 \ A \text{ Rewrite with } \text{lift}_{\text{map}} \]

\[g_2 := \text{lift}_{\text{map}} f_2 \ A \]

\[A' := \text{domain} g_1 \cap \text{domain} g_2 \text{ in } \lambda a \in A'. \langle g_1 \ a, g_2 \ a \rangle \]

\[\equiv \langle \text{lift}_{\text{map}} f_1 \ A, \text{lift}_{\text{map}} f_2 \ A \rangle_{\text{map}} \text{ Rewrite with } \langle \cdot, \cdot \rangle_{\text{map}} \]

Substituting \(g_1 \) for \(\text{lift}_{\text{map}} f_1 \) and \(g_2 \) for \(\text{lift}_{\text{map}} f_2 \) gives a definition for \(\& & \& \map \) (Figure 8.4) for which (8.10) holds.
8.4.3 Conditional

Starting with the left side of (8.11), we expand definitions, and simplify \(f \) by restricting it to a domain for which \(f_1 a \neq \bot \):

\[
\text{lift}_\text{map} (\text{if}_{\bot} f_1 f_2 f_3) A
\]

\[
\equiv \text{let } f := \lambda a. \text{case } f_1 a \text{ such that } \begin{align*}
\text{true} & \rightarrow f_2 a \\
\text{false} & \rightarrow f_3 a \\
\bot & \rightarrow \bot
\end{align*}
\]

\[
A' := \text{domain}_{\bot} f A
\]

in \(\text{mapping } f A' \)

\[
\equiv \text{let } f := \lambda a. \text{if } (f_1 a) (f_2 a) (f_3 a)
\]

\[
\equiv \text{let } g_2 := \text{lift}_\text{map} f_2 (\text{preimage } g_1 \{\text{true}\})
\]

\[
\equiv \text{let } g_3 := \text{lift}_\text{map} f_3 (\text{preimage } g_1 \{\text{false}\})
\]

\[
A' := \text{domain}_{\bot} f_2 A_2 \cup \text{domain}_{\bot} f_3 A_3
\]

in \(\lambda a \in A'. \text{if } (f_1 a) (f_2 a) (f_3 a) \)

We finish by converting bottom arrow computations to the mapping arrow and rewriting in terms of \((\cup_{\text{map}})\):

\[
\equiv \text{let } g_2 := \text{lift}_\text{map} f_2 (\text{preimage } g_1 \{\text{true}\})
\]

\[
\equiv \text{let } g_3 := \text{lift}_\text{map} f_3 (\text{preimage } g_1 \{\text{false}\})
\]

\[
A' := \text{domain } g_2 \cup \text{domain } g_3
\]

in \(\lambda a \in A'. \text{if } (a \in \text{domain } g_2) (g_2 a) (g_3 a) \)

\[
\equiv \text{let } g_1 := \text{lift}_\text{map} f_1 A
\]

\[
\equiv \text{let } g_2 := \text{lift}_\text{map} f_2 (\text{preimage } g_1 \{\text{true}\})
\]

\[
\equiv \text{let } g_3 := \text{lift}_\text{map} f_3 (\text{preimage } g_1 \{\text{false}\})
\]

\[
\equiv g_2 \cup_{\text{map}} g_3
\]
Substituting \mathbf{g}_1 for $\text{lift}_{\text{map}} \mathbf{f}_1$, \mathbf{g}_2 for $\text{lift}_{\text{map}} \mathbf{f}_2$, and \mathbf{g}_3 for $\text{lift}_{\text{map}} \mathbf{f}_3$ gives a definition for ifte_{map} (Figure 8.4) for which (8.11) holds.

8.4.4 Laziness

Starting with the left side of (8.12), we expand definitions:

$$\text{lift}_{\text{map}} (\text{lazy}_\bot \mathbf{f}) \ A \equiv \ \text{let} \ A' := \text{domain}_\bot (\lambda a. \mathbf{f} \ 0 \ a) \ A$$

$$\text{in} \ \text{mapping} (\lambda a. \mathbf{f} \ 0 \ a) \ A' \text{(8.28)}$$

It appears we need an η rule to continue, which λ_{ZFC} does not have (i.e. $\lambda x. e \ x \not\equiv e$ because e may not terminate). Fortunately, we can use weaker facts. If $A \neq \emptyset$, then $\text{domain}_\bot (\lambda a. \mathbf{f} \ 0 \ a) \ A \equiv \text{domain}_\bot (\mathbf{f} \ 0) \ A$. Further, it terminates if and only if $\text{mapping} (\mathbf{f} \ 0) \ A'$ terminates. Therefore, if $A \neq \emptyset$, we can replace $\lambda a. \mathbf{f} \ 0 \ a$ with $\mathbf{f} \ 0$. If $A = \emptyset$, then $\text{lift}_{\text{map}} (\text{lazy}_\bot \mathbf{f}) \ A = \emptyset$ (the empty mapping), so

$$\text{lift}_{\text{map}} (\text{lazy}_\bot \mathbf{f}) \ A \equiv \ \text{if} \ (A = \emptyset) \ \emptyset \ (\text{mapping} (\mathbf{f} \ 0) (\text{domain}_\bot (\mathbf{f} \ 0) \ A)) \equiv \ \text{if} \ (A = \emptyset) \ \emptyset \ (\text{lift}_{\text{map}} (\mathbf{f} \ 0) \ A) \text{(8.29)}$$

Substituting $\mathbf{g} \ 0$ for $\text{lift}_{\text{map}} (\mathbf{f} \ 0)$ gives a lazymap (Figure 8.4) for which (8.12) holds.

8.4.5 Correctness

Theorem 8.10 (mapping arrow correctness). lift_{map} is a homomorphism.

Proof. By construction. □

Corollary 8.11 (semantic correctness). For all e, $[e]_{\text{map}} \equiv \text{lift}_{\text{map}} [e]_\bot$.

Without restrictions, mapping arrow computations can be quite unruly. For example, the following computation is well-typed, but returns the identity mapping on Bool when
applied to an empty domain, and the empty mapping when applied to any other domain:

\[
\text{nonmonotone : } \text{Bool} \mapsto \text{Bool}
\]

\[
\text{nonmonotone } A := \text{if } (A = \emptyset) \ (\lambda a \in \text{Bool}. a) \emptyset
\]

(8.30)

It would be nice if we could be sure that every \(X \mapsto \text{map} Y\) is not only monotone, but acts as if it returned restricted mappings. The following equivalent property is easier to state, and makes proving the arrow laws simple.

Definition 8.12 (mapping arrow law). Let \(g : X \mapsto \text{map} Y\). If there exists an \(f : X \mapsto_{\bot} Y\) such that \(g \equiv \text{lift}_{\text{map}} f\), then \(g\) obeys the mapping arrow law.

By homomorphism of \(\text{lift}_{\text{map}}\), mapping arrow combinators preserve this law. It is therefore safe to assume that the mapping arrow law holds for all \(g : X \mapsto_{\text{map}} Y\).

Theorem 8.13. \(\text{lift}_{\text{map}}\) is an arrow epimorphism.

Proof. Follows from Theorem 8.10 and restriction of \(X \mapsto_{\text{map}} Y\) to instances for which the mapping arrow law (Definition 8.12) holds.

Corollary 8.14. \(\text{arr}_{\text{map}}, (\&\&\&_{\text{map}}), (>>\&\&\&_{\text{map}}), \text{ifte}_{\text{map}}\) and \(\text{lazy}_{\text{map}}\) define an arrow.

8.5 Lazy Preimage Mappings

On a computer, we do not often have the luxury of testing each function input to see whether it belongs to a preimage set. Even for finite domains, doing so is often intractable.

If we wish to compute with infinite sets in the language implementation, we will need an abstraction that makes it easy to replace computation on points with computation on sets whose representations allow efficient operations. Therefore, in the preimage arrow, we confine computation on points to instances of

\[
X \mapsto_{\text{pre}} Y ::= \langle \text{Set } Y, \text{Set } Y \Rightarrow \text{Set } X \rangle
\]

(8.31)
with the intention to replace $X \mapsto Y$ instances with an approximation further on. Like a mapping, an $X \mapsto Y$ has an observable domain—but computing the input-output pairs is delayed. We therefore call these *lazy preimage mappings*.

Converting a mapping to a lazy preimage mapping requires constructing a delayed application of `preimage`:

$$
\text{pre} : (X \mapsto Y) \Rightarrow (X \mapsto Y)
$$

(8.32)

$$
\text{pre } g := \langle \text{range } g, \lambda B. \text{preimage } g B \rangle
$$

To apply a preimage mapping to some B, we intersect B with its range and apply its preimage-computing function:

$$
\text{ap}_{\text{pre}} : (X \mapsto Y) \Rightarrow \text{Set } Y \Rightarrow \text{Set } X
$$

(8.33)

$$
\text{ap}_{\text{pre}} \langle Y', p \rangle \ B := p \ (B \cap Y')
$$

Preimage arrow correctness depends on this fact: that using ap_{pre} to compute preimages is the same as computing them from a mapping using `preimage`.

Lemma 8.15. Let $g : X \to Y$. For all $B \subseteq Y$ and Y' such that $\text{range } g \subseteq Y' \subseteq Y$, $\text{preimage } g \ (B \cap Y') = \text{preimage } g \ B$.

124
Theorem 8.16 (ap_{pre} computes preimages). Let g : \(X \rightarrow Y \). For all \(B \subseteq Y \), \(\text{ap}_{\text{pre}} (\text{pre} g) B = \text{preimage} g B \).

Proof. Expand definitions and apply Lemma 8.15 with \(Y' = \text{range} g \). \(\square \)

Figure 8.5 defines more operations on preimage mappings, including pairing, composition, and disjoint union operations corresponding to the mapping operations in Figure 8.3. To prove them correct, we need preimage mappings to be equivalent when they compute the same preimages.

Definition 8.17 (preimage mapping equivalence). \(h_1 : X \overset{\text{pre}}{\rightarrow} Y \) and \(h_2 : X \overset{\text{pre}}{\rightarrow} Y \) are equivalent, or \(h_1 \equiv h_2 \), when \(\text{ap}_{\text{pre}} h_1 B \equiv \text{ap}_{\text{pre}} h_2 B \) for all \(B \subseteq Y \).

Similarly to proving arrows correct, we prove the operations in Figure 8.5 are correct by proving that \(\text{pre} \) is a homomorphism (though not an arrow homomorphism): it distributes over mapping operations to yield preimage mapping operations. The remainder of this section states these distributive properties as theorems and proves them. We will use these theorems to derive the preimage arrow from the mapping arrow.

8.5.1 Composition

To prove \(\text{pre} \) distributes over mapping composition, we can make more or less direct use of the fact that \(\text{preimage} \) distributes over mapping composition.

Lemma 8.18 (preimage distributes over (\text{map}_\circ)). Let \(g_1 : X \rightarrow Y \) and \(g_2 : Y \rightarrow Z \). For all \(C \subseteq Z \), preimage \((g_2 \circ \text{map}_g_1) C = \text{preimage} g_1 \left(\text{preimage} g_2 C \right) \).

Theorem 8.19 (pre distributes over (\text{map}_\circ)). Let \(g_1 : X \rightarrow Y \) and \(g_2 : Y \rightarrow Z \). Then \(\text{pre} (g_2 \circ \text{map}_g_1) \equiv (\text{pre} g_2) \circ \text{pre} (\text{pre} g_1) \).

Proof. Let \(\langle Z', p_2 \rangle := \text{pre} g_2 \) and \(C \subseteq Z \). Starting from the right-hand side of the equivalence,

\[
\begin{align*}
\text{ap}_{\text{pre}} \left(\left(\text{pre} g_2 \right) \circ \text{pre} \left(\text{pre} g_1 \right) \right) C \\
\equiv \text{let } p := \lambda C. \text{ap}_{\text{pre}} \left(\text{pre} g_1 \right) \left(p_2 C \right) \quad \text{Def of ap}_{\text{pre}}, (\circ_{\text{pre}}) \\
in \ p \left(C \cap Z' \right)
\end{align*}
\]
\[
\equiv \text{ap}_{\text{pre}} (\text{pre } g_1) (p_2 (C \cap Z')) \quad \text{Def of } p \\
\equiv \text{ap}_{\text{pre}} (\text{pre } g_1) (\text{ap}_{\text{pre}} (\text{pre } g_2) C) \quad \text{Rewrite with } \text{ap}_{\text{pre}} \\
\equiv \text{preimage } g_1 (\text{preimage } g_2 C) \quad \text{Theorem 8.16} \\
\equiv \text{preimage } (g_2 \circ_{\text{map}} g_1) C \quad \text{Lemma 8.18} \\
\equiv \text{ap}_{\text{pre}} (\text{pre } (g_2 \circ_{\text{map}} g_1)) C \quad \text{Theorem 8.16}
\]

8.5.2 Pairing

We have less luck with pairing than with composition, because \text{preimage} does not distribute over pairing. Fortunately, \text{preimage} distributes over unions, and over pairing and cartesian product together.

Lemma 8.20 (preimage distributes over \langle \cdot, \cdot \rangle_{\text{map}} \text{ and } (\times)). Let \(g_1 : X \rightarrow Y_1 \text{ and } g_2 : X \rightarrow Y_2 \). For all \(B_1 \subseteq Y_1 \text{ and } B_2 \subseteq Y_2 \), \(\text{preimage } (g_1, g_2)_{\text{map}} (B_1 \times B_2) = (\text{preimage } g_1 B_1) \cap (\text{preimage } g_2 B_2) \).

Lemma 8.21 (preimage distributes over union). Let \(g : X \rightarrow Y \text{ and } B : J \Rightarrow \text{Set } Y \) be an indexed collection of subsets of \(Y \). Then

\[
\bigcup_{j \in J} \text{preimage } g (B_j) = \text{preimage } g \bigcup_{j \in J} B_j \tag{8.35}
\]

Theorem 8.22 (pre distributes over \langle \cdot, \cdot \rangle_{\text{map}}). Let \(g_1 : X \rightarrow Y_1 \text{ and } g_2 : X \rightarrow Y_2 \). Then

\[
\text{pre } (g_1, g_2)_{\text{map}} \equiv \langle \text{pre } g_1, \text{pre } g_2 \rangle_{\text{pre}}.
\]

Proof. Let \(\langle Y_1', p_1 \rangle := \text{pre } g_1, \langle Y_2', p_2 \rangle := \text{pre } g_2 \text{ and } B \subseteq Y_1 \times Y_2 \). Starting from the right-hand side of the equivalence,

\[
\text{ap}_{\text{pre}} \langle \text{pre } g_1, \text{pre } g_2 \rangle_{\text{pre}} B \\
\equiv \text{let } p := \lambda B. \bigcup_{(y_1, y_2) \in B} p_1 \{y_1\} \cap p_2 \{y_2\} \quad \text{Def of } \text{ap}_{\text{pre}}, \langle \cdot, \cdot \rangle_{\text{pre}}
\]

in \(p (B \cap (Y_1' \times Y_2')) \)
\[\equiv \bigcup_{\langle y_1, y_2 \rangle \in B \cap (Y'_1 \times Y'_2)} p_1 \{y_1\} \cap p_2 \{y_2\} \]
\[\equiv \bigcup_{\langle y_1, y_2 \rangle \in B \cap (Y'_1 \times Y'_2)} \text{preimage } g_1 \{y_1\} \cap \text{preimage } g_2 \{y_2\} \]
\[\equiv \bigcup_{\langle y_1, y_2 \rangle \in B \cap (Y'_1 \times Y'_2)} \text{preimage } \langle g_1, g_2 \rangle_{\text{map}} \{\{y_1\} \times \{y_2\}\} \]
\[\equiv \text{preimage } \langle g_1, g_2 \rangle_{\text{map}} (B \cap (Y'_1 \times Y'_2)) \]
\[\equiv \text{preimage } \langle g_1, g_2 \rangle_{\text{map}} B \]
\[\equiv \text{ap}_\text{pre} (\text{pre } \langle g_1, g_2 \rangle_{\text{map}}) B \]

We have an unmet proof obligation from using Lemma 8.15: that \(\text{range } \langle g_1, g_2 \rangle_{\text{map}} \subseteq Y'_1 \times Y'_2 \).

Let \(b \in \text{range } \langle g_1, g_2 \rangle_{\text{map}} \). By definition of \(\langle \cdot, \cdot \rangle_{\text{map}} \), there exists \(a \in \text{domain } g_1 \cap \text{domain } g_2 \) such that \(b = \langle g_1 a, g_2 a \rangle \). Thus, \(b \in Y'_1 \times Y'_2 \) if and only if \(g_1 a \in Y'_1 \) and \(g_2 a \in Y'_2 \).

By definition of \(\text{pre} \), \(Y'_1 = \text{range } g_1 \) and \(Y'_2 = \text{range } g_2 \). Because \(a \in \text{domain } g_1 \), \(g_1 a \in \text{range } g_1 = Y'_1 \). Because \(a \in \text{domain } g_2 \), \(g_2 a \in \text{range } g_2 = Y'_2 \). \(\square \)

8.5.3 Disjoint Union

Like proving \(\text{pre} \) distributes over composition, the proof that it distributes over disjoint union simply lifts a lemma about \(\text{preimage} \) to lazy preimage mappings.

Lemma 8.23 (preimage distributes over \((\cup_{\text{map}})\)). Let \(g_1 : X \to Y \) and \(g_2 : X \to Y \) have disjoint domains. For all \(B \subseteq Y \), \(\text{preimage } (g_1 \cup_{\text{map}} g_2) B = (\text{preimage } g_1 B) \cup (\text{preimage } g_2 B) \).

Theorem 8.24 (pre distributes over \((\cup_{\text{map}})\)). Let \(g_1 : X \to Y \) and \(g_2 : X \to Y \) have disjoint domains. Then \(\text{pre } (g_1 \cup_{\text{map}} g_2) \equiv (\text{pre } g_1) \cup_{\text{pre}} (\text{pre } g_2) \).

Proof. Let \(Y'_1 := \text{range } g_1 \), \(Y'_2 := \text{range } g_2 \) and \(B \subseteq Y \). Starting from the right-hand side of
the equivalence,

\[
\text{ap}_{\text{pre}} \left(\left(\text{pre } g_1 \right) \uplus_{\text{pre}} \left(\text{pre } g_2 \right) \right) B
\]

\[\equiv \text{let } p := \lambda B. \text{ap}_{\text{pre}} \left(\text{pre } g_1 \right) B \uplus \text{ap}_{\text{pre}} \left(\text{pre } g_2 \right) B \text{ in } p \left(B \cap (Y'_1 \cup Y'_2) \right)\]

\[\equiv \text{ap}_{\text{pre}} \left(\text{pre } g_1 \right) (B \cap (Y'_1 \cup Y'_2)) \uplus \text{ap}_{\text{pre}} \left(\text{pre } g_2 \right) (B \cap (Y'_1 \cup Y'_2)) \]

\[\equiv \text{preimage } g_1 (B \cap (Y'_1 \cup Y'_2)) \uplus \text{preimage } g_2 (B \cap (Y'_1 \cup Y'_2)) \text{ Theorem 8.16}\]

\[\equiv \text{preimage } (g_1 \uplus_{\text{map}} g_2) (B \cap (Y'_1 \cup Y'_2)) \text{ Lemma 8.23}\]

\[\equiv \text{preimage } (g_1 \uplus_{\text{map}} g_2) B \text{ Lemma 8.15}\]

\[\equiv \text{ap}_{\text{pre}} \left(\text{pre } (g_1 \uplus_{\text{map}} g_2) \right) B \text{ Theorem 8.16}\]

We have an unmet proof obligation from using Lemma 8.15: that \(\text{range } (g_1 \uplus_{\text{map}} g_2) \subseteq Y'_1 \cup Y'_2 \).

Let \(b \in \text{range } (g_1 \uplus_{\text{map}} g_2) \). By definition of \((\uplus_{\text{map}}) \), there exists \(a \in \text{domain } g_1 \uplus \text{domain } g_2 \) such that if \(a \in \text{domain } g_1 \) then \(b = g_1 a \) so \(b \in \text{range } g_1 = Y'_1 \), and if \(a \in \text{domain } g_2 \) then \(b = g_2 a \) so \(b \in \text{range } g_2 = Y'_2 \). Thus \(b \in Y'_1 \cup Y'_2 \). \(\square \)

8.6 Deriving the Preimage Arrow

Now we can define an arrow that runs expressions backwards on sets of outputs. Its computations should produce preimage mappings or be preimage mappings.

As with the mapping arrow and mappings, we cannot have \(X \xrightarrow{\text{pre}} Y ::= X \xrightarrow{\text{pre}} Y \): we run into trouble trying to define \(\text{arr}_{\text{pre}} \) because a preimage mapping needs an observable range. To get one, it is easiest to parameterize preimage computations on a \(\text{Set } X \); therefore the \textit{preimage arrow} type constructor is

\[
X \xleftarrow{\text{pre}} Y ::= \text{Set } X \Rightarrow \left(X \xrightarrow{\text{pre}} Y \right) \]

(8.38)

or \(\text{Set } X \Rightarrow \langle \text{Set } Y, \text{Set } Y \Rightarrow \text{Set } X \rangle \). To deconstruct the type, a preimage arrow computation computes a range first, and returns the range and a lambda that computes preimages.
Figure 8.6: Comparison of arrows used as target categories. Computations \(f : X \rightarrow \bot Y \) may return an error value \(\bot \). Computations \(g : X \rightarrow_{\text{map}} Y \) produce partial mappings on a given \(A \subseteq X \), leaving out inputs for which \(f \) returns \(\bot \). Computations \(h : X \rightarrow_{\text{pre}} Y \) produce lazy preimage mappings; i.e. \(h A \) computes preimages under \(g A \).

Figure 8.6 illustrates this as a circuit diagram.

To use Theorem 8.6, we need to define correctness using a lift from the mapping arrow to the preimage arrow. A simple candidate with the right type is

\[
\text{lift}_{\text{pre}} : (X \rightarrow_{\text{map}} Y) \Rightarrow (X \rightarrow_{\text{pre}} Y)
\]

\[
\text{lift}_{\text{pre}} g A := \text{pre} (g A)
\]

By definition of \(\text{lift}_{\text{pre}} \) and Theorem 8.16, for all \(g : X \rightarrow_{\text{map}} Y \), and \(A \subseteq X \) and \(B \subseteq Y \),

\[
\text{ap}_{\text{pre}} (\text{lift}_{\text{pre}} g A) B \equiv \text{ap}_{\text{pre}} (\text{pre} (g A)) B
\]

\[
\equiv \text{preimage} (g A) B
\]

Thus, lifted mapping arrow computations correctly compute preimages under restricted mappings, exactly as we should expect them to.

To derive the preimage arrow’s combinators in a way that makes \(\text{lift}_{\text{pre}} \) a homomorphism, we need preimage arrow equivalence to mean “computes the same preimages.”

Definition 8.25 (preimage arrow equivalence). *Two computations \(h_1 : X \rightarrow_{\text{pre}} Y \) and \(h_2 : X \rightarrow_{\text{pre}} Y \) are equivalent, or \(h_1 \equiv h_2 \), when \(h_1 A \equiv h_2 A \) for all \(A \subseteq X \).*

As with \(\text{arr}_{\text{map}} \), defining \(\text{arr}_{\text{pre}} \) as a composition meets (8.8). The remainder of this section derives \((\&\&\&_{\text{pre}})\), \((\gg\gg\gg_{\text{pre}})\), \(\text{ifte}_{\text{pre}}\) and \(\text{lazy}_{\text{pre}}\) from mapping arrow combinators, in a way that ensures \(\text{lift}_{\text{pre}} \) is an arrow homomorphism from the mapping arrow to the preimage arrow.
\[
\begin{align*}
X \prearrow Y &:= \text{Set } X \Rightarrow (X \prearrow Y) \\
\text{arr}_\prearrow : (X \Rightarrow Y) &\Rightarrow (X \prearrow Y) \\
\text{arr}_\prearrow &:= \text{lift}_\prearrow \circ \text{arr}_\map \\
(\bowtie\prearrow) : (X \prearrow Y) &\Rightarrow (Y \prearrow Z) \\
(h_1 \bowtie\prearrow h_2) A &:= \text{let } h'_1 := h_1 A \\
&\quad \quad h'_2 := h_2 (\text{range}_\prearrow h'_1) \\
&\quad \quad \text{in } h'_2 \circ_{\text{pre}} h'_1 \\
(\bowtie\bowtie\prearrow) : (X \prearrow Y) &\Rightarrow (X \prearrow Y \times Z) \\
(h_1 \bowtie\bowtie\prearrow h_2) A &:= (h_1 A, h_2 A)_{\prearrow} \\
\text{ifte}_\prearrow : (X \prearrow \text{Bool}) &\Rightarrow (X \prearrow Y) \Rightarrow (X \prearrow Y) \Rightarrow (X \prearrow Y) \\
\text{ifte}_\prearrow h_1 h_2 h_3 A &:= \text{let } h'_1 := h_1 A \\
&\quad \quad h'_2 := h_2 (\text{ap}_\prearrow h'_1 \{\text{true}\}) \\
&\quad \quad h'_3 := h_3 (\text{ap}_\prearrow h'_1 \{\text{false}\}) \\
&\quad \quad \text{in } h'_2 \top_{\prearrow} h'_3 \\
\text{lzy}_\prearrow : (1 \Rightarrow (X \prearrow Y)) &\Rightarrow (X \prearrow Y) \\
\text{lzy}_\prearrow h A &:= \text{if } (A = \emptyset) \text{ then } (\prearrow \emptyset) (h 0 A) \\
\text{lift}_\prearrow : (X \prearrow \text{map} Y) &\Rightarrow (X \prearrow Y) \\
\text{lift}_\prearrow g A &:= \text{pre } (g A) \\
\end{align*}
\]

Figure 8.7: Preimage arrow definitions.

Figure 8.7 contains the resulting definitions.

8.6.1 Composition

Starting with the left-hand side of (8.9),

\[
\begin{align*}
\text{ap}_\prearrow (\text{lift}_\prearrow (g_1 \bowtie\map g_2)) A) C \\
&\equiv \text{let } g'_1 := g_1 A \\
&\quad \quad g'_2 := g_2 (\text{range } g'_1) \\
&\quad \quad \text{in } \text{ap}_\prearrow (\text{pre } (g'_2 \circ_{\text{map}} g'_1)) C \\
&\equiv \text{let } g'_1 := g_1 A \\
&\quad \quad g'_2 := g_2 (\text{range } g'_1) \\
&\quad \quad \text{in } \text{ap}_\prearrow ((\text{pre } g'_1) \circ_{\text{pre}} (\text{pre } g'_2)) C \\
&\equiv \text{let } h_1 := \text{lift}_\prearrow g_1 A \\
&\quad \quad h_2 := \text{lift}_\prearrow g_2 (\text{range}_\prearrow h_1) \\
&\quad \quad \text{in } \text{ap}_\prearrow (h_2 \circ_{\text{pre}} h_1) C
\end{align*}
\]

Def of \text{lift}_\prearrow, \text{\bowtie\map}

Theorem 8.19

Rewrite with \text{lift}_\prearrow

Substituting \(h_1\) for \(\text{lift}_\prearrow g_1\) and \(h_2\) for \(\text{lift}_\prearrow g_2\), and removing the application of \text{ap}_\prearrow from both sides of the equivalence gives a definition of \(\bowtie\bowtie\prearrow\) (Figure 8.7) for which (8.9) holds.
8.6.2 Pairing

Starting with the left-hand side of (8.10),

\[
ap_{\text{pre}} (\text{lift}_{\text{pre}} (g_1 \ \text{\\&} \ \text{\\&} \ \text{map} \ g_2) \ A) \ B
\]

\[
\equiv \ ap_{\text{pre}} (\text{pre} (g_1 A, g_2 A)_{\text{map}}) \ B \quad \text{Def of lift}_{\text{pre}}, (\\& \ \text{\\&} \ \text{map})
\]

\[
\equiv \ ap_{\text{pre}} (\text{pre} (g_1 A), \text{pre} (g_2 A))_{\text{pre}} \ B \quad \text{Theorem 8.22}
\]

\[
\equiv \ ap_{\text{pre}} (\text{lift}_{\text{pre}} g_1 A, \text{lift}_{\text{pre}} g_2 A)_{\text{pre}} \ B \quad \text{Rewrite with lift}_{\text{pre}}
\]

Substituting \(h_1\) for \(\text{lift}_{\text{pre}} g_1\) and \(h_2\) for \(\text{lift}_{\text{pre}} g_2\), and removing the application of \(ap_{\text{pre}}\) from both sides of the equivalence gives a definition of \(\\& \ \text{\\&} \ \text{pre}\) (Figure 8.7) for which (8.10) holds.

8.6.3 Conditional

Starting with the left-hand side of (8.11),

\[
ap_{\text{pre}} (\text{lift}_{\text{pre}} (\text{ifte}_{\text{map}} g_1 g_2 g_3) \ A) \ B
\]

\[
\equiv \ \text{let} \ g'_1 := g_1 A \\
\quad g'_2 := g_2 (\text{preimage} g'_1 \ \{\text{true}\}) \\
\quad g'_3 := g_3 (\text{preimage} g'_1 \ \{\text{false}\}) \\
\quad \text{in} \ ap_{\text{pre}} (\text{pre} (g'_2 \ \text{\\or} \ \text{pre} (g'_3))) \ B
\]

\[
\equiv \ \text{let} \ g'_1 := g_1 A \\
\quad g'_2 := g_2 (\text{preimage} g'_1 \ \{\text{true}\}) \\
\quad g'_3 := g_3 (\text{preimage} g'_1 \ \{\text{false}\}) \\
\quad \text{in} \ ap_{\text{pre}} ((\text{pre} g'_2) \ \text{\\or} \ \text{pre} (\text{pre} g'_3)) \ B
\]

\[
\equiv \ \text{let} \ g'_1 := g_1 A \\
\quad g'_2 := g_2 (ap_{\text{pre}} (\text{pre} g'_1) \ \{\text{true}\}) \\
\quad g'_3 := g_3 (ap_{\text{pre}} (\text{pre} g'_1) \ \{\text{false}\}) \\
\quad \text{in} \ ap_{\text{pre}} ((\text{pre} g'_2) \ \text{\\or} \ \text{pre} (\text{pre} g'_3)) \ B
\]

\[
\equiv \ \text{let} \ h_1 := \text{lift}_{\text{pre}} g_1 A \\
\quad h_2 := \text{lift}_{\text{pre}} g_2 (ap_{\text{pre}} h_1 \ \{\text{true}\}) \\
\quad h_3 := \text{lift}_{\text{pre}} g_3 (ap_{\text{pre}} h_1 \ \{\text{false}\}) \\
\quad \text{in} \ ap_{\text{pre}} (h_2 \ \text{\\or} \ \text{pre} h_3) \ B
\]

Rewrite with lift}_{\text{pre}}
Substituting \(h_1, h_2 \) and \(h_3 \) for \(\text{lift}_{\text{pre}} g_1, \text{lift}_{\text{pre}} g_2 \) and \(\text{lift}_{\text{pre}} g_3 \), and removing the application of \(\text{ap}_{\text{pre}} \) from both sides of the equivalence gives a definition of \(\text{ifte}_{\text{pre}} \) (Figure 8.7) for which (8.11) holds.

8.6.4 Laziness

Starting with the left-hand side of (8.12),

\[
\text{ap}_{\text{pre}} \left(\text{lift}_{\text{pre}} \left(\text{lazy}_{\text{map}} g \right) A \right) B
\]

\[
\equiv \begin{array}{l}
\text{let } g' := \begin{cases}
(A = \emptyset) & \emptyset \\
(A \neq \emptyset) & (g 0 A)
\end{cases} \\
\text{in } \text{ap}_{\text{pre}} (\text{pre } g') B
\end{array}
\tag{8.44}
\]

Def of \(\text{lift}_{\text{pre}}, \text{lazy}_{\text{map}} \)

\[
\equiv \begin{array}{l}
\text{let } h := \begin{cases}
(A = \emptyset) & (\text{pre } \emptyset) (\text{pre } (g 0 A)) \\
(A \neq \emptyset) & (\text{lift}_{\text{pre}} (g 0 A))
\end{cases} \\
\text{in } \text{ap}_{\text{pre}} h B
\end{array}
\]

Dist \(\text{pre} \) over \(\text{if} \)

\[
\equiv \begin{array}{l}
\text{let } h := \begin{cases}
(A = \emptyset) & (\text{pre } \emptyset) (\text{lift}_{\text{pre}} (g 0 A)) \\
(A \neq \emptyset) & (\text{lift}_{\text{pre}} (g 0 A))
\end{cases} \\
\text{in } \text{ap}_{\text{pre}} h B
\end{array}
\]

Rewrite with \(\text{lift}_{\text{pre}} \)

Substituting \(h 0 \) for \(\text{lift}_{\text{pre}} (g 0) \) and removing the application of \(\text{ap}_{\text{pre}} \) from both sides of the equivalence gives a definition for \(\text{lazy}_{\text{pre}} \) (Figure 8.7) for which (8.12) holds.

8.6.5 Correctness

Theorem 8.26 (preimage arrow correctness). \(\text{lift}_{\text{pre}} \) is a homomorphism.

Proof. By construction. \(\square \)

Corollary 8.27 (semantic correctness). For all \(e \), \(\llbracket e \rrbracket_{\text{pre}} \equiv \text{lift}_{\text{pre}} \llbracket e \rrbracket_{\text{map}} \).

As with the mapping arrow, preimage arrow computations can be unruly. We would like to assume that each \(h : X \rightsquigarrow_{\text{pre}} Y \) acts as if it computes preimages under restricted mappings. The following equivalent property is easier to state, and makes proving the arrow laws simple.

Definition 8.28 (preimage arrow law). Let \(h : X \rightsquigarrow_{\text{pre}} Y \). If there exists a \(g : X \rightsquigarrow_{\text{map}} Y \) such that \(h \equiv \text{lift}_{\text{pre}} g \), then \(h \) obeys the **preimage arrow law**.
By homomorphism of \(\mathsf{lift}_{\mathsf{pre}} \), preimage arrow combinators preserve this law. It is therefore safe to assume that the preimage arrow law holds for all \(h : X \leadsto_{\mathsf{pre}} Y \).

Theorem 8.29. \(\mathsf{lift}_{\mathsf{pre}} \) is an arrow epimorphism.

Proof. Follows from Theorem 8.26 and restriction of \(X \leadsto_{\mathsf{pre}} Y \) to instances for which the preimage arrow law (Definition 8.28) holds. \(\square \)

Corollary 8.30. \(\mathsf{arr}_{\mathsf{pre}}, (&&)_p, (\gg\gg)_p, \mathsf{ifte}_{\mathsf{pre}} \) and \(\mathsf{lazy}_{\mathsf{pre}} \) define an arrow.

8.7 Preimages Under Partial, Probabilistic Functions

We have defined everything on the top of our roadmap:

\[
\begin{align*}
X \leadsto_{\perp} Y & \xrightarrow{\mathsf{lift}_{\mathsf{map}}} X \leadsto_{\mathsf{map}} Y \xrightarrow{\mathsf{lift}_{\mathsf{pre}}} X \leadsto_{\mathsf{pre}} Y \\
X \leadsto_{\perp} Y & \xrightarrow{\mathsf{lift}_{\mathsf{map}}} X \leadsto_{\mathsf{map}} Y \xrightarrow{\mathsf{lift}_{\mathsf{pre}}} X \leadsto_{\mathsf{pre}} Y
\end{align*}
\]

(8.45)

and proved that \(\mathsf{lift}_{\mathsf{map}} \) and \(\mathsf{lift}_{\mathsf{pre}} \) are homomorphisms. At this point, we can interpret an expression \(e \) in three ways using the same semantic function for first-order programs:

1. As \(\llbracket e \rrbracket_{\perp} : X \leadsto_{\perp} Y \), an intensional function that may raise errors.
2. As \(\llbracket e \rrbracket_{\mathsf{map}} : X \leadsto_{\mathsf{map}} Y \), which produces mappings, or extensional functions, on a restricted domain (correct by homomorphism of \(\mathsf{lift}_{\mathsf{map}} \)).
3. As \(\llbracket e \rrbracket_{\mathsf{pre}} : X \leadsto_{\mathsf{pre}} Y \), which computes preimages under mappings produced by \(\llbracket e \rrbracket_{\mathsf{map}} \) (correct by homomorphism of \(\mathsf{lift}_{\mathsf{pre}} \)).

These interpretations have two shortcomings:

1. They do not pass an implicit random source through \(e \)'s subexpressions.
2. Using them requires knowing the set of inputs on which \(e \) terminates. If \(\llbracket e \rrbracket_{\perp} \) does not terminate on just one input in \(A \subseteq X \), neither \(\llbracket e \rrbracket_{\mathsf{map}} A \) nor \(\llbracket e \rrbracket_{\mathsf{pre}} A \) terminates.

In this section, we define the arrows on the bottom of the roadmap (8.45) by transforming the arrows on the top into arrows that pass an implicit random source and always terminate.
correctness again comes down to proving that the lifts between them are homomorphisms, though guaranteed termination needs special treatment.

8.7.1 Motivation

Probabilistic functions that may not terminate, but do so with probability 1, are common. For example, suppose \texttt{random} retrieves numbers in \([0, 1]\) from an implicit random source. The following probabilistic function defines the well-known geometric distribution by counting the number of times \(\texttt{random} < p\):

\[
\text{geometric } p := \text{if } (\text{random} < p) 0 (1 + \text{geometric } p) \tag{8.46}
\]

For any \(p > 0\), \texttt{geometric } \(p\) may not terminate, but the probability of never taking the “else” branch is \((1 - p) \cdot (1 - p) \cdot (1 - p) \cdots = 0\). Thus, \texttt{geometric } \(p\) terminates with probability 1.

Suppose we interpret \texttt{geometric } \(p\) as \(h : \Omega \xrightarrow{\text{pre}} \mathbb{N}\), a preimage arrow computation from random sources \(\omega \in \Omega\) to naturals, and we have a probability measure \(P : \text{Set } \Omega \to [0, 1]\). The probability of \(\mathbb{N} \subseteq \mathbb{N}\) is then \(P(\text{ap}_{\text{pre}}(h \ \Omega) \ \mathbb{N})\). To compute this, we must

- Ensure \(\text{ap}_{\text{pre}}(h \ \Omega) \ \mathbb{N}\) terminates.
- Ensure each \(\omega \in \Omega\) contains enough random numbers.
- Determine how \texttt{random} indexes numbers in \(\omega\).

Ensuring \(\text{ap}_{\text{pre}}(h \ \Omega) \ \mathbb{N}\) terminates is the most difficult, but doing the other two will provide structure that makes it much easier.

8.7.2 Threading and Indexing

To ensure random sources contain enough numbers, they should be infinite.

Typically, to thread a random source \(\omega \in \Omega\) through computations, \(\omega\) is made an infinite stream. Each computation receives and returns an \(\omega\). The interpretation of \texttt{random} as a computation takes \(\omega\)’s head and returns its tail. Combinators pass \(\omega\) unchanged to one subcomputation, and pass the resulting \(\omega’\) unchanged to the next. This is typically done
with a monad, and it imposes a total order on evaluation.

A little-used alternative that imposes only a partial order makes \(\omega \) an infinite binary tree. Each computation receives an \(\omega \) but does not return one. The interpretation of \texttt{random} as a computation simply returns \(\omega \)'s root value. Combinators ignore the root, split \(\omega \) into a left subtree \(\omega_{\text{left}} \) and a right subtree \(\omega_{\text{right}} \), and pass each to their subcomputations.

Arrows can thread a stream or a tree in the same manner, but the resulting combinators have large definitions, and are conceptually difficult and hard to manipulate. Fortunately, it is relatively easy to assign each arrow computation a unique index into a tree-shaped random source and pass the random source unchanged. To do this, we need an indexing scheme.

Definition 8.31 (binary indexing scheme). Let \(J \) be an index set, \(j_0 \in J \) a distinguished element, and \(\text{left} : J \Rightarrow J \) and \(\text{right} : J \Rightarrow J \) be total, injective functions. If for all \(j \in J \), \(j = \text{next} j_0 \) for some finite composition \(\text{next} \) of \(\text{left} \) and \(\text{right} \), then \(J, j_0, \text{left} \) and \(\text{right} \) define a binary indexing scheme.

For example, let \(J \) be the set of lists of \{0, 1\}, \(j_0 := \langle \rangle \), and \(\text{left} j := \langle 0, j \rangle \) and \(\text{right} j := \langle 1, j \rangle \). Alternatively, let \(J \) be the set of dyadic rationals in \((0, 1)\) (i.e. those with power-of-two denominators), \(j_0 := \frac{1}{2} \) and

\[
\text{left} \ (p/q) := (p - \frac{1}{2}) / q
\]

\[
\text{right} \ (p/q) := (p + \frac{1}{2}) / q
\]

With this alternative, left-to-right evaluation order can be made to correspond with the natural order \((<)\) over \(J \).

In any case, \(J \) is countable, and can be thought of as a set of indexes into an infinite binary tree. Values of type \(J \rightarrow A \) encode such trees of values in \(A \) as total mappings (i.e. infinite vectors).

8.7.3 Applicative, Associative Store Transformer

We thread infinite binary trees through bottom, mapping, and preimage arrow computations by defining an **arrow transformer**: a type constructor that receives and produces an
Figure 8.8: AStore (associative store) arrow transformer definitions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta^a)</td>
<td>((x \sim^a y) \Rightarrow (x \sim^a y))</td>
<td>(\eta^a f j := \text{arr}_a \text{snd} \gg\gg f)</td>
</tr>
<tr>
<td>(\text{lazy}^a)</td>
<td>((1 \Rightarrow (x \sim^a y)) \Rightarrow (x \sim^a y))</td>
<td>(\text{lazy}^a k j := \text{lazy}_a \lambda 0. k 0 j)</td>
</tr>
<tr>
<td>(\text{ifte}^a)</td>
<td>((x \sim^a \text{Bool}) \Rightarrow (x \sim^a y) \Rightarrow (x \sim^a y) \Rightarrow (x \sim^a y))</td>
<td>(\text{ifte}^a_{k_1 k_2 k_3} j := \text{ifte}_a (k_1 (\text{left } j)) (k_2 (\text{left (right } j))) (k_3 (\text{right (right } j))))</td>
</tr>
<tr>
<td>(\gg\gg^a)</td>
<td>((x \sim^a y) \Rightarrow (x \sim^a z))</td>
<td>((\gg\gg^a f) (x \sim^a y_1) \Rightarrow (x \sim^a y_2) \Rightarrow (x \sim^a (y_1, y_2)))</td>
</tr>
<tr>
<td>(\text{arr}^a)</td>
<td>((x \Rightarrow y) \Rightarrow (x \Rightarrow a \Rightarrow y))</td>
<td>(\text{arr}_a := \eta^a \circ \text{arr}_a)</td>
</tr>
</tbody>
</table>

8.7.4 Partial, Probabilistic Programs

To interpret probabilistic programs, we put an infinite random tree in the store.

Definition 8.32 (random source). Let \(\Omega := J \rightarrow [0, 1] \). A **random source** is any infinite
An $\omega \in \Omega$ is an infinite binary tree of random values encoded as a total mapping from tree indexes in J to real numbers in $[0, 1]$.

Figure 8.9 illustrates a single $\omega \in \Omega$.

To interpret partial programs, we need to ensure termination. One ultimately implementable way is to have the store dictate which branch of each conditional, if any, is taken.

Definition 8.33 (branch trace). A branch trace is any $t : J \rightarrow \text{Bool}_\bot$ such that $t \ j = \text{true}$ or $t \ j = \text{false}$ for no more than finitely many $j \in J$.

Let $T \subset J \rightarrow \text{Bool}_\bot$ be the largest set of branch traces.

Now $X \rightsquigarrow_{a*} Y ::= \text{AStore} \ (\Omega \times T) \ (X \rightsquigarrow_a Y)$ is an AStore arrow type whose computations thread both random stores and branch traces.

For probabilistic programs, we define a combinator random_{a*} that returns the number at its tree index in the random source, and extend $[_]_{a*}$ for arrows a^* for which random_{a*} is
defined:

\[
\text{random}_{a^*} : X \rightsquigarrow [0, 1]
\]

\[
\text{random}_{a^*} j := \text{arr}_a (\text{fst} \ggg \text{fst} \ggg \pi j)
\]

(8.50)

\[
\lceil \text{random} \rceil_{a^*} \equiv \text{random}_{a^*}
\]

Here, \(\pi j\) projects its argument onto the argument's jth coordinate, and is defined by

\[
\pi : J \Rightarrow (J \rightarrow X) \Rightarrow X
\]

(8.51)

\[
\pi j f := f j
\]

So \(\pi j\) is analogous to \(\text{fst}\) and \(\text{snd}\) for pairs, but for vectors at index \(j\).

For partial programs, we define a combinator that reads branch traces, and an if-then-else combinator that ensures its test expression agrees with the trace:

\[
\text{branch}_{a^*} : X \rightsquigarrow a^* \text{Bool}
\]

\[
\text{branch}_{a^*} j := \text{arr}_a (\text{fst} \ggg \text{snd} \ggg \pi j)
\]

(8.52)

\[
\text{ifte}_{a^*} : (x \rightsquigarrow a^* \text{Bool}) \Rightarrow (x \rightsquigarrow a^* y) \Rightarrow (x \rightsquigarrow a^* y)
\]

\[
\text{ifte}_{a^*} k_1 k_2 k_3 j := \text{ifte}_a ((k_1 (\text{left } j) \& \& k_2 (\text{right } j)) \ggg \text{arr}_a \text{agrees})
\]

(8.53)

where \(\text{agrees} \langle b_1, b_2 \rangle := \text{if} (b_1 = b_2) b_1 \perp\). Thus, if the branch trace does not agree with the test expression, it returns an error. We define a new semantic function \(\llbracket \cdot \rrbracket_{a^*}\) by replacing the if rule in \(\llbracket \cdot \rrbracket_{a^*}\):

\[
\llbracket \text{if } e_c e_t e_f \rrbracket_{a^*} \equiv \text{ifte}_{a^*} \llbracket e_c \rrbracket_{a^*} \llbracket \text{lazy } e_t \rrbracket_{a^*} \llbracket \text{lazy } e_f \rrbracket_{a^*}
\]

To have an AStore computation \(k\) compute something meaningful, we must either run \(k\) on every branch trace in \(T\) and filter out \(\perp\), or somehow find inputs \(\langle \omega, t, a \rangle\) for which \(\text{agrees}\) never returns \(\perp\). Preimage AStore arrows do the former by first computing an image, and the latter by computing preimages of sets that cannot contain \(\perp\).
Definition 8.34 (terminating, probabilistic arrows). Define

\[
X \hookrightarrow_{\bot} Y ::= \text{AStore} (\Omega \times T) (X \hookrightarrow_{\bot} Y) \\
X \hookrightarrow_{\text{map}} Y ::= \text{AStore} (\Omega \times T) (X \hookrightarrow_{\text{map}} Y) \\
X \hookrightarrow_{\text{pre}} Y ::= \text{AStore} (\Omega \times T) (X \hookrightarrow_{\text{pre}} Y)
\]

as the type constructors for the bottom*, mapping* and preimage* arrows.

8.7.5 Correctness

We have two arrow lifts to prove homomorphic: one from pure computations to effectful (i.e. from those that do not access the store to those that do), and one from effectful computations to effectful. For both, we need AStore arrow equivalence to be more extensional.

Definition 8.35 (AStore arrow equivalence). Two AStore arrow computations \(k_1\) and \(k_2\) are equivalent, or \(k_1 \equiv k_2\), when \(k_1 j \equiv k_2 j\) for all \(j \in J\).

Pure Expressions

Proving \(\eta_a\) is a homomorphism proves \([\cdot]_a\) correctly interprets pure expressions. Because AStore accepts any arrow type \(x \hookrightarrow a y\), we can do so using only the arrow laws. From here on, we assume every AStore arrow’s base type’s combinators obey the arrow laws listed in Section 8.2.1.

Theorem 8.36 (pure AStore arrow correctness). \(\eta_a\) is a homomorphism.

Proof. Defining \(\text{arr}_a\) as a composition clearly meets the first homomorphism law (8.8). For homomorphism laws (8.9)–(8.11), start from the right side, expand definitions, and use arrow laws (8.14)–(8.16) to factor out \(\text{arr}_a\) snd.

For (8.12), additionally \(\beta\)-reduce within the outer thunk, then use the lazy distributive law (8.17) to extract \(\text{arr}_a\) snd. \(\square\)

Corollary 8.37 (pure semantic correctness). For all pure \(e\), \([e]_a\equiv \eta_a\ [e]_a\).
Effectful Expressions

To prove all interpretations of effectful expressions correct, we need a lift between AStore arrows. Let $x \Rightarrow_a y := \text{AStore} s (x \Rightarrow_a y)$ and $x \Rightarrow_{b^*} y := \text{AStore} s (x \Rightarrow_{b^*} y)$. Define

$$\text{lift}_{b^*} : (x \Rightarrow_{a^*} y) \Rightarrow (x \Rightarrow_{b^*} y)$$

(8.55)

$$\text{lift}_{b^*} f j := \text{lift}_b (f j)$$

where $\text{lift}_b : (x \Rightarrow_a y) \Rightarrow (x \Rightarrow_b y)$. A commutative diagram shows the relationships more clearly:

$$\begin{array}{c}
x \Rightarrow_{a^*} y \xrightarrow{\text{lift}_{b^*}} x \Rightarrow_{b^*} y \\
\eta_a \downarrow \quad \eta_b \downarrow \\
x \Rightarrow_{a^*} y \xrightarrow{\text{lift}_{b^*}} x \Rightarrow_{b^*} y
\end{array}$$

(8.56)

At minimum, we should expect to produce equivalent $x \Rightarrow_{b^*} y$ computations from $x \Rightarrow_{a^*} y$ computations whether a lift or an η is done first.

Theorem 8.38 (natural transformation). If lift_b is an arrow homomorphism, then (8.56) commutes.

Proof. Expand definitions and apply homomorphism laws (8.9) and (8.8) for lift_b:

$$\begin{align*}
\text{lift}_{b^*} (\eta_a^* f) & \equiv \lambda j. \text{lift}_b (\text{arr}_a \text{snd} \ggg_a f) \\ & \equiv \lambda j. \text{lift}_b (\text{arr}_a \text{snd}) \ggg_b \text{lift}_b f \\ & \equiv \lambda j. \text{arr}_b \text{snd} \ggg_b \text{lift}_b f \\ & \equiv \eta_{b^*} (\text{lift}_b f)
\end{align*}$$

(8.57)

Theorem 8.39 (effectful AStore arrow correctness). If lift_b is an arrow homomorphism from a to b, then lift_{b^*} is an arrow homomorphism from a^* to b^*.

Proof. For each homomorphism property (8.8)–(8.12), expand the definitions of lift_{b^*} and the combinator, distribute lift_b, rewrite in terms of lift_{b^*}, and rewrite using the definition of the
combinator. For example, for distribution over pairing:

\[
\text{lift}_{b^*} \cdot (k_1 \& \& \& a^* \cdot k_2) \ j \equiv \text{lift}_b \cdot ((k_1 \& \& \& a^* \cdot k_2) \ j) \tag{8.58}
\]

\[
\equiv \text{lift}_b \cdot (k_1 \text{(left j)} \& \& \& a \cdot k_2 \text{(right j)})
\]

\[
\equiv (\text{lift}_{b^*} \cdot k_1) \text{(left j)} \& \& \& b \text{lift}_{b^*} \cdot k_2 \text{(right j)}
\]

\[
\equiv (\text{lift}_{b^*} \cdot k_1 \& \& \& \text{lift}_{b^*} \cdot k_2) \ j
\]

The remaining properties are similar, though distributing \(\text{lift}_{b^*}\) over \(\text{lazy}_{a^*}\) requires defining an extra thunk in the last step.

\[\square\]

Corollary 8.40 (effectful semantic correctness). If \(\text{lift}_b\) is an arrow homomorphism, then for all expressions \(e\), \([e]_{b^*} \equiv \text{lift}_{b^*} \cdot [e]_{a^*}\) and \([e]_{\downarrow b^*} \equiv \text{lift}_{b^*} \cdot [e]_{\downarrow a^*}\).

Corollary 8.41 (mapping* and preimage* arrow correctness). The following diagram commutes:

\[
\begin{array}{ccc}
X \xrightarrow{\eta_{\downarrow \star}} Y & \xrightarrow{\eta_{\downarrow \star}} & X \\
\eta \downarrow & \downarrow \eta_{\downarrow \star} & \downarrow \eta_{\downarrow \star} \\
X \xrightarrow{\eta_{\downarrow \star}} Y & \xrightarrow{\eta_{\downarrow \star}} & X \\
\eta \downarrow & \downarrow \eta_{\downarrow \star} & \downarrow \eta_{\downarrow \star}
\end{array}
\]

Further, \(\text{lift}_{\text{map}^*}\) and \(\text{lift}_{\text{pre}^*}\) are arrow homomorphisms.

As with the correctness of interpretations using the mapping and preimage arrows, the correctness of interpretations using the mapping* and preimage* arrows follows from \(\text{lift}_{\text{map}^*}\) and \(\text{lift}_{\text{pre}^*}\) being arrow homomorphisms, and Theorem 8.6.

Corollary 8.42 (effectful semantic correctness). For all expressions \(e\),

\[
[e]_{\text{pre}^*} \equiv \text{lift}_{\text{pre}^*} \cdot (\text{lift}_{\text{map}^*} \cdot [e]_{\downarrow \star}) \tag{8.60}
\]

\[
[e]_{\downarrow \text{pre}^*} \equiv \text{lift}_{\text{pre}^*} \cdot (\text{lift}_{\text{map}^*} \cdot [e]_{\downarrow \star})
\]

Unfortunately, because a statement such as \(k_1 \equiv k_2\) implies \(k_1\) terminates if and only if \(k_2\) terminates, we cannot use the same tactics to prove an asymmetric statement such as
“k_2 terminates with the correct answer whenever k_1 terminates; otherwise returns $⊥$.” For these kinds of termination theorems, we need to reason about the interaction of programs with their supplied branch traces.

8.7.6 Termination

Here, we relate $[e]_{\overline{a}}^k$, computations, which are interpreted using ifte_{\overline{a}} and should always terminate, with $[e]_{\overline{a}}$ computations, which are interpreted using ifte_{\overline{a}} and may not terminate. To do so, we need to find the largest domain on which $[e]_{\overline{a}}^k$ and $[e]_{\overline{a}}$ should agree.

Definition 8.43 (maximal domain). A computation’s maximal domain is the largest A^* for which

- For $f : X \triangleleft Y$, domain $\bot f A^* = A^*$.
- For $g : X \hookrightarrow Y$, domain $(g A^*) = A^*$.
- For $h : X \mapsto Y$, domainpre $(h A^*) = A^*$.

The maximal domain of $k : X \leadsto Y$ is that of $k j_0$.

Because the above statements imply termination, A^* is a subset of the largest domain for which the computations terminate. It is not too hard to show (but is a bit tedious) that lifting computations preserves the maximal domain; e.g. the maximal domain of lift_map f is the same as f’s, and the maximal domain of lift_pre g is the same as g’s.

To ensure maximal domains exist, we need the domain operations above to have certain properties. For the mapping arrow, we must first make the intuition that computations “act as if they return restricted mappings” more precise. First, mapping restriction is defined by

$$\text{\text{restrict}} : (X \rightarrow Y) \Rightarrow \text{Set } X \Rightarrow (X \rightarrow Y)$$

$$\text{\text{restrict}} g A := \lambda a \in (A \cap \text{domain } g). g a$$ \hspace{1cm} (8.61)

Theorem 8.44 (mapping arrow restriction). Let $g : X \mapsto Y$, and $A^\overline{y} \subseteq X$ be the largest for which $g A^\overline{y}$ terminates. For all $A \subseteq A^\overline{y}$, $g A = \text{\text{restrict}} (g A^\overline{y}) A$.
Proof. By the mapping arrow law (Definition 8.12) there is an \(f : X \rightarrow Y \) such that \(g \equiv \text{lift}_{\text{map}} f \).

Thus,

\[
\text{restrict } (g A) \equiv \text{restrict } (\text{lift}_{\text{map}} f A) A \quad (8.62)
\]

\[
\equiv \text{restrict } (\{ \langle a, b \rangle \in \text{mapping } f A \mid b \neq \bot \}) A
\]

\[
\equiv \{ \langle a, b \rangle \in \text{mapping } f A \mid b \neq \bot \}
\]

\[
\equiv \text{lift}_{\text{map}} f A
\]

\[
\equiv g A
\]

Theorem 8.45 (domain closure operators). If \(f : X \rightarrow Y, g : X \rightarrow_{\text{map}} Y \) and \(h : X \rightarrow_{\text{pre}} Y \), then \(\text{domain}_{\bot} f, \text{domain} \circ g, \) and \(\text{domain}_{\text{pre}} \circ h \) are monotone, decreasing, and idempotent in the subdomains on which they terminate.

Proof. These properties follow from the same properties of selection, restriction, and of preimages of images.

Now we can relate \(\llbracket e \rrbracket_{\bot} \) computations to \(\llbracket e \rrbracket_{\bot} \) computations. First, for any input for which \(\llbracket e \rrbracket_{\bot} \) terminates, there should be a branch trace for which \(\llbracket e \rrbracket_{\bot} \) returns the correct output; it should otherwise return \(\bot \).

Theorem 8.46. Let \(f := \llbracket e \rrbracket_{\bot} : X \rightarrow_{\bot} Y \) with maximal domain \(A^* \), and \(f' := \llbracket e \rrbracket_{\bot} \). For all \(\langle \omega, t \rangle, a \in A^* \), there exists a \(T' \subseteq T \) such that

- If \(t' \in T' \) then \(f_j (\omega, t', a) = f (\omega, t, a) \).
- If \(t' \in T \setminus T' \) then \(f_j (\omega, t', a) = \bot \).

Proof. Define \(T' \) as the set of all \(t' \in J \rightarrow \text{Bool}_{\bot} \) such that \(t' j = z \) if the subcomputation with index \(j \) is an if whose test returns \(z \). Because \(f_j (\omega, t, a) \) terminates, \(t' j \neq \bot \) for at most finitely many \(j \), so each \(t' \in T \).

Let \(t' \in T' \). Because the test of every if subcomputation at index \(j \) agrees with \(t' j \) and \(f \) ignores branch traces, \(f_j (\omega, t', a) = f (\omega, t, a) \).

143
Let $t' \in T \setminus T'$. There exists an if subexpression with a test that does not agree with t'; therefore $f'_j a = \perp$.

Next, for any input for which $[e]_t$ does not terminate or returns \perp, $[e]^b_t$ should return \perp. Proving this is a little easier if we first identify subsets of J that correspond with finite prefixes of an infinite binary tree.

Definition 8.47 (index prefix/suffix). A finite $J' \subset J$ is an index prefix if $J' = \{j_0\}$ or, for some index prefix J'' and $j \in J''$, $J' = J'' \cup \{\text{left } j\}$ or $J' = J'' \cup \{\text{right } j\}$. The corresponding index suffix is $J \setminus J'$.

It is not hard to show that every index suffix is closed under left and right.

For a given $t \in T$, an index prefix J' serves as a convenient bounding set for the finitely many indexes j for which $t_j \neq \perp$. Applying left and/or right repeatedly to any $j \in J'$ eventually yields a $j' \in J \setminus J'$, for which $t_j = \perp$.

Theorem 8.48. Let $f := [e]_t : X \rightarrow^* Y$ with maximal domain A^*, and $f' := [e]^b_t$. For all $a \in ((\Omega \times T) \times X) \setminus A^*$, $f'_j a = \perp$.

Proof. Let $t := \text{snd } (\text{fst } a)$ be the branch trace element of a.

Suppose $f_j a$ terminates. If an if subcomputation’s test does not agree with t, then $f'_j a = \perp$. If every if’s test agrees, $f'_j a = f_j a = \perp$.

Suppose $f_j a$ does not terminate. The set of all indexes j for which $t_j \neq \perp$ is contained within an index prefix J'. By hypothesis, there is an if subcomputation at some index j' such that $j' \in J \setminus J'$. Because $t_j = \perp$, $f'_j a = \perp$.

Corollary 8.49. For all e, the maximal domain of $[e]^b_t$ is a subset of that of $[e]_t$.

Corollary 8.50. Let $f' := [e]^b_t : X \rightarrow^* Y$ with maximal domain A^*, and $f := [e]_t$. For all $a \in A^*$, $f'_j a = f_j a$.

144
Corollary 8.51 (correct computation everywhere). Let $\llbracket e \rrbracket_{\bot} : X \rightsquigarrow_{\bot} Y$ have maximal domain A^*, and $X' := (\Omega \times T) \times X$. For all $a \in X'$, $A \subseteq X'$ and $B \subseteq Y$,

$$
\llbracket e \rrbracket_{\bot} \downarrow \downarrow \downarrow j_0 a = \begin{cases}
(\llbracket e \rrbracket_{\bot} \downarrow \downarrow \downarrow j_0 a) \bot & \text{if } (a \in A^*) \\
\bot & \text{otherwise}
\end{cases}
$$

$$
\llbracket e \rrbracket_{\text{map}} \downarrow \downarrow \downarrow j_0 A = \llbracket e \rrbracket_{\text{map}} \downarrow \downarrow \downarrow j_0 (A \cap A^*)
$$

(8.63)

$$
ap_{\text{pre}} (\llbracket e \rrbracket_{\text{pre}} \downarrow \downarrow \downarrow j_0 A) B = ap_{\text{pre}} (\llbracket e \rrbracket_{\text{pre}} \downarrow \downarrow \downarrow j_0 (A \cap A^*)) B
$$

In other words, preimages computed using $\llbracket \cdot \rrbracket_{\text{pre}}$ always terminate, never include inputs that give rise to errors or nontermination, and are correct.

8.8 Output Probabilities and Measurability

Typically, for $g : \Omega \rightarrow Y$, the probability of $B \subseteq Y$ is $P (\text{preimage } g B)$, where $P : \text{Set } \Omega \rightarrow [0, 1]$ assigns probabilities to subsets of Ω.

A mapping* computation’s domain is $(\Omega \times T) \times X$, not Ω. We assume each $\omega \in \Omega$ is randomly chosen, but not each $t \in T$ nor each $x \in X$; therefore, neither T nor X should affect the probabilities of output sets. We clearly must measure projections of preimage sets, or $P (\text{image } (\text{fst} \gg \gg \gg \text{fst}) A)$ for preimage sets $A \subseteq (\Omega \times T) \times X$.

Not all preimage sets have sensible measures. Sets that do are called measurable. Computing preimages and projecting them onto Ω must preserve measurability.

Our main results are the best we could hope for. First, the interpretations of all expressions are measurable, regardless of nontermination.

Theorem 8.52. For all expressions e, $\llbracket e \rrbracket_{\text{map}}$ is measurable.

Second, projecting a program’s preimages onto Ω results in a measurable set.

Theorem 8.53. If $A \subseteq (\Omega \times T) \times \{\langle \rangle\}$ is measurable, then image $(\text{fst} \gg \gg \gg \text{fst}) A$ is measurable.

The proofs of these theorems are in Appendix A.
8.9 Approximating Semantics

If we were to confine preimage computation to finite sets, we could implement the preimage arrow directly. But we would like something that works efficiently on infinite sets, even if it means approximating. We focus on a specific method: approximating product sets with covering rectangles.

8.9.1 Implementable Lifts

We would like to be able to compute preimages of uncountable sets, such as real intervals—but preimage \((g \ A) \ B\) is uncomputable for most mappings \(g\) and uncountable sets \(A\) and \(B\) no matter how cleverly they are represented. Further, because \(\text{pre}, \text{lift}_{\text{pre}}\) and \(\text{arr}_{\text{pre}}\) are ultimately defined in terms of \(\text{preimage}\), we cannot implement them.

Fortunately, we need to apply \(\text{arr}_{\text{pre}}\) only to certain functions. Figure 8.1 (which defines \(\{_\}_a\)) lifts \(\text{id}\), \(\text{const} \ b\), \(\text{fst}\) and \(\text{snd}\). Section 8.7.4, which defines the combinators used to interpret partial, probabilistic programs, lifts \(\pi \ j\) and \(\text{agrees}\). Measurable functions made available as language primitives, such as arithmetic, must be lifted to the preimage arrow—though to maintain generality, we put off lifting arithmetic functions until Chapter 9.

Figure 8.10 gives explicit definitions for \(\text{arr}_{\text{pre}} \ \text{id}, \ \text{arr}_{\text{pre}} \ \text{fst}, \ \text{arr}_{\text{pre}} \ \text{snd}, \ \text{arr}_{\text{pre}} \ (\text{const} \ b)\) and

\[
\begin{align*}
\text{id}_{\text{pre}} \ A & := \langle A, \lambda B. B \rangle \\
\text{const}_{\text{pre}} \ b \ A & := \langle \{b\}, \lambda B. \text{if} (B = \emptyset) \emptyset A \rangle \\
\text{fst}_{\text{pre}} \ A & := \langle \text{proj}_1 A, \text{unproj}_1 A \rangle \\
\text{snd}_{\text{pre}} \ A & := \langle \text{proj}_2 A, \text{unproj}_2 A \rangle \\
\pi_{\text{pre}} \ j \ A & := \langle \text{proj} \ j A, \text{unproj} \ j A \rangle
\end{align*}
\]

\[
\begin{align*}
\text{proj} : J & \Rightarrow \text{Set} (J \rightarrow X) \Rightarrow \text{Set} X \\
\text{proj} \ A & := \text{image} (\pi \ j) A \\
\text{unproj} : J & \Rightarrow \text{Set} (J \rightarrow X) \Rightarrow \text{Set} X \Rightarrow \text{Set} (J \rightarrow X) \\
\text{unproj} \ j \ A \ B & := \text{preimage} (\text{mapping} (\pi \ j) A) B \\
& \equiv A \cap \prod_{i=1}^{J} \text{if} (j = i) B (\text{proj} \ j A)
\end{align*}
\]

Figure 8.10: Preimage arrow lifts needed to interpret probabilistic programs.
arrpre (π j). (We will deal with agrees separately.) To implement them, we must model sets in a way that ensures \(A = \emptyset \) is decidable, and the following are representable and finitely computable:

- \(A \cap B, \emptyset, \{\text{true}\}, \{\text{false}\} \) and \(\{b\} \) for every const \(b \)
- \(A_1 \times A_2, \text{proj}_1 A \) and \(\text{proj}_2 A \) (8.64)
- \(J \rightarrow X, \text{proj}_j A \) and \(\text{unproj}_j A B \)

Before addressing representation and computability, we need to define families of sets under which these operations are closed.

Definition 8.54 (rectangular family). \(\text{Rect} X \) denotes the **rectangular family of subsets** of \(X \). \(\text{Rect} X \) must contain \(\emptyset \) and \(X \), and be closed under finite intersections. Products must satisfy the following rules:

\[
\text{Rect} \langle X_1, X_2 \rangle = (\text{Rect} X_1) \boxtimes (\text{Rect} X_2) \tag{8.65}
\]
\[
\text{Rect} (J \rightarrow X) = (\text{Rect} X)^{\boxtimes J} \tag{8.66}
\]

where the following operations lift cartesian products to sets of sets:

\[
\mathcal{A}_1 \boxtimes \mathcal{A}_2 := \{A_1 \times A_2 \mid A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\} \tag{8.67}
\]
\[
\mathcal{A}^{\boxtimes J} := \bigcup_{J' \subset J \text{ finite}} \left\{ \prod_{j \in J} A_j \mid A_j \in \mathcal{A}, j \in J' \iff A_j \subset \bigcup \mathcal{A} \right\} \tag{8.68}
\]

We additionally define \(\text{Rect} \text{Bool} := \mathcal{P} \text{Bool} \). It is easy to show the collection of all rectangular families is closed under products, projections, and \(\text{unproj} \).

Further, all of the operations in (8.64) can be exactly implemented if finite sets are modeled directly, sets in ordered spaces (such as \(\mathbb{R} \)) are modeled by intervals, and sets in \(\text{Rect} \langle X_1, X_2 \rangle \) are modeled by pairs of type \(\langle \text{Rect} X_1, \text{Rect} X_2 \rangle \). By (8.68), sets in \(\text{Rect} (J \rightarrow X) \) have no more than finitely many projections that are proper subsets of \(X \). They can be modeled by *finite* binary trees, where unrepresented projections are implicitly \(X \). Figure 8.11 illustrates a model of a member of \(\text{Rect} (J \rightarrow [0, 1]) \); i.e. a rectangular subset of \(\Omega \).
The set of branch traces T is nonrectangular, but we can model T subsets by $J \rightarrow \text{Bool}_\bot$ rectangles, implicitly intersected with T.

Theorem 8.55 (T model). If $T' \in \text{Rect} (J \rightarrow \text{Bool}_\bot)$ and $j \in J$, then $\text{proj } j T' = \text{proj } j (T' \cap T)$. If $B \subseteq \text{Bool}_\bot$, then $\text{unproj } j (T' \cap T) B = \text{unproj } j T' B \cap T$.

Proof. Subset case is by projection monotonicity. For superset, let $b \in \text{proj } j T'$. Define t by $t j' = b$ if $j' = j$; $t j' = \bot$ if $\bot \in \text{proj } j' T'$; otherwise $t j' \in \text{proj } j' T'$.

By construction, $t \in T'$. For no more than finitely many $j' \in J$, $t j' \neq \bot$, so $t \in T$. Thus, there exists a $t \in T' \cap T$ such that $t j = b$, so $b \in \text{proj } j (T' \cap T)$.

The statement about unproj is an easy corollary. \hfill \square

8.9.2 Approximate Preimage Mapping Operations

Implementing lazy_{pre} (defined in Figure 8.7) requires computing pre, but only for the empty mapping, which is trivial: $\text{pre } \emptyset \equiv (\emptyset, \lambda B. \emptyset)$. Implementing the other combinators requires $(\circ_{\text{pre}}), (\cdot, \cdot)_{\text{pre}}$ and (ψ_{pre}).

From the preimage mapping definitions (Figure 8.5), we see that ap_{pre} is defined using
We hit a snag with $\langle \cdot, \cdot \rangle_{\text{pre}}$: it loops over possibly uncountably many members of B in a big union. At this point, we need to approximate.

Theorem 8.56 (pair preimage approximation). Let $g_1 : X \rightarrow Y_1$ and $g_2 : X \rightarrow Y_2$. For all $B \subseteq Y_1 \times Y_2$, preimage $\langle g_1, g_2 \rangle_{\text{map}}$ $B \subseteq$ preimage g_1 $(\text{proj}_1 B)$ \cap preimage g_2 $(\text{proj}_2 B)$.

Proof. By monotonicity of preimages and projections, and by Lemma 8.20.

It is not hard to use Theorem 8.56 to show that

\[
\langle \cdot, \cdot \rangle'_{\text{pre}} : (X \rightarrow_{\text{pre}} Y_1) \Rightarrow (X \rightarrow_{\text{pre}} Y_2) \Rightarrow (X \rightarrow_{\text{pre}} Y_1 \times Y_2)
\]

(8.69)

computes covering rectangles of preimages under pairing.

For $(\cup)_{\text{pre}}$, we need an approximating replacement for $(\cup)_{\text{pre}}$ under which rectangular families are closed. In other words, we need a lattice join (\lor) with respect to (\subseteq), with the following additional properties:

\[
(A_1 \times A_2) \lor (B_1 \times B_2) = (A_1 \lor B_1) \times (A_2 \lor B_2)
\]

(8.70)

\[
(\prod_{j \in J} A_j) \lor (\prod_{j \in J} B_j) = \prod_{j \in J} A_j \lor B_j
\]

If for every nonproduct type X, Rect X is closed under (\lor), then rectangular families are clearly closed under (\lor). Further, for any A and B, $A \cup B \subseteq A \lor B$.

Replacing each union in $(\cup)_{\text{pre}}$ with join yields the overapproximating (\cup'_{pre}):

\[
(\cup'_{\text{pre}}) : (X \rightarrow_{\text{pre}} Y) \Rightarrow (X \rightarrow_{\text{pre}} Y) \Rightarrow (X \rightarrow_{\text{pre}} Y)
\]

(8.71)

To interpret programs that may not terminate, or that terminate with probability 1, we need to approximate $\text{ifte}_{\text{pre}}^\parallel$ (8.52), which is defined in terms of agrees. Defining its approximation in terms of an approximation of agrees would not allow us to preserve the fact
that expressions interpreted using $\text{ifte}_{\text{pre}}^\parallel$ always terminate. The best approximation of the preimage of Bool under agrees (as a mapping) is $\text{Bool} \times \text{Bool}$, which contains $\langle \text{true}, \text{false} \rangle$ and $\langle \text{false}, \text{true} \rangle$, and thus would not constrain the test to agree with the branch trace.

A lengthy (elided) sequence of substitutions to the defining expression for $\text{ifte}_{\text{pre}}^\parallel$ results in an agrees-free equivalence:

$$
\text{ifte}_{\text{pre}}^\parallel k_1 k_2 k_3 j A \equiv \text{let} \quad \langle C_k, p_k \rangle := k_1 j_1 A \\
\langle C_b, p_b \rangle := \text{branch}_{\text{pre}} j A \\
C_2 := C_k \cap C_b \cap \{\text{true}\} \\
C_3 := C_k \cap C_b \cap \{\text{false}\} \\
A_2 := p_k C_2 \cap p_b C_2 \\
A_3 := p_k C_3 \cap p_b C_3 \\
\text{in} \quad k_2 j_2 A_2 \cup_{\text{pre}} k_3 j_3 A_3
$$

where $j_1 = \text{left} j$ and so on. Unfortunately, a straightforward approximation of this would still take unnecessary branches, when A_2 or A_3 overapproximates \emptyset.

C_b is the branch trace projection at j (with \bot removed). The set of indexes for which C_b is either $\{\text{true}\}$ or $\{\text{false}\}$ is finite, so it is bounded by an index prefix, outside of which branch trace projections are $\{\text{true}, \text{false}\}$. Therefore, if the approximating $\text{ifte}_{\text{pre}}^\parallel$ takes no branches when $C_b = \{\text{true}, \text{false}\}$, but approximates with a finite computation, expressions interpreted using $\text{ifte}_{\text{pre}}^\parallel$ will always terminate.

We need an overapproximation for the non-branching case. In the exact semantics, the returned preimage mapping’s range is a subset of Y, and it returns subsets of $A_2 \cup A_3$. Therefore, $\text{ifte}_{\text{pre}}^\parallel$ may return $\langle Y, \lambda B. A_2 \cup A_3 \rangle$ when $C_b = \{\text{true}, \text{false}\}$. We cannot refer to the type Y in the function definition, so we represent it using \top in the approximating semantics. Implementations can model it by a singleton “universe” instance for every $\text{Rect} \ Y$.

Figure 8.12b defines the final approximating preimage arrow. This arrow, the lifts in Figure 8.10, and the semantic function $[\cdot]_a$ in Figure 8.1 define an approximating semantics for partial, probabilistic programs.
\[X_{\text{pre}} Y := \langle \text{Rect } Y, \text{Rect } Y \Rightarrow \text{Rect } X \rangle \]
\[\varnothing_{\text{pre}} := \langle \varnothing, \lambda B. \varnothing \rangle \]
\[\text{ap}_{\text{pre}} : (X_{\text{pre}} Y) \Rightarrow \text{Rect } Y \Rightarrow \text{Rect } X \]
\[\langle \varnothing_{\text{pre}}, \varnothing \rangle := \langle \varnothing, \lambda B. \varnothing \rangle \]
\[\langle \text{pre}_{\text{ap}} Y, p \rangle B := p (B \cap Y') \]
\[\langle Y_{\text{pre}} Z \Rightarrow (X_{\text{pre}} Y) \Rightarrow (X_{\text{pre}} Y) \rangle \]
\[\langle Z', p_2 \rangle \varnothing_{\text{pre}} h_1 := \langle Z', \lambda C. \text{ap}_{\text{pre}} h_1 (p_2 C) \rangle \]

(a) Definitions for preimage mappings that compute rectangular covers.

(b) Approximating preimage arrow, defined using approximating preimage mappings.

(c) Preimage* arrow combinators for probabilistic choice and guaranteed termination. Figure 8.8 (AStore arrow transformer) defines \(\eta_{\text{pre}} Y \) and \(\varnothing_{\text{pre}} Y \) are computable (see Figure 8.10), but \(\text{arr}_{\text{pre}} Y \) is not.

8.9.3 Correctness

From here on, \([_]_{\text{pre}}^Y \) interprets programs as approximating preimage* arrow computations using \(\text{ifte}_{\text{pre}} Y \). The following theorems assume \(h := [_]_{\text{pre}}^Y : X_{\text{pre}} Y \) and \(h' := [_]_{\text{pre}}^Y : X_{\text{pre}} Y \).
for some expression e.

To use structural induction on the interpretation of e, we need a theorem that allows representing it as a finite expression (Definition A.28). Because if $\text{te}_{\text{pre}}^{\prime}$ does not branch when either branch could be taken, an equivalent finite expression exists for each rectangular domain subset A.

Theorem 8.57 (equivalent finite expression). For all $A \in \text{Rect} \langle \langle \Omega, T \rangle, X \rangle$, there exists a finite expression e' for which, if $h'' := \lceil e \rceil^{\prime}_{\text{pre}}$, then $\text{ap}_{\text{pre}}' (h'' \ j_0 \ A) \ B = \text{ap}_{\text{pre}}' (h' \ j_0 \ A) \ B$ for all $B \in \text{Rect} \ Y$.

Proof. Let $T' := \text{proj}_2 (\text{proj}_1 A)$, and let the index prefix J' contain every j' for which $(\text{proj} j' T') \setminus \{\bot\} \text{ is either } \{\text{true}\} \text{ or } \{\text{false}\}$. To construct e', exhaustively apply first-order functions in e, but replace any if $e_1 e_2 e_3$ whose index is not in J' with the equivalent expression if $e_1 \bot \bot$. Because e is well-defined, recurrences must be guarded by if, so this process terminates after finitely many applications.

Corollary 8.58 (terminating). For all $A \in \text{Rect} \langle \langle \Omega, T \rangle, X \rangle$ and $B \in \text{Rect} \ Y$, $\text{ap}_{\text{pre}}' (h' \ j_0 \ A) \ B$ terminates.

Theorem 8.59 (sound). For all $A \in \text{Rect} \langle \langle \Omega, T \rangle, X \rangle$ and $B \in \text{Rect} \ Y$, $\text{ap}_{\text{pre}} (h \ j_0 \ A) \ B \subseteq \text{ap}_{\text{pre}}' (h' \ j_0 \ A) \ B$.

Proof. By construction and Corollary 8.58 (recall non-“≡” statements imply termination).

Theorem 8.60 (monotone). $\text{ap}_{\text{pre}}' (h' \ j_0 \ A) \ B$ is monotone in both A and B.

Proof. Lattice operators (\cap) and (\vee) are monotone, as is (\times). Therefore, id_{pre} and the other lifts in Figure 8.10 are monotone, and each approximating preimage arrow combinator preserves monotonicity. Approximating preimage* arrow combinators, which are defined in terms of approximating preimage arrow combinators (Figure 8.12b) likewise preserve monotonicity, as does η'_{pre}; therefore id_{pre} and other lifts are monotone.
The definition of ifte\(^{\prime}\)\(_{pre}^\prime\) can be written in terms of lattice operators and approximating preimage arrow combinators for any \(A\) for which \(C_b = \{\text{true}\}\) or \(C_b = \{\text{false}\}\), and thus preserves monotonicity in those cases. If \(C_b = \{\text{true, false}\}\), which is an upper bound for \(C_b\), the returned value is an upper bound.

For monotonicity in \(A\), suppose \(A_1 \subseteq A_2\). Apply Theorem 8.57 with \(A_1\) to yield \(e'\); clearly, it is also an equivalent finite expression for \(A_2\). Monotonicity follows from structural induction on the interpretation of \(e'\).

For monotonicity in \(B\), apply Theorem 8.57 with a fixed \(A\).

Theorem 8.61 (decreasing). If \(A \in \text{Rect}\langle\langle\Omega, T\rangle, X\rangle\) and \(B \in \text{Rect} Y\), \(\text{ap}'_{pre} (h' j_0 A) B \subseteq A\).

Proof. Because they compute exact preimages of rectangular sets under restriction to rectangular domains, \(id_{pre}\) and the other lifts in Figure 8.10 are decreasing.

By definition and applying basic lattice properties,

\[
\text{ap}'_{pre} ((h_1 \gg \gg \gg_{pre} h_2) A) B \equiv \text{ap}'_{pre} (h_1 A) B' \quad \text{for some } B'
\]

\[
\text{ap}'_{pre} ((h_1 \& \&_{pre} h_2) A) B \equiv \text{ap}'_{pre} (h_1 A) (\text{proj}_1 B) \cap \text{ap}'_{pre} (h_2 A) (\text{proj}_2 B)
\]

\[
\text{ap}'_{pre} (\text{ifte}'_{pre} h_1 h_2 h_3 A) B \equiv \text{let } A_2 := \text{ap}'_{pre} (h_1 A) \{\text{true}\} \\
A_3 := \text{ap}'_{pre} (h_1 A) \{\text{false}\} \\
in \text{ap}'_{pre} (h_2 A_2) B \lor \text{ap}'_{pre} (h_3 A_3) B
\]

\[
\text{ap}'_{pre} (\text{lazy}'_{pre} h A) B \equiv \text{if } (A = \emptyset) \emptyset (\text{ap}'_{pre} (h 0 A) B)
\]

Thus, approximating preimage arrow combinators return decreasing computations when given decreasing computations. This property transfers trivially to approximating preimage\(^*\) arrow combinators. Apply Theorem 8.57 and use structural induction.

8.9.4 Preimage Refinement Algorithm

Given these properties, we might try to compute exact preimages of \(B\) by computing preimages with respect to increasingly fine discretizations of \(A\).
Definition 8.62 (preimage refinement algorithm). Let $B \in \text{Rect } Y$ and
\begin{equation}
\text{refine} : \text{Rect } \langle \langle \Omega, T \rangle, X \rangle \Rightarrow \text{Rect } \langle \langle \Omega, T \rangle, X \rangle
\end{equation}
\[\text{refine } A := \text{ap}^\prime_{\text{pre}} (h^j_0 A) B\]
(8.74)

Define $\text{split} : \text{Rect } \langle \langle \Omega, T \rangle, X \rangle \Rightarrow \text{Set } (\text{Rect } \langle \langle \Omega, T \rangle, X \rangle)$ to produce positive-measure, disjoint rectangles, and define
\begin{equation}
\text{refine}^* : \text{Set } (\text{Rect } \langle \langle \Omega, T \rangle, X \rangle) \Rightarrow \text{Set } (\text{Rect } \langle \langle \Omega, T \rangle, X \rangle)
\end{equation}
\[\text{refine}^* A := \text{image } \text{refine} \left(\bigcup_{A \in A} \text{split } A \right) \]
(8.75)

For any positive-measure $A_0 \in \text{Rect } \langle \langle \Omega, T \rangle, X \rangle$, iterate refine^* on $\{A_0\}$.

Figure 8.13 illustrates the preimage refinement algorithm.

Theorem 8.61 (decreasing) guarantees $\text{refine } A$ is never larger than A. Theorem 8.60 (monotone) guarantees refining a partition of A never does worse than refining A itself. Theorem 8.59 (sound) guarantees the algorithm is sound: the exact preimage of B is always contained in the covering partition refine^* returns.

We would like it to be precise in the limit, up to null sets: covering partitions’ measures should converge to the true measure. Unfortunately, preimage refinement appears to compute the Jordan outer measure of a preimage, which is not always its measure. A counterexample is the expression rational? random, where rational? returns true when its argument is rational and loops otherwise. (This is definable using a (\leq) primitive.) The preimage of $\{\text{true}\}$ (the rational numbers) has measure 0, but its Jordan outer measure is 1.

We conjecture that a minimal requirement for preimage refinement’s measures to converge is that the program must terminate with probability 1. There are certainly other requirements. We leave these and proof of convergence of measures for future work.

For now, we use algorithms that depend only on soundness.
Figure 8.13: Preimage refinement algorithm on \((\Omega, T, X)\). Only two dimensions of \(\Omega\) are shown. In this example, the covering partition appears to converge in measure to the exact. (In the worst case, 9.14a represents an open set, which in the limit, preimage refinement overapproximates only on the boundary.)
8.10 Implementations

We have four implementations: one of the exact semantics, two direct implementations of the approximating semantics, and a less direct but more efficient implementation of the approximating semantics, which we call Dr. Bayes.

If sets are restricted to be finite, the arrows used as translation targets in the exact semantics, defined in 8.2, 8.4, 8.5, 8.7 and 8.8, can be implemented directly in any practical λ-calculus. Computing exact preimages is very inefficient, even under the interpretations of very small programs. Still, we have found our Typed Racket [71] implementation useful for finding theorem candidates and counterexamples.

Given a rectangular set library, the approximating preimage arrows defined in Figures 8.10 and 8.12b can be implemented with few changes in any practical λ-calculus. We have done so in Typed Racket and Haskell [1]. Both implementations’ arrow combinator definitions are almost line-for-line transliterations from the figures. They are at https://github.com/ntoronto/drbayes in the direct subdirectory.

Making the rectangular set type polymorphic seems to require the equivalent of a typeclass system. In Haskell, it also requires multi-parameter typeclasses or indexed type families [14] to associate set types with the types of their members. Using indexed type families, the only significant differences between the Haskell implementation and the approximating semantics are type contexts, newtype wrappers for arrow types, and using Maybe types as bottom arrow return types.

Typed Racket has no typeclass system on top of its type system, so the rectangular set type is monomorphic; thus, so are the arrow types. The lack of type variables in the combinator types is the only significant difference between the implementation and the approximating semantics.

Chapter 9 details the implementation of Dr. Bayes.
8.11 Conclusions

To allow recursion and arbitrary conditions in probabilistic programs, we combined the power of measure theory with the unifying elegance of arrows. We

1. Defined a transformation from first-order programs to arbitrary arrows.
2. Defined the bottom arrow as the standard interpretation.
3. Derived the uncomputable preimage arrow as a nonstandard interpretation.
4. Derived a sound, computable approximation of the preimage arrow, and enough computable lifts to transform programs.

Critically, the preimage arrow’s lift from the bottom arrow distributes over bottom arrow computations. Our semantics thus generalizes this process to all programs: 1) encode a program as a bottom arrow computation; 2) lift this computation to get an uncomputable function that computes preimages; 3) distribute the lift; and 4) replace uncomputable expressions with sound approximations.

Using arrows drastically simplifies the correctness proofs. Almost every semantic correctness theorem proceeds from a proof that a lift distributes over five combinators. There are seven theorems in total corresponding to the morphisms in our roadmap (8.3), but the three center morphisms (pointing downward) are done in one proof, as are the two bottom morphisms (pointing rightward). In total, there are 20 cases, plus 11 for the original (and very simple) proof by induction that arrow homomorphisms distribute over program terms.

In contrast, the corresponding theorems with separate semantic functions would require seven proofs by structural induction over at least 11 rules (12 for programs that access the random store), for a total of at least 77 cases. This reduction in complexity by semantic abstraction would have been difficult without targeting λ_{ZFC}, which allows such arrows to carry out uncountably infinite computations.

Further, because the approximating semantics targets a computable λ_{ZFC} sublanguage, it is directly implementable. The next chapter details creating a practical implementation.
Chapter 9

Preimage Computation Implementation

9.1 Introduction

To maintain generality, the preceding chapter leaves out some details; in particular, how to

1. Represent and compute with abstract sets.

2. Compute approximate preimages under real functions.

3. Use preimage refinement to compute conditional probabilities efficiently.

Figure 9.1 puts these in a dependency graph in which nodes are modules in an implementation. The boxes with dotted outlines are the subject of this chapter.

Figure 9.1: The components in an implementation, with dependence represented by arrows.
9.2 Abstract Sets and Concrete Values

While any kind of abstract sets with finite representations and computable operations would do, we use rectangles for their efficiency and simplicity, especially emptiness checking.

In a host language such as Haskell with sufficiently advanced typeclasses or an equivalent, it is possible to use polymorphism to represent rectangles in an extensible way. For each required value type \(X \), we need to define, in the host language,

- A type of rectangles of \(X \) with an associated type of members of \(X \).
- Representations of the sets \(\emptyset \) and \(X \) (i.e. \(\top \) in Figure 8.12c).
- Intersection \((\cap) \) and join \((\lor) \).
- A singleton constructor and a membership test.

The membership test is used in sampling algorithms, to determine whether points sampled from the rectangular cover of a preimage set lie within the preimage set.

Figure 9.2 shows the definition of a Haskell typeclass \(\text{Set} \) that encapsulates these types, values and operations. \(\text{Set} \) uses a type family \(\text{Member} \) to associate with each rectangle type \(s \) a value type \(\text{Member} \ s \). Each required \(\text{Rect} \ X \) is represented by a type instance of \(\text{Set} \). For example, the code in Figure 9.3 represents \(\text{Rect} \ (X_1, X_2) \) using the data type \(\text{PairSet} \ s1 \ s2 \), and declares it as an instance of \(\text{Set} \) by defining \(\text{Member} \ (\text{PairSet} \ s1 \ s2) \) to be a 2-tuple type, and defining the empty pair set, the universal pair set, and the required operations.

In a language without typeclasses and type families, or equally expressive type-level fea-
data PairSet s1 s2 = EmptyPairSet | UnivPairSet | PairSet s1 s2
deriving(Show, Eq)
prod :: (Set
prod a1 a2 |
|
|

s1, Set s2) => s1 -> s2 -> PairSet s1 s2
a1 == empty || a2 == empty = EmptyPairSet
a1 == univ && a2 == univ
= UnivPairSet
otherwise
= PairSet a1 a2

instance (Set s1, Set s2) => Set (PairSet s1 s2) where
type Member (PairSet s1 s2) = (Member s1, Member s2)
empty = EmptyPairSet
univ = UnivPairSet
EmptyPairSet /\ _ = EmptyPairSet
_ /\ EmptyPairSet = EmptyPairSet
UnivPairSet /\ a = a
a /\ UnivPairSet = a
PairSet a1 a2 /\ PairSet b1 b2 = prod (a1 /\ b1) (a2 /\ b2)
EmptyPairSet \/ a = a
a \/ EmptyPairSet = a
UnivPairSet \/ _ = UnivPairSet
_ \/ UnivPairSet = UnivPairSet
PairSet a1 a2 \/ PairSet b1 b2 = prod (a1 \/ b1) (a2 \/ b2)
member EmptyPairSet _ = False
member UnivPairSet _ = True
member (x1,x2) (PairSet a1 a2) = member x1 a1 && member x2 a2
singleton (x1,x2) = prod (singleton x1) (singleton x2)
Figure 9.3: An instance of Set, representing rectangular sets Rect hX1 , X2 i.

tures, the representation is best done monomorphically:1 all required value types X1 , X2 , ..., Xn
S
are considered as one universal type X := ni=1 Xi . The same types, values and operations are
necessary; i.e. the type of rectangles of X and of values of X, representations of ∅ and X,
intersection, join, singleton, and membership.
Of course, it is good factorization to have separate representations for each type Xi .
Figure 9.4 shows a fragment of a Typed Racket representation of rectangular sets, operations and values, with rectangles of R (Real-Set), Bool (Bool-Set), hX, Xi (Pair-Set), {hi}
1

It is possible to encode typeclasses and type families into a polymorphic type system by parameterizing
every function on function tables that represent typeclasses, but this encoding is difficult to work with.

160


;; Lattice bottom and top
(define-singleton-type Empty-Set empty-set)
(define-singleton-type Univ-Set univ-set)

;; Type of rectangular sets
(define-type Set (U Empty-Set Nonempty-Set))

;; Type of *nonempty* rectangular sets
(define-type Nonempty-Set
 (U Univ-Set Real-Set Bool-Set Pair-Set Null-Set Omega-Set Trace-Set))

;; Type of members of rectangular sets
(define-type Value
 (Rec Value (U Real Boolean (Pair Value Value) Null Omega-Val Trace-Val)))

(: intersect (Set Set -> Set))
;; Returns the intersection of two rectangular sets
(define (intersect A B)
 (cond
 [(and (real-set? A) (real-set? B)) (real-set-intersect A B)]
 [(and (bool-set? A) (bool-set? B)) (bool-set-intersect A B)]
 [(and (pair-set? A) (pair-set? B)) (pair-set-intersect A B)]
 [(and (null-set? A) (null-set? B)) null-set]
 [(and (omega-set? A) (omega-set? B)) (omega-set-intersect A B)]
 [(and (trace-set? A) (trace-set? B)) (trace-set-intersect A B)]
 [(univ-set? A) B]
 [(univ-set? B) A]
 [else empty-set]]))

;; Type of *nonempty* rectangular sets of pairs
(struct: Pair-Set ([fst : Nonempty-Set] [snd : Nonempty-Set])
 #:transparent)
(define pair-set? Pair-Set?)

(: prod (Set Set -> (U Empty-Set Pair-Set)))
;; Constructs pair sets from possibly empty sets
(define (prod A1 A2)
 (if (or (empty-set? A1) (empty-set? A2))
 empty-set
 (Pair-Set A1 A2)))

(: pair-set-intersect (Pair-Set Pair-Set -> (U Empty-Set Pair-Set)))
;; Intersection specialized to pair sets
(define (pair-set-intersect A B)
 (match-define (Pair-Set A1 A2) A)
 (match-define (Pair-Set B1 B2) B)
 (prod (intersect A1 B1) (intersect A2 B2)))

Figure 9.4: Part of a Typed Racket implementation of monomorphic, rectangular sets.
null-set, \(J \rightarrow [0, 1] \) (\(\Omega \)-set) and \(J \rightarrow \mathbb{B} \) (\(\text{Trace}-\text{Set} \)). The type \(\text{Nonempty-Set} \) is the union of these types and \(\text{Univ-Set} \), which represents \(X \). The \(\text{Set} \) type additionally represents \(\emptyset \). The \text{Value} type represents members of \(X \) and is defined similarly, but mostly uses built-in Racket types such as \text{Real} and \text{Pair}.

The \text{intersect} function receives any two \text{Set} instances and dispatches to a more specific intersection function based on their runtime data types. The intersection of two differently typed rectangles is empty because the types represent disjoint sets. Every operation on \text{Set} or \text{Value} is computed in a similar way.

Typed Racket’s true union types make it easy to represent \text{nonempty} sets of pairs, simply by leaving \(\text{Empty-Set} \) out of the type in \(\text{Pair}-\text{Set} \)’s fields. The \text{pair-set-intersect} function is derived from the identity \((A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2)\).

Subsets of \(\mathbb{B} \) are easy to represent. Subsets of \(\{()\} \) are trivial.

We need the representation of real sets to have closed intervals because \(\Omega = J \rightarrow [0, 1] \). Because preimage refinement splits \(\Omega \) into disjoint sets, we also need half-open and open intervals. We therefore need to represent intervals with four values: two extended-real endpoints, and two booleans that determine whether each endpoint is in the interval (i.e. whether each endpoint is closed).

Figure 9.5 lists part of the code for representing closed, open and half-open intervals. For efficiency, endpoints are 64-bit floating-point numbers, but this does not threaten soundness. Because the floating-point numbers contain \(-\text{inf.}0 \) and \(+\text{inf.}0 \), every real interval can be covered by at least one floating-point interval. The (unlisted) \text{interval} function returns a \text{Real-Set} or \text{Empty-Set} given open or closed endpoints. It ensures neither endpoint is \(+\text{nan.}0 \), returns \text{empty-set} if the endpoints are out of order or are equal but at least one is open, and forces \(-\text{inf.}0 \) and \(+\text{inf.}0 \) endpoints to be open. The \text{real-set-intersect} function intersects real sets; the unlisted \text{real-set-join} is similar, but always returns a (nonempty) \text{Real-Set}. The unlisted \text{real-set-member?} is simple enough: it returns \#t when its value argument is between its set argument’s endpoints, or equal to a closed endpoint.
The function `real-set-singleton` is also defined in Figure 9.5. Because \(\mathbb{R} \) values are represented by the type `Real`, which includes exact rationals such as \(\frac{1}{7} \), it cannot simply return the closed interval `Real-Set a a #t #t`. Fortunately, because the floating-point numbers contain
\(-\infty.0\) and \(+\infty.0\) and there are only finitely many of them, every real number that is not represented exactly by a float is between two closest floats. The `fl` function converts an exact rational to a floating-point number by rounding its argument to the nearest one. The logic after `(define b (fl a))` determines whether `b` is rounded down or up, or is not rounded, and uses Racket's `math/flonum` library's `flnext` and `flprev` in the
rounding cases to construct the smallest open floating-point interval containing a. If b is not rounded, it returns a closed interval with both endpoints b.

Testing `real-set-singleton` on $3/4$ and $1/7$, we get

```scheme
> (real-set-singleton 3/4)
(Real-Set 0.75 0.75 #t #t)
> (real-set-singleton 1/7)
(Real-Set 0.14285714285714285 0.14285714285714288 #f #f)
> (real-set-member? 3/4 (real-set-singleton 3/4))
#t
> (real-set-member? 1/7 (real-set-singleton 1/7))
#t
```

Using the Racket’s `math/bigfloat` library to get a 128-bit approximation of π, and using the `#e` number prefix to construct exact rational numbers that are smaller and larger than the smallest and largest positive floating-point numbers, we get the following intervals:

```scheme
> (real-set-singleton (bigfloat->real pi.bf))
(Real-Set 3.141592653589793 3.1415926535897936 #f #f)
> (real-set-singleton #e1e-350)
(Real-Set 0.0 4.9406564584125e-324 #f #f)
> (real-set-singleton #e1e350)
(Real-Set 1.7976931348623157e+308 +inf.0 #f #f)
```

These are the tightest sound approximations of $\{3/4\}$, $\{1/7\}$, $\{\pi\}$, $\{10^{-350}\}$ and $\{10^{350}\}$ possible with floating-point intervals.

9.2.1 Infinite Binary Trees

Rectangular families of sets (Definition 8.54) are defined so that rectangles of any $J \to A$ have only finitely many projections that are proper subsets of A. For example, for $\Omega := J \to [0, 1]$, if $\Omega' \in \text{Rect } \Omega$, then $\text{proj } j \Omega' \subset [0, 1]$ for only finitely many $j \in J$. Further, the index set J is part of a binary indexing scheme, so such values have a tree structure we can use to represent
them. We can thus use self-similarity to represent \(\Omega \) rectangles by a finite data structure: a subtree in which every projection is \([0, 1]\) is represented by (the representation of) \(\Omega \) itself.

We need a constructor for building binary trees recursively. The following function receives a node value \(a \) and two tree encodings \(l \) and \(r \), and returns a tree encoding that maps \(j_0 \) to \(a \), and has \(l \) and \(r \) as the left and right subtrees.

\[
\text{tree-node} : A \Rightarrow (J \rightarrow A) \Rightarrow (J \rightarrow A) \Rightarrow (J \rightarrow A)
\]

\[
\text{tree-node} a l r := \{\langle j_0, a \rangle\} \cup \{\langle \text{left } j, a \rangle | \langle j, a \rangle \in l\} \cup \{\langle \text{right } j, a \rangle | \langle j, a \rangle \in r\}
\]

From \(\text{tree-node} \), we define a function to construct instances of \(\text{Rect} (J \rightarrow A) \) from a projection, and left and right subtree rectangles. It is essentially a trinary cartesian product.

\[
\text{tree-prod} : \text{Rect} A \Rightarrow \text{Rect} (J \rightarrow A) \Rightarrow \text{Rect} (J \rightarrow A) \Rightarrow \text{Rect} (J \rightarrow A)
\]

\[
\text{tree-prod} A L R := \{\text{tree-node } a l r | a \in A, l \in L, r \in R\}
\]

Any \(\text{Rect} (J \rightarrow A) \) can be constructed from \(J \rightarrow A \) itself, finitely many projections, and finitely many applications of \(\text{tree-prod} \). For example,

\[
\text{tree-prod } [0, \frac{1}{2}] (\text{tree-prod } [\frac{1}{2}, 1] \Omega \Omega) \Omega
\]

constructs an instance \(\Omega' \in \text{Rect} \Omega \) for which \(\text{proj } j_0 \Omega' = [0, \frac{1}{2}] \) and \(\text{proj } (\text{left } j_0) \Omega' = [\frac{1}{2}, 1] \), and all other projections are \([0, 1]\).

In Figure 9.6, \(\text{tree-prod} \) is represented by a data type \(\text{Omega-Node} \), and \(\Omega \) is represented by the singleton value \(\text{univ-omega-set} \). Representations of \(\text{Rect} \Omega \) instances are constructed as in (9.3); for example

\[
\text{(define omega-rect}
\text{(Omega-Node (Real-Set 0.0 0.5 #t #t))}
\text{(Omega-Node (Real-Set 0.5 1.0 #t #t))}
\text{(Omega-Node (Real-Set 0.0 0.5 #t #t))}
\text{univ-omega-set)
\text{univ-omega-set)
\text{univ-omega-set))}
\]

165
;; Binary indexing scheme
(define-type J (Listof Boolean))
(define j0 null)

(: left (J -> J))
(define (left j) (cons #t j))

(: right (J -> J))
(define (right j) (cons #f j))

;; Type representing Omega
(define-singleton-type Univ-Omega-Set univ-omega-set)

;; Type representing a subrectangle of Omega
(struct: Omega-Node ([axis : Real-Set] [left : Omega-Set] [right : Omega-Set]) #:transparent)

(define-type Omega-Set (U Univ-Omega-Set Omega-Node))
(define-predicate omega-set? Omega-Set)

(: omega-set-project (J Omega-Set -> Real-Set))
;; Returns Z’s axis at index j
(define (omega-set-project j Z)
 (let loop ([j (reverse j)] [Z Z])
 (match Z
 [(? univ-omega-set?) unit-interval]
 [(Omega-Node A L R)
 (cond [(null? j) A]
 [(first j) (loop (rest j) L)]
 [else (loop (rest j) R))])])

;; Functionally equivalent to univ-omega-set, but has fields for recursion
(define univ-omega-node
 (Omega-Node unit-interval univ-omega-set univ-omega-set))

(: omega-set-unproject (J Omega-Set Real-Set -> (U Empty-Set Omega-Set)))
;; Functionally updates Z’s axis at index j by intersecting it with B
(define (omega-set-unproject j Z B)
 (let loop ([j (reverse j)] [Z Z])
 (match Z
 [(? univ-omega-set?) (loop j univ-omega-node)]
 [(Omega-Node A L R)
 (cond [(null? j) (omega-set-node (real-set-intersect A B) L R)]
 [(first j) (omega-set-node A (loop (rest j) L) R)]
 [else (omega-set-node A L (loop (rest j) R))])])
)

Figure 9.6: Part of a Typed Racket representation of Rect \(\Omega \), as finite binary trees.

166
(struct: Omega-Val ([value : (Promise Real)]
 [left : (Promise Omega-Val)]
 [right : (Promise Omega-Val)]))
#:transparent)

#:omega-set-member? (Omega-Val Omega-Set -> Boolean))
(define (omega-set-member? z Z)
 (match* (z Z)
 [(z (? univ-omega-set?)) #t]
 [((Omega-Val a l r) (Omega-Node A L R))
 (and (real-set-member? (force a) A)
 (omega-set-member? (force l) L)
 (omega-set-member? (force r) R))])))

#:omega-set-sample (Omega-Set -> Omega-Val))
(define (omega-set-sample Z)
 (match Z
 [(? univ-omega-set?)
 (omega-set-sample univ-omega-node)]
 [(Omega-Node A L R)
 (Omega-Val (delay (real-set-sample A))
 (delay (omega-set-sample L))
 (delay (omega-set-sample R))))]))

Figure 9.7: A Typed Racket representation of values $\omega \in \Omega$, as lazy binary trees.

Functions omega-set-project and omega-set-unproject respectively implement proj and unproj for Ω rectangles; for example

```
> (omega-set-project j0 omega-rect)
(Real-Set 0.0 0.5 #t #t)

> (omega-set-project (right j0) omega-rect)
(Real-Set 0.0 1.0 #t #t)

> (omega-set-unproject (left j0) omega-rect (Real-Set 0.0 0.75 #t #t))
(Omega-Node (Real-Set 0.0 0.5 #t #t)
            (Omega-Node (Real-Set 0.5 0.75 #t #t)
                        univ-omega-set
                        univ-omega-set)
            univ-omega-set)
```

Figure 9.7 lists an implementation of values in Ω, which are infinite binary trees, as a lazy data structure. The Omega-Val data type represents the tree-node function. Instances
of \((\textit{Promise A})\) are lazy values: they are created using special syntax \((\textit{delay a})\) where \(a\) is of type \(A\), and are computed and cached using the function \(\textit{force}\). Thus, an \(\textit{Omega-Val}\)'s infinite left and right subtrees are represented by \((\textit{Promise Omega-Val})\), which are promises to produce subtrees.

For lazy trees, it is easy to write recursive functions that may not terminate. The two listed functions \(\textit{omega-set-member?}\) and \(\textit{omega-set-sample}\) always terminate, however: both recur on the structure of \(\textit{Omega-Set}\), and are thus well-founded.

Representations of branch traces and rectangles are similar to \(\textit{Omega-Val}\) and \(\textit{Omega-Set}\).

9.2.2 Disjoint Bottom and Top Unions

The set representations up to this point are the minimum necessary for a language with real numbers and lists. Whether more complicated representations are necessary depends on the presence of certain language features and primitives.

Suppose, for example, that we extend \([\emptyset]\vDash_A\) by this rule:

\[
[\text{strict-if } e_1 \, e_2 \, e_3]_\vDash_A := \text{ifte}_{\vDash_A}(e_1]_\vDash_A, \, [e_2]_\vDash_A, \, [e_3]_\vDash_A.
\]

(9.4)

Unlike \(\text{if}\), this “strict” conditional cannot be used to define recursive functions, but that is not the only difference. Compare these two expressions, in which \(e\) is any test expression that may evaluate to \text{true} or \text{false}:

\[
\text{if } e \langle \rangle \text{ random}
\]

\[
\text{strict-if } e \langle \rangle \text{ random}
\]

(9.5)

The \text{if} expression is interpreted as an application of \(\text{ifte}_{\vDash_{\text{pre}}}\), whose approximation (Figure 8.12c) takes at most one branch. The image of the program domain under the \text{if} expression is therefore \(\{\langle \rangle \} \cup [0, 1]\), or is not computed at all. In contrast, \text{strict-if} is interpreted as an application of \(\text{ifte}_{\vDash_{\text{pre}}}\), whose approximation (Figure 8.12b) takes \text{both} branches. The image of the program domain under the \text{strict-if} expression is therefore \(\{\langle \rangle \} \cup [0, 1]\).
In fact, in the absence of a form or a primitive such as strict-if, neither image nor preimage computation attempts to join sets of different types. The implementation of (∨) may return anything in these circumstances (though it is safest to raise an error).

We have found strict-if useful for a few things.

One is defining strict versions of boolean operators, which are faster than their lazy (i.e. short-cutting) counterparts:

\[
\begin{align*}
a \text{ and } b & :\equiv \text{ if } a \ b \ \text{false} \\
a \text{ and}^* b & :\equiv \text{ strict-if } a \ b \ \text{false}
\end{align*}
\]

Here, “\(\equiv\)” denotes defining special syntax rather than defining a function. (Otherwise, both conjunctions would be strict.)

Another is to assert that \(\text{prop?} \ x\) for some predicate \(\text{prop?}\) and value \(x\):

\[
\text{assert prop? } x :\equiv \text{ strict-if } (\text{prop? } x) \ x \ \text{fail}
\]

Here, \(\text{fail}\) is interpreted as a computation that always returns \(\bot\), so its range and preimages are \(\emptyset\). This expression thus restricts the program domain to the set of values for which \(\text{prop?} \ x\) evaluates to \(\text{true}\) regardless of branch traces, which cannot be done using if.

Another is pasting together piecewise monotone functions (Section 9.3.4).

With strict-if, there must be a type to represent disjoint unions such as \(\{ () \} \uplus [0, 1]\). One that is relatively easy to use is

\[
(\text{struct}: \text{Bot-Union-Set} \ ([\text{hash} : (\text{HashTable} \ \text{Symbol} \ \text{Nonempty-Set})])) \\
\ #:\text{transparent})
\]

which maps symbols to instances of associated set types. This type also allows user data types to be represented easily: every structure definition is assigned a symbol, which is mapped to product sets within instances of Bot-Union-Set. Intersections and joins are computed by looping over symbols.

Suppose we add a primitive \(\text{real?}\) that returns \(\text{true}\) when its argument is a real number.
and \texttt{false} otherwise. As a preimage computation, it could be defined as

$$\text{real?}_\text{pre} A := \text{case } \langle A \cap \mathbb{R}, A \setminus \mathbb{R} \rangle$$

$$\langle \emptyset, \emptyset \rangle \rightarrow \langle \emptyset, \lambda B. \emptyset \rangle$$

$$\langle A_t, \emptyset \rangle \rightarrow \text{const}_\text{pre} \text{true} A_t$$

$$\langle \emptyset, A_f \rangle \rightarrow \text{const}_\text{pre} \text{false} A_f$$

$$\langle A_t, A_f \rangle \rightarrow \langle \text{Bool}, \lambda B. (\text{if } (\text{true} \in B) A_t \emptyset) \cup (\text{if } (\text{false} \in B) A_f \emptyset) \rangle$$

We potentially have a problem implementing this: rectangles are not closed under relative complements. If we have a limited number of data types, however, we can compute $A \setminus \mathbb{R}$ as

$$A \setminus \mathbb{R} = A \cap (X_1 \cup X_2 \cup ... \cup X_n)$$

where \mathbb{R} does not appear in the union $X_1 \cup X_2 \cup ... \cup X_n$, which can be represented by a \texttt{Bot-Union-Set}. Unfortunately, computing this in the presence of user data types can be very inefficient and requires some static analysis to determine which are used in a particular program.

Instead, we might represent $X_1 \cup X_2 \cup ... \cup X_n$ using a \texttt{top union}:

$$\text{struct: Top-Union-Set ([hash : (HashTable Symbol Nonuniversal-Set)])}$$

$$\#:\text{transparent}$$

where \texttt{Nonuniversal-Set} is a new subtype of \texttt{Set} that does not include \texttt{Univ-Omega-Set}, \texttt{Univ-Trace-Set} nor other universal sets. For example, a \texttt{Top-Union-Set} that maps 'real to \texttt{empty-set} would represent the set of all values except the reals.

With top unions, it is easy to abstract \texttt{real?}_\text{pre} to arbitrary predicates:

$$\text{predicate}_\text{pre} X_t X_f A := \text{case } \langle A \cap X_t, A \cap X_f \rangle$$

$$\langle \emptyset, \emptyset \rangle \rightarrow \langle \emptyset, \lambda B. \emptyset \rangle$$

$$\langle A_t, \emptyset \rangle \rightarrow \text{const}_\text{pre} \text{true} A_t$$

$$\langle \emptyset, A_f \rangle \rightarrow \text{const}_\text{pre} \text{false} A_f$$

$$\langle A_t, A_f \rangle \rightarrow \langle \text{Bool}, \lambda B. (\text{if } (\text{true} \in B) A_t \emptyset) \cup (\text{if } (\text{false} \in B) A_f \emptyset) \rangle$$

Thus, $\text{real?}_\text{pre} \equiv \text{predicate}_\text{pre} \mathbb{R} (\top \setminus \mathbb{R})$. In the implementation, $\top \setminus \mathbb{R}$ would be represented by an instance of \texttt{Top-Union-Set}.

170
9.2.3 Testing

Dr. Bayes’s rectangular sets include sets of booleans, \{\emptyset\}, pairs, real sets, tagged structures, and bottom and top disjoint unions. Real sets are represented by finite, sorted lists of nonadjacent intervals, which complicates the set library further. We plan to add set representations for other basic data types, such as symbols and strings.

Even without representing sets of symbols and strings, the set library is the largest part of Dr. Bayes’s codebase: at just over 3000 lines of code, it comprises half.

Not only is the set library large and complicated, but errors in it are difficult to diagnose. By analogy, if Dr. Bayes is Java, then the bottom* and preimage* arrows are bytecode, and rectangular set operations are machine code. Blaming an error from Dr. Bayes’s output on the set library is like blaming an error from Java program output on an error in the CPU’s microprogram for an opcode. Worse, because Dr. Bayes outputs stochastic approximations, we are lucky if a noncatastrophic error in the set library is detectable.

Fortunately, unlike CPU microcode, rectangular set operations are correct if and only if they obey a small collection of laws.

The first part of the collection of laws regards sets not as boxes of values, but as values themselves in a bounded lattice. There are eight algebraic laws that define a bounded lattice. In terms of \(\cap\), \(\lor\), \emptyset and \bot, the algebraic laws are

\[
\begin{align*}
\emptyset \lor A &= A \\
T \cap A &= A \\
A \lor B &= B \lor A \\
A \cap B &= B \cap A \\
(A \lor B) \lor C &= A \lor (B \lor C) \\
(A \cap B) \cap C &= A \cap (B \cap C) \\
A \lor (A \cap B) &= A
\end{align*}
\]

\(\lor\) identity \\
\(\cap\) identity \\
\(\lor\) commutativity \\
\(\cap\) commutativity (9.11) \\
\(\lor\) associativity \\
\(\cap\) associativity \\
\(\lor\)-(\cap) absorption
\[A \cap (A \lor B) = A \quad \text{(\(\cap\)-(\(\lor\)) absorption)} \]

If these laws hold in the implementation, then at an abstract level in which we do not consider the contents of the sets, the implementation is correct.

But we must consider their contents, because we will be sampling within them, and we will be testing membership to determine whether the samples lie inside a preimage set. For our lattice, membership in its elements is characterized by these two laws:

\[
\begin{align*}
\text{If } x \in A \text{ or } x \in B & \implies x \in (A \lor B) & \text{ (\(\lor\)) membership} \\
\text{If } x \in A \text{ and } x \in B & \iff x \in (A \cap B) & \text{ (\(\cap\)) membership}
\end{align*}
\]

These are taken from the definitions of (\(\lor\)) and (\(\cap\)), but the first has (\(\iff\)) replaced by (\(\implies\)) because (\(\lor\)) overapproximates (i.e. if \(x \in (A \lor B)\), it may be in neither \(A\) nor \(B\)).

If the preceding 10 laws hold, the implementation is correct.

The first eight laws refer to (\(=\)), which we have not discussed the implementation of yet. The set representations given in this section can easily be made canonical, so that equality can be decided structurally. By default, Racket’s \texttt{equal?} primitive decides equality structurally for types with the \texttt{#:transparent} property, as Haskell’s (\texttt{==}) primitive does by default for types in the \texttt{Eq} typeclass.

Dr. Bayes’s set representations are currently canonical, but may not be in the future: the only equality requirement is that \(A = \emptyset\) be decidable. (Hopefully it is also efficient.) So to decide equality nonstructurally, we implement (\(\subseteq\)) as \texttt{subseteq?} and use Lemma 5.1:

\[
A = B \iff A \subseteq B \text{ and } B \subseteq A \quad \text{ (=) extensionality} \quad (9.13)
\]

Of course, we must now test \texttt{subseteq?} to ensure it has the properties of (\(\subseteq\)). The only essential property is derived from its definition, from Axiom 1 in Chapter 4:

\[
A \subseteq B \iff x \in A \implies x \in B \quad \text{(\(\subseteq\)) definition} \quad (9.14)
\]

172
If the preceding 12 laws hold, the implementation is correct. For canonical sets, (=) extensionality is testable; otherwise we use it to define set equality (i.e. it holds by definition).

The testing regime is this: some large number of times,
1. Randomly generate A, B and C.
2. Randomly generate \(x \in A \) and \(y \in B \).
3. Evaluate the preceding 12 laws.

The number of iterations for a typical testing run is 100,000, for which the current implementation takes about a minute on current hardware.

If step 2 randomly generated just \(x \in T \), then \(x \in A \) would be rare, and \(x \in A \implies x \in B \) would too often be equivalent to false \(\implies x \in B \), which is always true. Of course, we cannot always test with \(x \in A = true \), so for more complete coverage we also generate \(y \in B \) and test \(y \in A \implies y \in B \). We ensure boundary conditions, such as intersections and joins between two barely overlapping or adjacent intervals, happen often enough by choosing interval endpoints from \(\{ -\infty, -4, -3, -2, -1, 0, 1, 2, 3, 4, \infty \} \). We choose members of intervals from a similar small set that includes those endpoints, except the infinities.

To be even more certain that the implementation is correct, we additionally test an alternative lattice characterization: that the elements have an associated partial order in which every pair of elements has a meet and a join. In this case, the partial order is \((\subseteq)\). To be a partial order, it should have these properties:

\[
\begin{align*}
A \subseteq A & \quad \text{(\(\subseteq\) reflexivity)} \\
A \subseteq B \text{ and } B \subseteq A & \implies A = B \quad \text{(\(\subseteq\) antisymmetry)} \\
A \subseteq B \text{ and } B \subseteq C & \implies A \subseteq C \quad \text{(\(\subseteq\) transitivity)}
\end{align*}
\]

For canonical sets, \((\subseteq)\) antisymmetry is testable; otherwise it holds by definition.

The partial order is related to the lattice operators by the following properties, of which the first two provide alternative definitions for \((\subseteq)\) in terms of \((\lor)\) or \((\land)\), or vice-versa:

\[
B = A \lor B \iff A \subseteq B \quad \text{\((\lor)-(\subseteq)\) definition}
\]
\[A = A \cap B \iff A \subseteq B \] (\(\cap\)-\(\subseteq\) definition)

\[A \subseteq A \lor B \] (\(\lor\) increasing \hspace{1cm} (9.16)

\[A \cap B \subseteq A \] (\(\cap\) decreasing)

\[A_1 \subseteq A_2 \text{ and } B_1 \subseteq B_2 \implies A_1 \lor B_1 \subseteq A_2 \lor B_2 \] (\(\lor\) monotone)

\[A_1 \subseteq A_2 \text{ and } B_1 \subseteq B_2 \implies A_1 \cap B_1 \subseteq A_2 \cap B_2 \] (\(\cap\) monotone)

For noncanonical sets, the first two properties are equivalent to the middle two.

Errors introduced by changing the set library are caught quickly, usually within a few hundred iterations. We are quite certain of the correctness of our current implementation of rectangular sets and set operations, having verified the preceding 21 lattice and membership properties on millions of random inputs.

9.3 Preimages Under Real Functions

Chapter 8 leaves computing approximate preimages under arithmetic and other primitives up to implementors. In this section, we formalize a unified approach to doing so for one- and two-argument real functions, and give examples from Dr. Bayes’s implementation.

The general idea is to compute preimages by computing images of inverses. While how to do so seems obvious for certain kinds of one-argument functions, for two-argument functions it is not. Generalizing the computation of preimages under two-argument functions requires a theory of per-axis function inversion, which we have not been able to find in the literature.

We start with one-argument functions for simplicity, and extend to two-argument functions by regarding a one-argument function and its inverse as a cyclic group of order 2, and generalizing to similar groups of order 3. The resulting theory should generalize naturally to functions with any number of arguments, but we leave it for future work.

Working with intervals algorithmically is easier if we have notation in which the kind of interval is not baked into the syntax.
Definition 9.1 (interval). \([a_1, a_2, \alpha_1, \alpha_2]\) denotes an interval, where \(a_1, a_2 \in \overline{\mathbb{R}}\) are extended real endpoints, and \(\alpha_1, \alpha_2 \in \text{Bool}\) determine whether \(a_1\) and \(a_2\) are contained in the interval.

Some intervals, using \([·, ·, ·, ·]\) notation:

\[
\begin{align*}
[0, 1, \text{true}, \text{false}] &= [0, 1) \\
[\infty, 0, \text{false}, \text{true}] &= (\infty, 0] \\
[\infty, \infty, \text{false}, \text{false}] &= (\infty, \infty) = \mathbb{R} \\
[\infty, \infty, \text{true}, \text{true}] &= [\infty, \infty] = \overline{\mathbb{R}}
\end{align*}
\]

9.3.1 Invertible Primitives

We consider only total, strictly monotone functions on subsets of \(\mathbb{R}\). Further on, we recover more generality by using language conditionals to implement piecewise monotone functions.

One reason we consider only strictly monotone functions is that they are easy to invert. Recall that a function is invertible (bijective) if and only if it is injective (one-to-one) and surjective (onto).

Lemma 9.2 (strictly monotone, surjective implies invertible, continuous). If \(g : A \to B\) is strictly monotone, \(g\) is injective. If \(g\) is additionally surjective, \(g\) and its inverse are continuous.

Preimages under invertible functions can be computed using their inverses. Because we are deriving preimage arrow computations, we are primarily interested in computing preimages under restricted functions.

Lemma 9.3 (preimages from inverse images). If \(A' \subseteq A\), \(B' \subseteq B\), and \(g : A \to B\) has inverse \(g^{-1} : B \to A\), then preimage (restrict \(g\) \(A')\) \(B' = A' \cap \text{image } g^{-1} B'\).

These facts suggest that we can compute images (or preimages) of intervals under any strictly monotone, surjective \(g\) by applying \(g\) (or its inverse) to interval endpoints to yield an

\(^2\)Our results should hold in any other totally ordered, first-countable topological space.
interval, as in Figure 9.8. This is evident for endpoints in A. Limit endpoints like ∞ require a larger \tilde{g} defined on a compact superset of A.

Theorem 9.4 (images of intervals by endpoints). Let \overline{A} and B be compact subsets of \mathbb{R}, $\tilde{g}: \overline{A} \to B$ be strictly monotone and surjective, and g be the restriction of \tilde{g} to some $A \subseteq \overline{A}$. For all nonempty $[a_1, a_2, \alpha_1, \alpha_2] \subseteq A$,

- If \tilde{g} is increasing, image $g \ [a_1, a_2, \alpha_1, \alpha_2] = [\tilde{g} \ a_1, \tilde{g} \ a_2, \alpha_1, \alpha_2]$.
- If \tilde{g} is decreasing, image $g \ [a_1, a_2, \alpha_1, \alpha_2] = [\tilde{g} \ a_2, \tilde{g} \ a_1, \alpha_2, \alpha_1]$.

Proof. Because \overline{A} is compact and totally ordered, every subset of \overline{A} has a lower and an upper bound in \overline{A}. Therefore, the endpoints of every interval subset of A are in \overline{A}.

Let $(a_1, a_2) \subseteq A$. Suppose \tilde{g} is strictly increasing; thus $a_1 < a \leq a_2$ if and only if $\tilde{g} \ a_1 < \tilde{g} \ a \leq \tilde{g} \ a_2$, so image $g \ (a_1, a_2) = image \ \tilde{g} \ (a_1, a_2) = (\tilde{g} \ a_1, \tilde{g} \ a_2)$. The remaining cases are similar. \[\square\]
To use Theorem 9.4 to compute preimages under \(g \) by computing images under its inverse \(g^{-1} \), we must know if \(g^{-1} \) is increasing or decreasing. The following lemma can help.

Lemma 9.5 (inverse direction). If \(g : A \to B \) is strictly monotone and surjective with inverse \(g^{-1} : B \to A \), then \(g \) is increasing if and only if \(g^{-1} \) is increasing.

Example 9.6 (nonnegative square). The extension of \(\text{sqr}^+ : [0, \infty) \to [0, \infty) \), where \(\text{sqr}^+ a := a \cdot a \), to the compact superdomain \([0, \infty)\) is

\[
\text{sqr}^+ : [0, \infty] \to [0, \infty] \tag{9.18}
\]

\[
\text{sqr}^+ a := \lim_{a' \to a} \text{sqr}^+ a' = \text{if} (a = \infty) \infty (\text{sqr}^+ a)
\]

(With respect to \(\mathbb{R} \)’s standard topology, which is first-countable, \(\text{sqr}^+ \) is continuous and thus limit-preserving.) The extension of its inverse \(\text{sqrt}^+ \) is \(\text{sqrt}^+ : [0, \infty] \to [0, \infty] \), defined similarly, which by Lemma 9.5 is also strictly increasing. Thus,

\[
\text{image } \text{sqr}^+ [5, \infty) = [\text{sqr}^+ 5, \text{sqr}^+ \infty) = [25, \infty)
\]

\[
\text{preimage } (\text{restrict } \text{sqr}^+ [1, 2)) [2, 7] = [1, 2) \cap \text{image } \text{sqrt}^+ [2, 7] \tag{9.19}
\]

\[
= [1, 2) \cap [\text{sqrt}^+ 2, \text{sqrt}^+ 7] = [1, 2) \cap [\sqrt{2}, \sqrt{7}]
\]

\[
= [\sqrt{2}, 2)
\]

by Theorem 9.4 and Lemma 9.3.

9.3.2 Two-Argument Primitives

We do not expect to be able to compute preimages under \(\mathbb{R} \times \mathbb{R} \to \mathbb{R} \) primitives by simply inverting them. Two-argument invertible real functions are difficult to define and are usually pathological. Instead, we compute approximate preimages only, using inverses with respect to one argument (with the other held constant).
Definition 9.7 (axial inverse). Let \(g_c : A \times B \to C \). Functions \(g_a : B \times C \to A \) and \(g_b : C \times A \to B \) defined so that

\[
g_c \langle a, b \rangle = c \iff g_a \langle b, c \rangle = a \iff g_b \langle c, a \rangle = b
\]

(9.20)

are axial inverses with respect to \(g_c \)'s first and second arguments.

We call \(g_c \) axis-invertible or trijective when it has axial inverses \(g_a \) and \(g_b \). We call \(g_a \) the first axial inverse of \(g_c \) because it is the inverse of \(g_c \) along the first axis: \(g_a \) with only \(c \) varying, or \(\lambda c \in C, g_a \langle b, c \rangle \), is the inverse of \(g_c \) with only \(a \) varying, or \(\lambda a \in A, g_c \langle a, b \rangle \). Similarly, \(g_b \) is the second axial inverse.

Example 9.8. Let \(\text{add}_c : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), \(\text{add}_c \langle a, b \rangle := a + b \). Its axial inverses are \(\text{add}_a \langle b, c \rangle := c - b \) and \(\text{add}_b \langle c, a \rangle := c - a \).

We have chosen the axial inverse function types carefully: they are the only types for which \(g_c, g_a \) and \(g_b \) form a cyclic group.

Theorem 9.9 (axial inverse cyclic group). The following statements are equivalent.

- \(g_c \) has axial inverses \(g_a \) and \(g_b \).
- \(g_a \) has axial inverses \(g_b \) and \(g_c \).
- \(g_b \) has axial inverses \(g_c \) and \(g_a \).

Equivalently, every axis-invertible function generates a cyclic group of order 3 by inversion in the first axis.

Proof. This is evident from the definition of axial inverse (Definition 9.7). \(\square \)

This fact is analogous to how mutual inverses \(g \) and \(g^{-1} \) form a cyclic group of order 2 generated by inversion. Similar to using mutual inversion to compute images and preimages under both \(\text{sqr}^+ \) and \(\text{sqrt}^+ \), Theorem 9.9 allows computing preimages under two-argument functions related by axial inversion.
Example 9.10. Define \(\text{sub}_c : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by \(\text{sub}_c \langle a, b \rangle := a - b \). Because \(\text{sub}_c = \text{add}_b \), \(\text{sub}_a = \text{add}_c \) and \(\text{sub}_b = \text{add}_a \). \(\Diamond \)

Unlike inverses, axial inverses do not provide a direct way to compute exact preimages. Instead, they provide a way to compute a preimage’s smallest rectangular bounding set.

Theorem 9.11 (preimage bounds from axial inverse images). Let \(A' \subseteq A \subseteq \mathbb{R}, B' \subseteq B \subseteq \mathbb{R}, C' \subseteq C \subseteq \mathbb{R}, \) and \(g_c : A \times B \to C \) with axial inverses \(g_a \) and \(g_b \). If \(g_c' := \text{restrict } g_c (A' \times B') \),

\[
\text{preimage } g_c' C' \subseteq (A' \cap \text{image } g_a (B' \times C')) \times (B' \cap \text{image } g_b (C' \times A'))
\]

(9.21)

Further, the right-hand side is the smallest rectangular superset.

Proof. The smallest rectangle containing \(\text{preimage } g_c' C' \) is

\[
\text{preimage } g_c' C' \subseteq (\text{image } \text{fst } (\text{preimage } g_c' C')) \times (\text{image } \text{snd } (\text{preimage } g_c' C'))
\]

(9.22)

Starting with the first set in the product, expand definitions, distribute \(\text{fst} \), replace \(g_c \langle a, b \rangle = c \) by \(g_a \langle b, c \rangle = a \), and simplify:

\[
\text{image } \text{fst } (\text{preimage } g_c' C') = \text{image } \text{fst } \{ \langle a, b \rangle \in A' \times B' \mid g_c \langle a, b \rangle \in C' \} = \{ a \in A' \mid \exists b \in B', g_c \langle a, b \rangle \in C' \} = \{ a \in A' \mid \exists b \in B', c \in C', g_c \langle a, b \rangle = c \} = \{ a \in A' \mid \exists b \in B', c \in C', g_a \langle b, c \rangle = a \} = \{ g_a \langle b, c \rangle \mid b \in B', c \in C', g_a \langle b, c \rangle \in A' \} = A' \cap \{ g_a \langle b, c \rangle \mid b \in B', c \in C' \} = A' \cap \text{image } g_a (B' \times C')
\]

The second set in the product is similar. \(\Box \)
Figure 9.9: Computing an approximate preimage of $[0, \frac{1}{2}]$ under addition restricted to $[0, 1] \times [0, 2]$ (Example 9.12). The preimage is approximated by intersecting the domain with an overapproximation computed using axial inverses.

Example 9.12. Let $\text{add}_c' := \text{restrict} \text{add}_c ([0, 1] \times [0, 2])$. By Theorem 9.11,

\[
\begin{align*}
\text{preimage} \text{add}_c' [0, \frac{1}{2}] \subseteq & \ (([0, 1] \cap \text{image add}_a ([0, 2] \times [0, \frac{1}{2}])) \times \\
& (([0, 2] \cap \text{image add}_b ([0, \frac{1}{2}] \times [0, 1]))) \\
= & \ (([0, 1] \cap [-2, \frac{1}{2}]) \times ([0, 2] \cap [-1, \frac{1}{2}]) \\
= & \ [0, \frac{1}{2}] \times [0, \frac{1}{2}]
\end{align*}
\]

is the smallest rectangular subset of $[0, 1] \times [0, 2]$ containing the preimage of $[0, \frac{1}{2}]$ under add_c'. Figure 9.9 illustrates the calculation.

At this point, we have an analogue of Lemma 9.3, in that we can compute (approximate) preimages by computing images under (axial) inverses. Computing images using interval endpoints requires analogues of Lemma 9.2 (strictly monotone, surjective implies invertible, continuous), Theorem 9.4 (images of intervals by endpoints), and Lemma 9.5 (inverse
direction).

We first need a notion of function properties that hold for one argument for every fixed value of the other argument. We will say that $g_c : A \times B \rightarrow C$ has property P in its first axis when $P (\lambda a \in A. g_c (a, b))$ for all $b \in B$. Similarly, g_c has property P in its second axis when $P (\lambda b \in B. g_c (a, b))$ for all $a \in A$.

Theorem 9.13 (strictly monotone, surjective implies axis-invertible, continuous). Let $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, $C \subseteq \mathbb{R}$ and $g_c : A \times B \rightarrow C$. If g_c is surjective and either strictly increasing or decreasing in each axis, it has axial inverses g_a and g_b. Further, g_a and g_b are also surjective and either strictly increasing or decreasing in each axis, and g_c, g_a and g_b are continuous.

Proof. We define

$$g_a (b, c) := \ i \ a \in A. g_c (a, b) = c$$
$$g_b (c, a) := \ i \ b \in B. g_c (a, b) = c$$

which by Lemma 9.2 and the assumed axis properties are well-defined. (Recall $i \ e$ means “the $a \in A$ such that e.”) Evidently, $g_a (b, c) = a \iff g_c (a, b) = c$ and $g_b (c, a) = b \iff g_c (a, b) = c$, so g_a and g_b are axial inverses by Definition 9.7, from which also follows per-axis surjectivity and strict monotonicity.

For continuity, we note that the standard topology of $\mathbb{R} \times \mathbb{R}$ is first-countable, as are the standard topologies of any subsets. A function with a first-countable domain is continuous if and only if it preserves countable limits; in this case, $g_c (\text{limit } xs) = \text{limit } (\text{map } g_c xs)$ for all convergent sequences $xs : \mathbb{N} \rightarrow A \times B$.

Let $xs : \mathbb{N} \rightarrow A \times B$ such that $\text{limit } xs = \langle a', b' \rangle$ for some $\langle a', b' \rangle \in A \times B$. We start with a simpler horizontal case, then reduce the general case to it.

Horizontal case: $\text{snd } (xs n) = b'$ for all $n \in \mathbb{N}$; i.e. xs is on a horizontal line at b'. Let $as := \text{map } \text{fst } xs$ and $g := \lambda a \in A. g_c (a, b')$, so $\text{map } g_c xs = \text{map } g as$. Because g_c is surjective
and either strictly increasing or decreasing in its first axis, by Lemma 9.2, \(g \) is continuous, so

\[
\lim (\text{map } g_c \, \text{xs}) = \lim (\text{map } g \, \text{as}) = g \left(\lim \text{as} \right) \tag{9.24}
\]

\[
= g \, a' = g_c \langle a', b' \rangle = g_c \left(\lim \text{xs}' \right) = g_c \left(\lim \text{xs} \right)
\]

Thus \(g_c \) preserves horizontal limits. By a similar argument, \(g_a \) preserves vertical limits.

General case: Define

\[
\text{line } b'' \langle a, b \rangle := \text{let } c := g_c \langle a, b \rangle \\
a'' := g_a \langle b'', c \rangle \\
\text{in } \langle a'', b'' \rangle \tag{9.25}
\]

which because \(g_c \langle a'', b'' \rangle = c \iff g_a \langle b'', c \rangle = a'' \) transforms a pair \(\langle a, b \rangle \) into a pair \(\langle a'', b'' \rangle \) so that \(g_c \langle a, b \rangle = g_c \langle a'', b'' \rangle \). That is, \(\text{xs}'' := \text{map} \ (\text{line } b'') \, \text{xs} \) is a sequence on a horizontal line at \(b'' \) for which \(\text{map } g_c \, \text{xs} = \text{map } g_c \, \text{xs}'' \).

Now let \(\text{xs}' := \text{map} \ (\text{line } b') \, \text{xs} \) so that additionally (because \(g_a \) preserves vertical limits), \(\lim \text{xs}' = \lim \text{xs} \). Thus,

\[
\lim (\text{map } g_c \, \text{xs}) = \lim (\text{map } g_c \, \text{xs}') = g_c \left(\lim \text{xs}' \right) = g_c \left(\lim \text{xs} \right) \tag{9.26}
\]

with the middle equality by \(g_c \)'s preservation of horizontal limits.

Similar arguments prove continuity of \(g_a \) and \(g_b \).

Figure 9.10 illustrates Theorem 9.13’s hypotheses.

Example 9.14. In each axis, \(\text{add}_c \) is surjective and strictly increasing. In each axis, \(\text{sub}_c \) is surjective, and is strictly increasing/decreasing in its first/second axis. Therefore, both are axis-invertible.

Restriction usually makes a function not surjective in each axis.

Example 9.15. Let \(\text{add}'_c : [0, 1] \times [0, 1] \to [0, 2] \), defined by restricting \(\text{add}_c \). It is surjective, but not in each axis: the range of \(\lambda b \in B. \text{add}'_c \langle 0, b \rangle \) is \([0, 1]\), not \([0, 2]\).

Fortunately, restriction sometimes does the opposite.
Example 9.16. Define $\text{mul}_c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $\text{mul}_c (a, b) := a \cdot b$. It is not surjective nor strictly monotone in each axis because $\text{mul}_c (0, b) = 0$ for all $b \in B$. (See Figure 9.11.) But $\text{mul}^{++}_c : (0, \infty) \times (0, \infty) \to (0, \infty)$, and mul_c restricted to the other open quadrants, are surjective and strictly increasing or decreasing in each axis.

Theorem 9.4 justifies computing images of intervals with infinite endpoints under one-argument functions by applying an extended function to the endpoints. Its two-argument analogue is more involved because extended, two-argument functions may not be defined at every point.

Example 9.17. add_c cannot be extended to $\overline{\text{add}}_c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ in the same way sqr^+ is
Figure 9.11: Multiplication on $\mathbb{R} \times \mathbb{R}$ is not surjective nor strictly monotone in each axis: $a \cdot 0 = 0$ and $0 \cdot b = 0$ for all a and b (Example 9.16). Fortunately, restricted to each open quadrant, multiplication is surjective and strictly increasing or decreasing in each axis.

extended to $\overline{\mathbb{R}}$ because

$$\lim_{\langle a', b' \rangle \to \langle a, b \rangle} \text{add}_{\mathcal{C}} \langle a', b' \rangle$$

diverges when $\langle a, b \rangle$ is $\langle -\infty, \infty \rangle$ or $\langle \infty, -\infty \rangle$.

The previous example suggests that extensions of strictly increasing, two-argument functions are always well-defined except at off-diagonal corners. This is true if we define “off-diagonal” carefully.

Theorem 9.18 ($\overline{\mathbb{R}} \times \overline{\mathbb{R}}$ extension). Let A, B, C be open subsets of \mathbb{R}, and $g_{\mathcal{C}} : A \times B \to C$ be surjective and strictly increasing or decreasing in each axis. Let $\overline{A}, \overline{B}$ and \overline{C} be the closures of A, B and C in $\overline{\mathbb{R}}$. The following extension is well-defined:

$$\overline{g}_{\mathcal{C}} : (\overline{A} \times \overline{B}) \setminus N \to \overline{C}$$

$$\overline{g}_{\mathcal{C}} \langle a, b \rangle := \lim_{\langle a', b' \rangle \to \langle a, b \rangle} g_{\mathcal{C}} \langle a', b' \rangle$$

184
where $N := \{(\min A, \max B), (\max A, \min B)\}$ if g_c is increasing in each axis or decreasing in each axis, and $N := \{(\min A, \min B), (\max A, \max B)\}$ if g_c is increasing/decreasing or decreasing/increasing.

Proof. Suppose g_c is increasing/increasing, and let $xs : N \to A \times B$ be a sequence of g_c’s domain values, and $ys := \text{map } g_c \text{ } xs$.

Interior case: xs converges to $(a, b) \in A \times B$. The limit of ys is $g_c(a, b)$ because g_c preserves limits by its continuity (by Theorem 9.13) in the first-countable space $\mathbb{R} \times \mathbb{R}$.

Corner case: xs converges to $(\max A, \max B)$. It thus has a strictly increasing subsequence. By monotonicity, ys has a strictly increasing subsequence. Because ys is bounded by $\max C$, $g_c(\max A, \max B) = \max C$. A similar argument proves $g_c(\min A, \min B) = \min C$.

Border case: xs converges to $(\max A, b')$ for some $b' \in B$. Define $xs' := \text{map } (\text{line } b) \text{ } xs$, where line is defined as in the proof of Theorem 9.13. Now $ys = \text{map } g_c \text{ } xs'$. Because xs' has a subsequence that is strictly increasing in the first of each pair, and because the second of each pair is the constant b', by monotonicity, ys has a strictly increasing subsequence. It is bounded by $\max C$, so $g_c(\max A, b') = \max C$. Similar arguments prove $g_c(\min A, b') = \min C$, $g_c(a', \max B) = \max C$, and $g_c(a', \min B) = \min C$.

The cases for g_c’s other possible directions are similar. □

Following the proof of Theorem 9.18, extensions of two-argument functions can be defined by two corner cases, four border cases, and an interior case.

Example 9.19. Define $\text{pow}_c : (0, 1) \times (0, \infty) \to (0, 1)$ by $\text{pow}_c(a, b) := \exp(b \cdot \log a)$, which
is increasing/decreasing. Its extension to a subset of $\mathbb{R} \times \mathbb{R}$ is

$$\text{pow}_c : ([0,1] \times [0,\infty]) \setminus \mathbb{N} \to [0,1]$$

$$\text{pow}_c \langle a, b \rangle := \text{case} \langle a, b \rangle$$

$$\langle 0, \infty \rangle \to 0$$

$$\langle 1, 0 \rangle \to 1$$

$$\langle 0, b \rangle \to 0$$

$$\langle 1, b \rangle \to 1$$

$$\langle a, 0 \rangle \to 1$$

$$\langle a, \infty \rangle \to 1$$

else $\to \text{pow}_c \langle a, b \rangle$ \hspace{1cm} (9.29)

where $\mathbb{N} := \{\langle 0, 0 \rangle, \langle 1, \infty \rangle\}$. \diamondsuit

The analogue of Theorem 9.4 (images of intervals by endpoints) is easiest to state if we have predicates that indicate a function’s direction in each axis. Define $\text{inc}_1 : (A \times B \to C) \Rightarrow \text{Bool}$ so that $\text{inc}_1 g$ if and only if g is strictly increasing in its first axis, and similarly inc_2 so that $\text{inc}_2 g$ if and only if g is strictly increasing in its second axis.

Theorem 9.20 (images of rectangles by interval endpoints). Let A, B, C be open subsets of \mathbb{R}, and $g_c : A \times B \to C$ be surjective and strictly increasing or decreasing in each axis, with g_c as defined in Theorem 9.18. If $A' := [a_1, a_2, \alpha_1, \alpha_2] \subseteq A$ and $B' := [b_1, b_2, \beta_1, \beta_2] \subseteq B$, then

$$C' := \text{image } g_c ([a_1, a_2, \alpha_1, \alpha_2] \times [b_1, b_2, \beta_1, \beta_2])$$

\[= \text{let } \langle a'_1, a'_2, \alpha'_1, \alpha'_2 \rangle := \text{cond} \ (\text{inc}_1 g_c) \to \langle a_1, a_2, \alpha_1, \alpha_2 \rangle \]

\[\text{else } \to \langle a_2, a_1, \alpha_2, \alpha_1 \rangle \] \hspace{1cm} (9.30)

\[\langle b'_1, b'_2, \beta'_1, \beta'_2 \rangle := \text{cond} \ (\text{inc}_2 g_c) \to \langle b_1, b_2, \beta_1, \beta_2 \rangle \]

\[\text{else } \to \langle b_2, b_1, \beta_2, \beta_1 \rangle \]

in $[g_c \langle a'_1, b'_1 \rangle, g_c \langle a'_2, b'_2 \rangle, \alpha'_1 \text{ and } \beta'_1, \alpha'_2 \text{ and } \beta'_2]$]

Proof. Because g_c is continuous and $A' \times B'$ is a connected set, C' is a connected set, which in \mathbb{R} is an interval. Thus, we need to determine only its endpoints and whether it contains each endpoint.

Suppose g_c is increasing/increasing. In this case, $a'_1 = a_1$, $b'_1 = b_1$, and so on. By monotonicity, C' is contained in $[g_c \langle a'_1, b'_1 \rangle, g_c \langle a'_2, b'_2 \rangle]$. If α'_1 or β'_1 is false, C' cannot
contain \(g \langle a'_1, b'_1 \rangle \). If \(\alpha'_2 \) or \(\beta'_2 \) is \text{false}, \(C' \) cannot contain \(g \langle a'_2, b'_2 \rangle \). Therefore \(C' = \{ g \langle a'_1, b'_1 \rangle, g \langle a'_2, b'_2 \rangle, \alpha'_1 \) and \(\beta'_1, \alpha'_2 \) and \(\beta'_2 \}. \)

We still must prove \(g \langle a'_1, b'_1 \rangle \) and \(g \langle a'_2, b'_2 \rangle \) are in \(g \langle \rangle \)’s domain. First, recall \(g \langle \rangle : (A \times B) \setminus N \rightarrow C \), where \(A, B \) and \(C \) are the closures of \(A, B \) and \(C \), and \(N = \{ \langle \min A, \max B \rangle, \langle \max A, \min B \rangle \} \). Because \(A' \subseteq A \) and \(B' \subseteq B \), and \(A \) and \(B \) are open sets, \(a_1 \neq \max A, a_2 \neq \min A, b_1 \neq \max B, \) and \(b_2 \neq \min B \), so for all \(a \in A \) and \(b \in B \),

\[
\langle a_1, b_1 \rangle \neq \langle \max A, b \rangle \quad \langle a_2, b_2 \rangle \neq \langle \min A, b \rangle \quad \langle a_1, b_1 \rangle \neq \langle a, \max B \rangle \quad \langle a_2, b_2 \rangle \neq \langle a, \min B \rangle
\]

(9.31)

Therefore, \(\langle a_1, b_1 \rangle \notin N \) and \(\langle a_2, b_2 \rangle \notin N \), as desired.

The remaining cases for \(g \langle \rangle \) are similar.

\textbf{Example 9.21.} Because \(\text{inc} \text{pow}_c \) and not \(\langle \text{inc} \text{pow}_c \rangle \),

\[
\text{image} \text{pow}_c (\{(0, \frac{1}{2}) \times [2, \infty)\})
\]

\[
= \text{let} \ \langle a_1, a_2, \alpha_1, \alpha_2 \rangle := \langle 0, \frac{1}{2}, \text{false}, \text{true} \rangle \\
\langle b_1, b_2, \beta_1, \beta_2 \rangle := \langle \infty, 2, \text{false}, \text{true} \rangle \\
in \{ \text{pow}_c \langle a_1, b_1 \rangle, \text{pow}_c \langle a_2, b_2 \rangle, \alpha_1 \) and \(\beta_1, \alpha_2 \) and \(\beta_2 \}
\]

\[
= \{ \text{pow}_c \langle 0, \infty \rangle, \text{pow}_c \langle \frac{1}{2}, 2 \rangle, \text{false and false, true and true} \}
\]

\[
= [0, \frac{1}{2}, \text{false, true}]
\]

\[
= (0, \frac{1}{2})
\]

To use Theorem 9.20 to compute approximate preimages under some \(g \langle \rangle \) by computing images under its axial inverses, we must know whether each axis of \(g \langle \rangle_a \) and \(g \langle \rangle_b \) is increasing or decreasing. It helps to have an analogue of Lemma 9.5 (inverse direction).

\textbf{Theorem 9.22} (axial inverse directions). Let \(g \langle \rangle : A \times B \rightarrow C \) be surjective and strictly increasing or decreasing in each axis, with axial inverses \(g \langle \rangle_a \) and \(g \langle \rangle_b \). Then

1. \(\text{inc}_1 g \langle \rangle_a \) if and only if \(\text{inc}_1 g \langle \rangle \) xor \(\text{inc}_2 g \langle \rangle \).

2. \(\text{inc}_2 g \langle \rangle_a \) if and only if \(\text{inc}_1 g \langle \rangle \).
Proof. For 1, let \(c \in C, b_1, b_2 \in B, a_1 := g_a (b_1, c) \) and \(a_2 := g_a (b_2, c) \). Let \(c' := g_c (a_1, b_2) \); note \(c = g_c (a_1, b_1) = g_c (a_2, b_2) \). Suppose \(\text{inc}_1 g_c \) and \(\text{inc}_2 g_c \); then \(a_1 > a_2 \iff c < c' \) and \(b_1 < b_2 \iff c < c' \), so \(b_1 < b_2 \iff a_1 > a_2 \). The remaining cases are similar.

For statement 2, fix \(b \in B \) and apply Lemma 9.5.

By Theorem 9.22, we can use \(g_c \)'s axis directions to determine \(g_a \)'s, and by Theorem 9.9 (axial inverse cyclic group), use \(g_a \)'s to determine \(g_b \)'s.

9.3.3 Primitive Implementation

Because floating-point functions are defined on subsets of \(\mathbb{R} \), it would seem we could compute preimages under strictly monotone, real functions by applying their floating-point counterparts to interval endpoints. This is mostly true, but as with real-set-singleton, we must take care with rounding. We must also account for floating-point’s signed zeros.

As with all interval arithmetic, to compute sound approximations of interval images, we must round the results outward: round the lower endpoints down, and round the upper endpoints up. Unlike with most interval arithmetic, soundness is not just a nice theoretical guarantee. For the lowest-rejection-rate sampling algorithm presented further on, it is critical.

The sampling algorithm chooses a random value \(a \), restricts \(\Omega \) at index \(j \) to \([a, a]\) using \(\Omega' := \text{unproj}_j \Omega \ [a, a] \), and computes a preimage under the program’s interpretation as a function, restricted to \(\Omega' \). If in the forward pass, the approximation of the image of \(\Omega' \) is not sound, the reverse pass will often falsely compute an empty preimage.

Here is a more concrete example. As a preimage arrow computation, square root is

\[
\text{sqrt}_{\text{pre}} : [0, \infty) \xrightarrow{\text{pre}} [0, \infty)
\]

\[
\text{sqrt}_{\text{pre}} A := (\text{image sqrt}^+ A, \text{preimage (restrict sqrt}^+ A))
\]

Suppose \(A = [\frac{1}{2}, \frac{1}{2}] \), and that the implementation mistakenly computes \(\text{image sqrt}^+ [\frac{1}{2}, \frac{1}{2}] \) as \([0.7071067811865476, 0.7071067811865476] \). The number 0.7071067811865476 is the closest 64-bit floating-point number to \(\sqrt{\frac{1}{2}} \), i.e. the implementation’s floating-point square root is
compliant with the IEEE 754 floating-point standard [2].

Suppose that on the reverse phase, we compute the preimage of \(\mathbb{R} \) under \(\text{restrict}\sqrt{+} \left[\frac{1}{2}, \frac{3}{2} \right] \).

By Lemma 9.3, the implementation of \(\text{pre} \) should compute

\[
\text{preimage} \left(\text{restrict}\sqrt{+} \left[\frac{1}{2}, \frac{3}{2} \right] \right) \left(\mathbb{R} \cap [0.7071067811865476, 0.7071067811865476] \right)
\]

By Lemma 9.3, the implementation of \(\text{pre} \) should compute

\[
= \left[\frac{1}{2}, \frac{3}{2} \right] \cap \text{image}\sqrt{+} \left[0.7071067811865476, 0.7071067811865476 \right]
\]

If it again uses compliant floating-point arithmetic but does not round outward, it computes

\[
\left[\frac{1}{2}, \frac{3}{2} \right] \cap [0.5000000000000001, 0.5000000000000001] = \emptyset
\]

In fact, an implementation that does not round intervals outward would falsely compute empty preimages for about half of the floating-point numbers between 0.0 and 1.0.

The IEEE 754 floating-point standard mandates a settable rounding mode, and that common operations must use it to determine which of the nearest floating-point numbers to round to. Unfortunately, there is no portable way to set the rounding mode. In Racket, we have a few other options.

1. Use \texttt{math/bigfloat}, which wraps the MPFR arbitrary-precision floating-point library [28], which does provide a way to set the rounding mode for its operations.

2. Use the \texttt{math/flonum} library’s functions for \texttt{double-doubles}, which are two nonoverlapping floating-point numbers that when added together represent a number with a 105-bit significand [69]. Convert flonums to double-doubles, operate on them, and manually round the high-order number of the result up or down based on the sign of the low-order number.

3. Use the \texttt{math/flonum} library’s \texttt{flnext} and \texttt{flprev} to bump the endpoints up or down. We use option 2 for functions with 105-bit implementations, such as arithmetic, \texttt{exp} and \texttt{log}, and otherwise use option 3.

For option 3, how far the endpoints are bumped up or down depends on the maximum error in the output of the function’s floating-point implementation. For example, we use
the normal distribution’s inverse cumulative density function \(F_N^{-1} \) (and its inverse \(F_N \)) to transform uniformly distributed random numbers (i.e. each \(\omega_j \)) into normally distributed random numbers. As a preimage arrow computation, it is

\[
\text{normal-inv-cdf} \quad \text{pre} : (0, 1) \xrightarrow{\omega \mapsto} \mathbb{R} \\
\text{normal-inv-cdf} \quad \text{pre} \ A := \langle \text{image } F_N^{-1} A, \text{preimage } (\text{restrict } F_N^{-1} A) \rangle
\]

(9.35)

Racket’s \texttt{math/distributions} library implements \(F_N^{-1} \) with \texttt{flnormal-inv-cdf} and \(F_N \) with \texttt{flnormal-cdf}, whose outputs are always within four floating-point numbers of the exact outputs. The implementation of \texttt{normal} \texttt{pre} therefore bumps lower endpoints down by 4 and upper endpoints up by 4.

For the code in this section, we use a \texttt{/rndu} suffix (read “with rounding up”) for the names of functions that round up, and a \texttt{/rndd} for the name of functions that round down. In Racket, prefixing floating-point functions with \texttt{fl} is conventional, so the name of the floating-point addition function that rounds down is \texttt{fl+ /rndd}, and the name of the floating-point square root function that rounds up is \texttt{flsqrt /rndu}.

Figure 9.12 lists code that computes sound image and preimage approximations under strictly monotone, surjective real functions. Such functions are represented by instances of \texttt{Bijection}. Each instance contains a \texttt{Boolean} indicating whether the function is increasing, its domain, range, an implementation with rounding down and up, and an inverse implementation with rounding down and up. For example,

\[
\begin{align*}
\text{(define pos-sqr-bij} \\
&\quad \text{(Bijection } \#t \text{ nonnegative-reals nonnegative-reals} \\
&\quad \quad \text{flsqr /rndd flsqr /rndu} \\
&\quad \quad \text{flsqrt /rndd flsqrt /rndu)})
\end{align*}
\]

\[
\begin{align*}
\text{(define sqrt-bij} \\
&\quad \text{(bijection-inverse pos-sqr-bij})
\end{align*}
\]

The preimage arrow computation \texttt{sqrt-pre} computes \((\text{bijection-image sqrt-bij A}) \) in the forward phase and \((\text{bijection-preimage sqrt-bij A B}) \) in the reverse phase.
Figure 9.12: Typed Racket code for computing images and preimages under strictly monotone, surjective real functions.

A simple example shows how floating-point’s signed zeros can cause problems: the implementation of the reciprocal function. Let recip^+ be the extension of $\text{recip}^+: (0, \infty) \to$
$(0, \infty)$ to the compact superdomain $[0, \infty]$, defined by

$$
\text{recip}^+ : [0, \infty] \to [0, \infty]
$$

$$
\text{recip}^+ a := \lim_{a' \to a} \text{recip}^+ a' = \begin{cases}
0 & \to \infty \\
\infty & \to 0 \\
\text{else} & \to \text{recip}^+ a
\end{cases}
$$

(9.36)

Suppose we implement it this way:

```scheme
(define pos-recip-bij
  (Bijection #f positive-reals positive-reals
    (λ (a) (fl//rndd 1.0 a)) (λ (a) (fl//rndu 1.0 a))
    (λ (a) (fl//rndd 1.0 a)) (λ (a) (fl//rndu 1.0 a))))
```

Because recip^+ is surjective, $\text{image recip}^+ (0, \infty) = (0, \infty)$. With this implementation, we get the expected result only when the left endpoint is positive floating-point zero, or $+0.0$:

```scheme
> (bijection-image pos-recip-bij (Real-Set +0.0 +inf.0 #f #f))
(Real-Set 0.0 +inf.0 #f #f)
> (bijection-image pos-recip-bij (Real-Set -0.0 +inf.0 #f #f))
empty-set
```

The issue is that $(\text{fl/} 1.0 +0.0)$ returns $+\infty.0$, but $(\text{fl/} 1.0 -0.0)$ returns $-\infty.0$, as per the IEEE 754 floating-point standard. The implementation should compute

$$
\text{image recip}^+ (0, \infty) = (\text{recip}^+ \infty, \text{recip}^+ 0) = (0, \infty)
$$

(9.37)

but tries to return $(0, -\infty)$, which is the empty set.

In interval arithmetic, the typical solution is to allow $+0.0$ only as a lower endpoint, and -0.0 as only as an upper endpoint [35]. We have not determined whether this solution generalizes to nonarithmetic functions, however, so we define

```scheme
(define (pos-recip/rndd a)
  (if (fl= a 0.0) +inf.0 (fl/ 1.0 a)))
```

192
;; Represents an $R \times R \rightarrow R$ trijection, its directions, domain and range

(struct Trijection
 ([inc1? : Boolean] [inc2? : Boolean]
 [domain1 : Real-Set] [domain2 : Real-Set] [range : Real-Set]
 [gc/rndd : (Flonum Flonum -> Flonum)] [gc/rndu : (Flonum Flonum -> Flonum)]
 [ga/rndd : (Flonum Flonum -> Flonum)] [ga/rndu : (Flonum Flonum -> Flonum)]
 [gb/rndd : (Flonum Flonum -> Flonum)] [gb/rndu : (Flonum Flonum -> Flonum)]))

(: real2d-image (Boolean Boolean (Flonum Flonum -> Flonum) (Flonum Flonum -> Flonum) Real-Set Real-Set -> Real-Set))

;; Returns a sound approximation of the image of $A \times B$ under g (Theorem 8.20)
(define (real2d-image inc1? inc2? g/rndd g/rndu A B)
 (define-values (a1 a2 a1? a2?)
 (match-let ([[(Real-Set a1 a2 a1? a2?) A]]
 (cond [inc1? (values a1 a2 a1? a2?)]
 [else (values a2 a1 a2? a1?)])))
 (define-values (b1 b2 b1? b2?)
 (match-let ([[(Real-Set b1 b2 b1? b2?) B]]
 (cond [inc2? (values b1 b2 b1? b2?)]
 [else (values b2 b1 b2? b1?)])))
 (Real-Set (g/rndd a1 b1) (g/rndu a2 b2) (and a1? b1?) (and a2? b2?)))

(: trijection-preimage (Trijection Real-Set Real-Set Real-Set Real-Set
 -> (Values (U Empty-Set Real-Set)
 (U Empty-Set Real-Set)))))

;; Returns an approximate preimage of C under g restricted to $A \times B$
;; (Theorem 8.11, Theorem 8.22)
(define (trijection-preimage g A B C)
 (match-define (Trijection gc-inc1? gc-inc2? X Y Z
 _ _ ga/rndd ga/rndu gb/rndd gb/rndu) g)
 (define ga-inc1? (xor gc-inc1? gc-inc2?))
 (define ga-inc2? gc-inc1?)
 (define gb-inc1? (xor ga-inc1? ga-inc2?))
 (define gb-inc2? ga-inc1?)
 (let ([A (real-set-intersect A X)]
 [B (real-set-intersect B Y)]
 [C (real-set-intersect C Z)]
 (if (or (empty-set? A) (empty-set? B) (empty-set? C))
 (values empty-set empty-set)
 (values (real-set-intersect A (real2d-image ga-inc1? ga-inc2? ga/rndd ga/rndu B C))
 (real-set-intersect B (real2d-image gb-inc1? gb-inc2? gb/rndd gb/rndu C A))))))

Figure 9.13: Typed Racket code for computing images and preimages under two-dimensional real functions that are surjective and strictly increasing or decreasing in each axis.
and similarly $\text{pos-recip}/\text{rndu}$, and define pos-recip-bij in terms of these functions.

Figure 9.13 lists code that computes sound image and preimage approximations under two-dimensional real functions that are surjective and strictly increasing or decreasing in each axis. Such functions are represented by instances of Trijection. Each instance contains two Boolean values indicating whether each axis is increasing, its axis domains, its range, an implementation with rounding down and up, and two axial inverse implementations with rounding down and up. For example, the implementations of addition and subtraction are

\[
\begin{align*}
(\text{define add-trij} & \\
& (\text{Trijection } \#t \#t \text{ reals reals reals} \\
& \quad \quad \text{fl+/rndd fl+/rndu} \\
& \quad \quad \text{flrev-/rndd flrev-/rndu} \\
& \quad \quad \text{fl-/rndd fl-/rndu}))
\end{align*}
\]

\[
(\text{define sub-trij} \\
& (\text{trijection-second-inverse add-trij}))
\]

where flrev-/rndd implements $\text{add}_a \langle b, c \rangle := c - b$ with rounding down.

9.3.4 Piecewise Monotone Primitives

Using ifte_{pre}, it is easy to provide primitives that are piecewise monotone with finitely many pieces. We first need predicates to distinguish the parts, so we define

\[
\text{negative?}_{\text{pre}} : \mathbb{R} \xrightarrow{\text{pre}} \text{Bool}
\]

\[
\text{negative?}_{\text{pre}} := \text{predicate}_{\text{pre}} (-\infty, 0] (0, \infty)
\]

(9.38)

as well as $\text{positive?}_{\text{pre}}$ in the same way.

From $\text{sqr}^+_{\text{pre}}$ (nonnegative square) and neg_{pre} (negation) primitives, we define

\[
\begin{align*}
\text{sqr}_{\text{pre}} & := \text{ifte}_{\text{pre}} \text{negative?}_{\text{pre}} (\text{neg}_{\text{pre}} \gg\gg_{\text{pre}} \text{sqr}^+_{\text{pre}}) \text{sqr}^+_{\text{pre}} \\
\text{sqr}^{-}_{\text{pre}} & := \eta_{\text{pre}^-} \text{sqr}_{\text{pre}}
\end{align*}
\]

(9.39)

We then extend $\llbracket \cdot \rrbracket_{\text{pre}^-}$ by the rule $\llbracket \text{sqr} \ e \rrbracket_{\text{pre}^-} := \llbracket e \rrbracket_{\text{pre}^-} \gg\gg_{\text{pre}^-} \text{sqr}_{\text{pre}^-}$. Equivalently, we could
provide \(\text{sqr}^+ \), \(\text{neg} \) and \(\text{negative?} \) as primitives and define

\[
\text{sqr} \ a := \text{strict-if} \ (\text{negative?} \ a) \ ((\text{sqr}^+ \ (\text{neg} \ a))) \ (\text{sqr}^+ \ a)
\]

(9.40)

as a standard library function for probabilistic programs.

From implementations of multiplication restricted to each open quadrant, or \(\text{mul}_{pre}^{++} \), \(\text{mul}_{pre}^{+-} \), \(\text{mul}_{pre}^{-+} \) and \(\text{mul}_{pre}^{--} \), we define multiplication on all of \(\mathbb{R} \times \mathbb{R} \) with

\[
\text{mul}_{pre} := \text{ifte}_{pre} \ (\text{fst}_{pre} \gg_{pre} \text{positive?}_{pre})
\]

\[
(\text{ifte}_{pre} \ (\text{snd}_{pre} \gg_{pre} \text{positive?}_{pre})
\]

\[
\text{mul}_{pre}^{++}
\]

\[
(\text{ifte}_{pre} \ (\text{snd}_{pre} \gg_{pre} \text{negative?}_{pre})
\]

\[
\text{mul}_{pre}^{-+}
\]

\[
\text{mul}_{pre}^{+-}
\]

\[
\text{mul}_{pre}^{--} \ (\text{const}_{pre} \ 0))}
\]

... [similar code using \(\text{mul}_{pre}^{+-} \) and \(\text{mul}_{pre}^{--} \)] ...

\[
\text{mul}_{pre}^* := \eta_{pre} \ \text{mul}_{pre}
\]

and extend \([.]^\circ_{pre} \) by the rule \([e_1 \cdot e_2]^\circ_{pre} := ([e_1, e_2]^\circ_{pre} \gg_{pre} \text{mul}_{pre}^* \)).

9.4 Sampling Methods

Chapter 8 defines the preimage refinement algorithm (Definition 8.62), which repeatedly splits a partition of the program domain, restricts the program to each part, and refines each part by computing a preimage. While it appears to converge for programs that terminate with probability 1, it is inefficient. Good accuracy requires fine discretization, which is exponential in the number of discretized axes. For example, a nonrecursive program that contains only 10 uses of \texttt{random} would need to partition 10 axes of \(\Omega \). Splitting each axis into only 4 disjoint intervals yields a partition of \(\Omega \) of size \(4^{10} = 1,048,576 \).

Fortunately, Bayesian practitioners tend to be satisfied with sampling methods, which are usually more efficient than enumeration methods. To approximately answer conditional queries, it suffices to sample within the preimage of the condition set. More precisely, if \(g := [p]^\circ_{\text{map}} \), we can answer almost any query \(\Pr[B' | B] \) by sampling within \(A := \text{preimage} \ g \ B \),
Figure 9.14: A more efficient alternative to the preimage refinement algorithm. Instead of enumerating a rectangular cover, its parts are sampled, and each part is then sampled from. Points that lie outside the exact preimage (which is easy to test) are rejected.

if the probability of A is positive.

It is easy to sample within A by sampling within $Ω$ and rejecting samples not in A. To determine whether samples are in A, we can use the interpretation of the program p as a bottom* arrow computation $f := \llbracket p \rrbracket_\perp^\flat$. Unfortunately, the time required to accept a fixed number of samples also tends to be exponential in the number of dimensions. To solve this problem, we sample within a rectangular cover of A, as computed by preimage refinement, instead of within $Ω$. But we do not need to enumerate the cover’s parts, as Figure 9.19 illustrates: for each sample, we first sample a part, and then sample a value within the part.

9.4.1 Partitioned Sampling

More generally, without considering probabilistic programming at all, we want to sample values in a probability space X, P by first sampling a part from a partition of X and then sampling from that part.3

First, to restrict probability measures to measurable, positive-probability sets and

3This is not stratified sampling, which samples a fixed number of times from each partition.
renormalize them, we define

\[
\text{condition} : \text{Set } X \rightarrow [0, 1] \Rightarrow \text{Set } X \Rightarrow \text{Set } X \rightarrow [0, 1]
\]

\[
\text{condition } P \ A := \lambda A' \in \text{domain } P. \ P(A' \cap A) / P A
\]

Definition 9.23 (partitioned sampling). Let \(X, P \) be an arbitrary probability space, \(N \) be an at-most-countable index set, and \(s : N \rightarrow \text{Set } X \) be a partition of \(X \) into \(|N|\) measurable parts. The following procedure samples from \(X \):

1. Choose \(n \in N \) with probability \(P(s^n) \).
2. Choose \(a \in s^n \) according to condition \(P(s^n) \).

It is not hard to show that partitioned sampling chooses an \(a \in X \) according to \(P \).

Example 9.24 (partitioned sampling from a standard normal). Let \(P \) be the standard normal distribution’s probability measure. To sample according to \(P \), let \(N := \{\text{neg}, \text{pos}\} \) and \(s = [\text{neg} \mapsto (-\infty, 0], \text{pos} \mapsto (0, \infty)] \), and define \(Q : N \rightarrow \text{Set } R \rightarrow [0, 1] \) by

\[
Q \neg \neg A = P((-\infty, 0] \cap A) / \frac{1}{2}
\]

\[
Q \neg \pos A = P((0, \infty) \cap A) / \frac{1}{2}
\]

Then

1. Choose \(n = \text{neg} \) or \(n = \text{pos} \), each with probability \(\frac{1}{2} \).
2. Choose \(a \in s^n \) according to \(Q n \).

Partitioned sampling has two weaknesses. First, it requires \(P(s^n) \) to be easy to compute for all \(n \in N \). If this were true, we would not need to sample in the first place—i.e. it assumes a solution to the overall problem we are trying to solve. Second, it assumes sampling according to condition \(P(s^n) \) is easy, which is also not reasonable, as sampling according to a conditioned distribution is a subproblem we are trying to solve.

But suppose we could easily sample a partition index according to a different distribution over \(N \), and according to a different distribution over part \(s^n \) for each \(n \in N \). Doing so and
returning weighted samples to adjust for the differences in distribution comprises \textit{partitioned importance sampling}.

First, to restrict a probability measure \(P \) to a measurable set \(A \) \textit{without} renormalizing it, we define

\[
\text{subcond} : \text{Set } X \rightarrow [0, 1] \Rightarrow \text{Set } X \Rightarrow \text{Set } X \rightarrow [0, 1]
\]

\[
\text{subcond } P \ A := \lambda A' \in \text{domain } P . \ P (A' \cap A)
\]

(9.44)

This returns a \textit{subprobability measure}: a measure whose largest output is less than 1.

\textbf{Definition 9.25} (partitioned importance sampling). \textit{Suppose we have}

- An arbitrary probability space \(X, P \).
- An at-most-countable index set \(N \).
- A probability mass function \(p : N \rightarrow [0, 1] \) such that \(p \ n > 0 \) for all \(n \in N \).
- A partition \(s : N \rightarrow \text{Set } X \) of \(X \) into \(|N|\) measurable parts.
- Candidate probability measures \(Q : N \rightarrow \text{Set } X \rightarrow [0, 1] \), one for each partition.

\textit{To sample from } \(X \) \textit{according to } \(P \),

1. Choose \(n \in N \) with probability \(p \ n \).
2. Choose \(a \in X \) according to \(Q n \).
3. Compute \(w := \frac{1}{p \ n} \cdot \text{diff}^+ (\text{subcond } P (s \ n)) (Q \ n) \ a \).
4. Return the weighted sample \((a, w) \).

The function \(\text{diff}^+ (\text{subcond } P (s \ n)) (Q \ n) \), with type \(X \rightarrow [0, \infty) \), is a \textit{Radon-Nikodým} derivative. If \(P \) has density \(f \), \(Q \ n \) has density \(g \), and \(a \in s \ n \) implies \(g \ a > 0 \), then

\[
\text{diff}^+ (\text{subcond } P (s \ n)) (Q \ n) \ a = \text{if } (a \in s \ n) (f \ a / g \ a) \ 0
\]

(9.45)

Appendix B has formal definitions and more details. We use \(\text{diff}^+ \) in a more general sense, but in this section, it is usually fine to think of its return values as quotients of densities.

4Pronounced “RADon neekohDIM,” and named after Austrian mathematician Johann Radon and Polish mathematician Otto Nikodym.

5The equality in (9.45) holds \((Q \ n)\)-almost everywhere.
An importance sampling algorithm is correct when all expected values computed using its weighted samples are equal to the true expected values. This is true of partitioned importance sampling under reasonable conditions, which are analogous to the support of subcond $P(s_n)$ being no larger than that of Q_n. The formal statement of the theorem and its proof are in Appendix B.

Partitioned importance sampling allows quite a lot of freedom: parts can be chosen with arbitrary nonzero probability, and each part can have its own candidate distribution, which may be defined on a superset of the part. The last property in particular—that candidate distributions for different parts may overlap—is critical for sampling within restricted program domains, because we necessarily sample rectangular covers of parts.

Example 9.26 (2D partitioned importance sampling). Figure 9.15 shows the result of partitioned importance sampling in a partition of the unit square. In this instance,

- $X := [0, 1] \times [0, 1]$ is the unit square and P is uniform measure on X (i.e. area).
- $N := \{\text{left, right}\}$ are the partition’s part indexes.
\[s \text{ left} = \{ (x, y) \in X \mid y > 2 \cdot x - \frac{1}{2} \} \] is the left part; \(s \text{ right} \) is defined similarly.

\[p := \{ \text{left} \mapsto 0.4, \text{right} \mapsto 0.6 \} \] is a non-uniform distribution over part indexes.

\(Q \text{ left} \) is the uniform measure on a superset of \(s \text{ left} \), and \(Q \text{ right} \) is a multivariate Gaussian centered at \((0.8, 0.3) \); note that these candidate distributions overlap.

The implementation does not actually construct most of these objects. It constructs

- A density function \(f : \mathbb{R} \times \mathbb{R} \Rightarrow [0, \infty) \) to represent \(P \).
- A family of predicates \(s? : \mathbb{N} \Rightarrow X \Rightarrow \text{Bool} \) to decide \(a \in s n \).
- Candidate densities \(g : \mathbb{N} \Rightarrow X \Rightarrow [0, \infty) \) to represent \(Q \).

It computes weights using \(\text{diff}^+ (\text{subcond} \ P (s n)) (Q n) \ a = f \ a \ / \ g \ n \ a \) when \(s? n a \ = \text{true} \).

It directly represents only \(\mathbb{N} \) and \(p \), but we will find even this to be infeasible shortly.

Figure 9.15a shows the samples taken by choosing a part index \(n \in \mathbb{N} \), then choosing a point from the candidate distribution \(Q n \). Figure 9.15b shows the result of resampling the samples by weight, to demonstrate that the weighted samples represent a uniform distribution over \([0, 1] \times [0, 1]\). The left part has higher variation in coverage: repeated resamples make up for the fact that the candidate samples are sparser there.

Two properties make the preceding example relatively simple. First, the partition has finitely many parts. Second, the measures \(\text{subcond} \ P (s n) \) and \(Q n \) have densities, which ensures \(\text{diff}^+ (\text{subcond} \ P (s n)) (Q n) \) exists and is easy to compute.

When sampling in the domain of programs, neither property holds in general.

9.4.2 Partitioning Probabilistic Program Domains

For the random source part \(\Omega := J \rightarrow [0, 1] \) of probabilistic program domains, which consists of infinite binary trees of reals, it is not clear that partitioned importance sampling is applicable. The main problem is that it is difficult to prove that any given infinite-dimensional Radon-Nikodým derivative exists.

Fortunately, we can prove they exist if the two measures differ in only finitely many axes. More precisely, let \(P_1 : \text{Set} \ \Omega \rightarrow [0, 1] \) and \(P_2 : \text{Set} \ \Omega \rightarrow [0, 1] \) be probability measures,
and $J' \subseteq J$ be a finite set of tree indexes. Suppose P_1 can be factored into a distribution P'_1 over finite prefixes $J' \to [0, 1]$ and a distribution over suffixes $(J \setminus J') \to [0, 1]$, and P'_2 can be similarly factored into P'_2 and the same distribution over suffixes. Then, under reasonable conditions (which are analogous to the support of P'_1 being no larger than that of P'_2), $\text{diff}^+ P_1 P_2$ exists and can be computed using $\text{diff}^+ P'_1 P'_2$. Appendix B contains a formal statement and proof.

To ensure subcond $P (s n)$ and $Q n$ differ in only finitely many axes, we partition Ω according to branch traces. Because only finitely branches may be taken, each branch trace corresponds with a program that reads any $\omega \in \Omega$ at only finitely many indexes $J' \subseteq J$.

In the remainder of this subsection, assume a fixed program p. Let $f := [p]_{\downarrow s} : \langle\langle \Omega, T \rangle, \langle \rangle \rangle \leadsto_* Y$ be its interpretation as a bottom* arrow computation, with maximal domain A^*. Define $T^* := \text{image } (\text{fst} \gg \gg \text{snd}) A^*$ as its maximal branch trace set and $\Omega^* := \text{image } (\text{fst} \gg \gg \text{fst}) A^*$ as its maximal random source set.

We need a notion of the random sources that agree with a given branch trace $t \in T$; i.e. those $\omega \in \Omega$ for which $f \langle\langle \omega, t \rangle, \langle \rangle \rangle \neq \bot$.

Definition 9.27 (induced random sources). Let $t \in T$ be a branch trace. The random sources induced by t are a subset of Ω defined by $\Omega':= \{\omega \in \Omega \mid f \langle\langle \omega, t \rangle, \langle \rangle \rangle \neq \bot\}$.

Equivalently, Ω' is the set of $\omega \in \Omega$ for which $\langle\langle \omega, t \rangle, \langle \rangle \rangle \in A^*$.

Example 9.28. Consider the program

$$\text{if } (\text{random } < \text{random}) e_1 e_2$$

(9.46)

where e_1 and e_2 are deterministic expressions. Figure 9.16 illustrates the partition induced by its maximal branch traces T^*. The trace $[\text{left } j_0 \mapsto \text{true}, * \mapsto \bot]$ induces the upper-left triangle in the plot, which represents the subset of Ω for which $\text{random } < \text{random}$ is true. The trace maps $\text{left } j_0$ to true because $\text{left } j_0$ is the index of the expression $\text{random } < \text{random}$.

For this program, the trace $[\ast \mapsto \bot]$ induces \emptyset. \diamond
(a) The computation tree for if (random < random) e₁ e₂.

(b) The partition induced by maximal branch traces T∗. Each part is labeled with a trace that induces it.

Figure 9.16: A computation tree and an induced partition of Ω.

In fact, only traces in T∗ induce nonempty subsets of Ω.

Theorem 9.29. Let t ∈ T induce Ω′. Ω′ ≠ ∅ if and only if t ∈ T∗.

Proof. By definition of T∗, Ω′ ≠ ∅ if and only if there is an ω ∈ Ω′ with ⟨⟨ω, t⟩, ⟨⟩⟩ ∈ A∗. □

Using T or T∗ as the partition index set and defining the partition’s parts as induced random sources almost works, in the sense that the required Radon-Nikodým derivatives exist. Unfortunately, we cannot use T or T∗ as the partition index set because many branch traces can induce the same random sources.

Example 9.30. Consider again if (random < random) e₁ e₂. There are many other traces that induce the same subset of Ω as [left j₀ ↦ true, * ↦ ⊥]; for example

\[
\begin{align*}
&\text{[left } j₀ \mapsto \text{true, right } j₀ \mapsto \text{false, } \ast \mapsto \perp] \tag{9.47} \\
&\text{[left } j₀ \mapsto \text{true, left (right } j₀) \mapsto \text{true, } \ast \mapsto \perp]
\end{align*}
\]

and so on. All of these agree with every ω that [left j₀ ↦ true, * ↦ ⊥] agrees with. In fact, there are infinitely many branch traces in T∗ that induce the same random sources. ⊢
We need to find a subset of T^* whose induced random sources are disjoint. The main idea is to define equivalence classes of branch traces that induce the same random sources, and use the “smallest” branch trace in each class as a part index.

To identify the smallest trace in each class, we must define an ordering over them. One fairly natural way is to say a branch trace is smaller than another when it describes fewer branch decisions; i.e. its tree has fewer non-\bot elements. Two branch traces that differ by returning respectively true and false for the same j may represent different execution paths, so they must be incomparable.

Definition 9.31 (branch trace partial order). $t_1 \leq t_2$ when for all $j \in J$, $t_1 j = \bot$ or $t_1 j = t_2 j$.

To find the minimum of a set of equivalent traces, it helps to be able to compute the greatest lower bound, or infimum. We claim that this function does so:

$$\text{trace-inf} : \text{Set } T \Rightarrow T$$

$$\text{trace-inf } T' := \lambda j \in J. \text{case proj } j T' \begin{cases} \{b\} \rightarrow b \\
\text{else} \rightarrow \bot \end{cases}$$ \hspace{1cm} (9.48)

Theorem 9.32 (trace infimum). Let $T' \subseteq T$ and $t_* := \text{trace-inf } T'$. Then

- For all $t' \in T'$, $t_* \leq t'$.
- For all $t \in T$, if for all $t' \in T'$, $t \leq t'$, then $t \leq t_*$.

Proof. Let $t' \in T'$ and $j \in J$. If $\text{proj } j T' = \{b\}$ for $b \in \text{Bool}_\bot$, then $t_* j = t' j = b$. Otherwise, $t_* j = \bot$. Thus $t_* \leq t'$.

Let $t \in T$ and suppose that for all $t' \in T'$, $t \leq t'$. Let $j \in J$. If $\text{proj } j T' = \{b\}$, then there are two cases: $t j = \bot$, or $t j = t_* j = b$. Otherwise there exists a $t' \in T'$ such that $t j \neq t' j$, so $t j = \bot$. Thus $t \leq t_*$. \hfill \square

Any two comparable traces in T^* induce the same random sources.
Theorem 9.33 (comparable implies equivalent). Let \(t_1, t_2 \in T^* \) induce \(\Omega_1, \Omega_2 \). If \(t_1 \leq t_2 \) or \(t_2 \leq t_1 \), then \(\Omega_1 = \Omega_2 \).

Proof. It suffices to consider \(t_1 \leq t_2 \); the \(t_2 \leq t_1 \) case follows from reflexivity of \((=)\).

Suppose \(\omega \in \Omega_1 \), so \(f \langle \langle \omega, t_1 \rangle, \langle \rangle \rangle \neq \perp \). Let \(J' \subseteq J \) such that \(j \in J' \) if and only if \(\langle \omega, t_1 \rangle \) agrees with the ifte\(_j^\omega \) subcomputation at index \(j \). For all \(j \in J' \), \(t_1 j \neq \perp \), so \(t_2 j = t_1 j \) by definition of \((\leq) \). Therefore, \(\langle \omega, t_2 \rangle \) also agrees with every ifte\(_j^\omega \) subcomputation at every index \(j \in J' \), so \(f \langle \langle \omega, t_2 \rangle, \langle \rangle \rangle \neq \perp \). Therefore \(\omega \in \Omega_2 \), so \(\Omega_1 \subseteq \Omega_2 \).

Suppose \(\omega \not\in \Omega_1 \). Let \(J' \subseteq J \) such that \(j \in J' \) if and only if \(t_1 j \neq \perp \). Because \(f \langle \langle \omega, t_1 \rangle, \langle \rangle \rangle = \perp \), there exists a \(j \in J' \) such that the ifte\(_j^\omega \) subcomputation at index \(j \) disagrees with \(\langle \omega, t_1 \rangle \). Because \(t_1 j = t_2 j \) by definition of \((\leq) \), the ifte\(_j^\omega \) subcomputation at index \(j \) also disagrees with \(\langle \omega, t_2 \rangle \), so \(f \langle \langle \omega, t_2 \rangle, \langle \rangle \rangle = \perp \). Therefore \(\omega \not\in \Omega_2 \), so \(\Omega_2 \subseteq \Omega_1 \).

Corollary 9.34 (infimum in \(T^* \) implies equivalent). Let \(t_1, t_2 \in T^* \) induce \(\Omega_1, \Omega_2 \), and define \(t_* := \text{trace-inf} \{ t_1, t_2 \} \). If \(t_* \in T^* \), then \(\Omega_1 = \Omega_2 \).

If \(T^* \) is partitioned into equivalence classes of traces that induce the same random sources, each part in the partition contains a smallest member with respect to \((\leq)\).

Theorem 9.35. Let \(t \in T^* \) induce \(\Omega' \), \(T' \) be the largest subset of \(T^* \) that induces \(\Omega' \), and \(t_* := \text{trace-inf} \ T' \). Then \(t_* \in T' \).

Proof. Let \(\omega \in \Omega' \). By definition of trace-inf, every ifte\(_j^\omega \) subcomputation agrees with \(\langle \omega, t_* \rangle \). Therefore \(f \langle \langle \omega, t_* \rangle, \langle \rangle \rangle \neq \perp \), so \(t_* \) induces \(\Omega' \).

Theorem 9.36 (infimum not in \(T^* \) implies disjoint). Let \(t_1, t_2 \in T^* \) induce \(\Omega_1, \Omega_2 \), and define \(t_* := \text{trace-inf} \{ t_1, t_2 \} \). If \(t_* \not\in T^* \), then \(\Omega_1 \cap \Omega_2 = \emptyset \).

Proof. Let \(T_1, T_2 \) be the largest subsets of \(T^* \) that induce \(\Omega_1, \Omega_2 \). Let \(t_{1*} := \text{trace-inf} \ T_1 \) and \(t_{2*} := \text{trace-inf} \ T_2 \). Because \(t_* \not\in T^* \), \(t_{1*} \neq t_{2*} \).

Let \(\omega \in \Omega_1 \). For every \(j \in J \) for which \(t_{1*} j \neq \perp \), there is an ifte\(_j^{\Omega_1} \) subcomputation at index \(j \) that agrees with \(\langle \omega, t_{1*} \rangle \). But because \(t_{2*} \neq t_{1*} \), there exists a \(j \in J \) for which an
if the subcomputation at index j disagrees with $\langle \omega, t_2 \rangle$. Therefore $\omega \notin \Omega_2$. By a symmetric argument, $\omega \in \Omega_2$ implies $\omega \notin \Omega_1$.

We can thus get our sought-after index set by defining the set of smallest branch traces.

Definition 9.37 (minimal branch traces). The set of *minimal branch traces* T_* is the set of minimal elements in T^*, or

$$T_* := \{ t_1 \in T^* \mid \forall t_2 \in T^*. t_2 \leq t_1 \implies t_2 = t_1 \}$$

(9.49)

Theorem 9.38. T_* induces Ω^*.

Proof. Let $t \in T^*$ induce Ω' and T' be the largest subset of T^* that induces Ω'. Its minimum $t_* := \text{trace-inf } T'$ is in T_*.

Theorem 9.39 (T_* partitions). Let $t_1, t_2 \in T_*$ induce respectively Ω_1 and Ω_2. If $t_1 \neq t_2$, then $\Omega_1 \cap \Omega_2 = \emptyset$.

Proof. Let $t_* := \text{trace-inf } \{ t_1, t_2 \}$. Because t_1 and t_2 are minimal, $t_* \notin T^*$. By Theorem 9.36, $\Omega_1 \cap \Omega_2 = \emptyset$.

We can thus sample a partition index $t \in T_*$, which induces a unique part from a partition of Ω^*.

A program’s minimal branch trace set T_* contains only the actual branches taken when running the program on every $\omega \in \Omega^*$. Therefore, one way to sample from T_* with the correct probability—at least, for programs that halt with probability 1—would be to choose an $\omega \in \Omega$ uniformly, and run the program on ω while recording each branch decision.

But this sampling scheme has problems similar to those of partitioned sampling (Definition 9.23). First, it assumes the probabilities of branch traces, which are the probabilities of the Ω^* subsets they induce, are easy to compute. Second, we are interested in sampling from an *arbitrarily low-probability subset* of Ω^*, which may be covered by the partition induced by an *arbitrarily low-probability subset* of T_*.

It appears we have a chicken-and-egg problem, in that
1. Sampling in a small subset of Ω^* requires sampling in a small subset of T^*.

2. Sampling in a small subset of T^* requires sampling in a small subset of Ω^*.

Fortunately, if we allow ourselves subsets of a larger set than T^*, and allow ourselves to sample within overapproximating covers of Ω^* subsets, we can use approximate preimage computation to sample from T^* and Ω^* subsets simultaneously.

9.4.3 Approximate Partitions of Probabilistic Program Domains

The idea is to define a set of branch traces T_+ that is derived only from a program’s shape, not its actual executions. We ensure that $T_+ \subseteq T^*$, and that every $t \in T_+ \setminus T^*$ induces \emptyset, so that T_+ induces the same partition as T^*. We define an algorithm for sampling from T_+, which does not require running a probabilistic program on any $\omega \in \Omega$. We then extend this algorithm to use preimage computation to sample in arbitrarily good approximations of small subsets of T^* and Ω^*.

Defining T_+ in terms of a program’s branching shape requires an additional abstract interpretation. Figure 9.17a defines the **indexes arrow**. Its type is $J \Rightarrow \text{Idxs}$, which does not refer to a domain or codomain type of program values because its computations do not receive or compute program values. Instead, they build lazy trees of possible branching decisions, ignoring the actual values of if conditions. For example, lifted, pure functions are interpreted as $\lambda j. ()$, which takes the function’s computation index and returns no decisions. Composition and pairing of subcomputations i_1 and i_2 both return $\langle i_1 \text{ (left } j) , i_2 \text{ (right } j) \rangle$: a node with two children that contain the feasible branch decisions in their subcomputations.

Only ifte_Idxs does more than simple structural recursion: it returns $\text{if-idxs } j \text{ idxs}_2 \text{ idxs}_3$ to represent a decision at computation index j. The children idxs_2 and idxs_3 are lazy, abstract representations of the if’s branches. Like a concrete execution, a branch trace sampler is expected to compute and recur through only one of them.

Figure 9.17b defines **sample-traces**, which, to make its extension for use with preimage refinement easier, samples rectangles of branch traces given an idxs : Idxs. It returns a
(a) Branch index arrow. Computations return a lazy tree of type Idxs, of feasible branch decisions, ignoring the actual values of conditions. The arrow is directly implementable in any \(\lambda \)-calculus.

\[
Idxs ::= () | (Idxs, Idxs) \\
| \text{if-idxs } J (1 \Rightarrow Idxs) (1 \Rightarrow Idxs)
\]

\[
\text{arr}_{\text{idxs}} : (x \Rightarrow y) \Rightarrow (J \Rightarrow Idxs)
\]

\[
\text{arr}_{\text{idxs}} f j := ()
\]

\[
(\ggg_{\text{idxs}}) : (J \Rightarrow Idxs) \Rightarrow (J \Rightarrow Idxs) \Rightarrow (J \Rightarrow Idxs)
\]

\[
(i_1 \ggg_{\text{idxs}} i_2) j := \langle i_1 \text{ (left j)}, i_2 \text{ (right j)} \rangle
\]

\[
(\&\&_{\text{idxs}}) : (J \Rightarrow Idxs) \Rightarrow (J \Rightarrow Idxs) \Rightarrow (J \Rightarrow Idxs)
\]

\[
(i_1 \&\&_{\text{idxs}} i_2) j := \langle i_1 \text{ (left j)}, i_2 \text{ (right j)} \rangle
\]

\[
\text{sample-traces} : Idxs \rightarrow \langle \mathbb{R}, \text{Rect } T \rangle
\]

\[
\text{sample-traces idxs} ::= \text{sample-traces}^* \text{ idxs} \langle 1, T \rangle
\]

\[
\text{sample-traces}^* : Idxs \Rightarrow \langle \mathbb{R}, \text{Rect } T \rangle \Rightarrow \langle \mathbb{R}, \text{Rect } T \rangle
\]

\[
\text{sample-traces}^* () pt := pt
\]

\[
\text{sample-traces}^* (\text{idxs}_1, \text{idxs}_2) pt := \text{let } pt' := \text{sample-traces}^* \text{ idxs}_1 pt \\
\text{in } \text{sample-traces}^* \text{ idxs}_2 pt'
\]

\[
\text{sample-traces}^* (\text{if-idxs } j \text{ idxs}_2 \text{ idxs}_3) (p_t, T') := \text{let } (p_b, b) := \text{sample-branch } \text{Bool}_+ \\
p_t' := (p_t \cdot p_b, \text{unproj } j T' \{b\}) \\
\text{in case } b \\
\text{true } \rightarrow \text{sample-traces}^* \text{ idxs}_2 0 pt' \\
\text{false } \rightarrow \text{sample-traces}^* \text{ idxs}_3 0 pt' \\
\bot \rightarrow pt'
\]

(b) The stochastic function \text{sample-traces} samples a \(T' \), and returns \(T' \) and its probability.

Figure 9.17: Branch index collecting semantics.

pair \(\langle p_t, T' \rangle \), where \(T' \) is the sampled rectangle and \(p_t \) is the probability with which it was chosen. It assumes a stochastic procedure \text{sample-branch} : \text{Set } \text{Bool}_+ \Rightarrow \langle \mathbb{R}, \text{Bool}_+ \rangle, \) where \text{sample-branch} \(B \) returns any member of \(B \) with some nonzero, constant probability. At index \(j \), for the branch choice \(\langle p_b, b \rangle := \text{sample-branch } \text{Bool}_+, T' \) is restricted using \text{unproj } j T' \{b\}.

Although \text{sample-traces} returns rectangles, it is easy to transform one into a single trace using \text{trace-inf}; i.e. \text{trace-inf} (\text{snd} (\text{sample-traces idxs})) samples a branch trace.

Let \(\text{idxs} := \left\lfloor \left[p_b\right]\right\rfloor_{\text{idxs}} j_0. \)

Definition 9.40 (feasible branch traces). The feasible branch traces \(T_+ \) are those \(t \in T \) for which \(\Pr[t = \text{trace-inf} (\text{snd} (\text{sample-traces idxs}))] > 0. \)
Because sample-traces∗ imposes a total order on evaluation, any terminating application of it induces a total order on the indexes j in applications matching if-idxs j idxs₂ idxs₃. Let j₁, j₂, ..., jₙ be those indexes, with corresponding branch choices b₁, b₂, ..., bₙ. Define T₀', T₁', ..., Tₙ' by T₀' := T and Tᵢ' := unproj jᵢ Tᵢ₋₁ {bᵢ}.

Theorem 9.41 (sample-traces soundness). Tᵢ ⊆ T₊.

Proof. Let t ∈ Tᵢ. It suffices to show that there exists an n and a sequence of branch choices b₁, b₂, ..., bₙ for which t = trace-inf Tₙ'.

First, we prove by induction the seemingly weaker statement that there exist n and branch choices for which t ∈ Tᵢ. Let j₁, j₂, ..., jₙ be the in-order indexes at which t jᵢ ≠ ⊥. Clearly t ∈ T₀' = T. If t ∈ Tᵢ₋₁, then bᵢ := t jᵢ implies t ∈ Tᵢ' = unproj jᵢ Tᵢ₋₁ {bᵢ}.

For any j ∈ {j₁, j₂, ..., jₙ}, {t j} = proj j Tₙ'. For any other j, t j = ⊥ and proj j Tₙ' = Bool⊥. By definition of trace-inf, therefore t = trace-inf Tₙ'.

For T₊ to induce a partition, every t ∈ T₊ \ Tᵢ must induce ∅.

Theorem 9.42 (sample-traces non-∅-unique). For all t ∈ T₊, if t ∉ Tᵢ then t induces ∅.

Proof. Let j₁, j₂, ..., jₙ and b₁, b₂, ..., bₙ for a terminating evaluation of sample-traces∗ idxs (1, T).

Suppose Tₙ' ∩ Tᵢ = ∅. Then there exists an i such that Tᵢ₋₁ ∩ Tᵢ = ∅ and Tᵢ ∩ Tᵢ = ∅. Thus bᵢ ∉ proj jᵢ Tᵢ, so f does not agree with any t ∈ Tᵢ'.

Let t := trace-inf Tₙ', which by definition of trace-inf and sample-traces∗ is in Tₙ'. Because Tₙ' ⊆ Tᵢ', f does not agree with t, so t induces ∅.

Corollary 9.43 (sample-traces partitioning). T₊ induces a partition of Ω*.

To be used in partitioned importance sampling, the probability returned by sample-traces must be correct.

Theorem 9.44 (sample-traces correctness). If ⟨pᵢ', T'⟩ := sample-traces idxs, then Pr[T'] = pᵢ'.
Proof. Let \(p_1, p_2, \ldots, p_n \) be the probabilities returned from \texttt{sample-branch} for \(b_1, b_2, \ldots, b_n \). The probability of \(b_1, b_2, \ldots, b_n \) is thus \(p'_t := p_{b_1} \cdot p_{b_2} \cdots p_{b_n} \). Because the transformation from \(b_1, b_2, \ldots, b_n \) to \(T'_n \) is injective, \(\Pr[T'_n] = p'_t \).

Further, \texttt{sample-traces} should terminate with probability 1.

Theorem 9.45 (\texttt{sample-traces} termination). \texttt{sample-traces idxs} terminates with probability 1.

Proof. For each branch choice \(b_i \), there is a nonzero probability that \(b_i = \bot \), which is a recursion base case.

We finally have a way to use partitioned importance sampling to sample within the preimage of some set \(B \). Define

\[
\begin{align*}
 f & := [p]_{j_0}^y, & h' & := [p]_{j_0}^{y'}, & \text{idxs} & := [p]_{j_0}^{y_{\text{idxs}}},
\end{align*}
\]

(9.50)

to interpret \(p \) as a bottom arrow computation, an approximating preimage arrow computation, and a lazy tree of feasible branch decisions. Define \(\text{refine } A := \text{ap}_{\text{pre}} (h' A) B \). Then

1. Let \(\langle p_t, T' \rangle := \text{sample-traces idxs} \).
2. Let \(t := \text{trace-inf } T' \).
3. Let \(A' := \text{refine } ((\Omega \times \{t\}) \times \{\langle \rangle \}) \).
4. Let \(\Omega' := \text{image } (\text{fst} \ggg \text{fst}) A' \). If \(\Omega' = \varnothing \), reject.
5. Choose \(\omega \in \Omega' \) according to \(Q t \). If \(f \langle \omega, t \rangle, \langle \rangle \rangle \notin B \), reject.
6. Compute weight \(w := \frac{1}{p_t} \cdot \text{diff}^+ (\text{subcond } P \Omega') (Q t) \omega \), where \(\Omega'' \) is the set of random sources induced by \(t \).

Computing \(\text{diff}^+ (\text{subcond } P \Omega'') (Q t) \) does not require \(\Omega'' \), as we will demonstrate shortly.

Samples are rejected for two reasons. The first is when \(\Omega' = \varnothing \) because \texttt{sample-trace} overapproximates by choosing from \(T_+ \) instead of \(T_\ast \). The second is when \(\omega \in \Omega' \) but \(\omega \notin \Omega'' \) because \(h' \) overapproximates. To reduce the rejection rate, we must reduce overapproximation as much as possible. We can address both causes by partitioning \(\Omega \) more finely than the
I '\text{dxs}' ::= \langle \rangle \mid \langle I '\text{dxs}', I '\text{dxs} \rangle \mid \text{if-idxs } J (1 \Rightarrow I '\text{dxs}) (1 \Rightarrow I '\text{dxs}) \mid \text{random-idxs } J

\text{arr}_{\text{idxs}} : (x \Rightarrow y) \Rightarrow (J \Rightarrow I '\text{dxs})
\text{arr}_{\text{idxs}} f j := \langle \rangle

(\gggg_{\text{idxs}}) : (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs})
(i_1 \gggg_{\text{idxs}} i_2) j := (i_1 \text{ (left } j), i_2 \text{ (right } j))

(\llll_{\text{idxs}}) : (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs})
(i_1 \llll_{\text{idxs}} i_2) j := (i_1 \text{ (left } j), i_2 \text{ (right } j))

\text{ifte}_{\text{idxs}} \ast : (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs}) \Rightarrow (J \Rightarrow I '\text{dxs})
\text{ifte}_{\text{idxs}} i_1 i_2 i_3 j := \begin{cases} \text{idxs}_2 := \lambda_0 \text{. } i_2 \text{ (left } j) \text{) } \\ \text{idxs}_3 := \lambda_0 \text{. } i_3 \text{ (right } j)) \text{ } \\ \begin{cases} \text{in } (i_1 \text{ (left } j), \text{if-idxs } j \text{ idxs}_2 \text{ idxs}_3) \end{cases} \end{cases}

\text{lazy}_{\text{idxs}} : (1 \Rightarrow (J \Rightarrow I '\text{dxs})) \Rightarrow (J \Rightarrow I '\text{dxs})
\text{lazy}_{\text{idxs}} i j := i 0 j

\text{random}_{\text{idxs}} : J \Rightarrow I '\text{dxs}
\text{random}_{\text{idxs}} j := \text{random-idxs } j

Figure 9.18: The final indexes arrow, which collects information about feasible branches and random choices.

partition induced by branch traces. Doing so requires an update to the indexes arrow and another sampling algorithm.

Figure 9.18 shows an updated indexes arrow. The I '\text{dxs}' type has one more variant, constructed by \text{random-idxs} : J \Rightarrow I '\text{dxs}. The only difference between the remainder of the code and that in Figure 9.17a is \text{random}_{\text{idxs}} \ast j := \text{random-idxs } j \text{ instead of } \text{random}_{\text{idxs}} \ast j := \langle \rangle.

The proofs of the preceding theorems indicate the properties the new partition sampler must have.

- Any returned \(T' \in \text{Rect } T \) must contain its infimum (i.e. no set-valued branch choices).

- It must be sound: for any \(t \in T_\ast \), with positive probability, it returns a \(T' \) whose minimum is \(t \).

- It must partition: if it constructs a \(T' \) whose minimum is not in \(T_\ast \), \(T' \) must induce \(\emptyset \).

- It must terminate: branch choices must be \(\perp \) with positive probability.

- The combination of choices made must correspond with exactly one output.

Figure 9.19 defines the \textbf{preimage refinement sampling algorithm}, in which \text{sample-part} is an extension of \text{sample-traces}*. The key differences are

- It samples from a rectangular cover of a partition of \(\Omega \times T \) instead of from a rectangular partition of \(T \).

210
\[
f := [\mathcal{P}]^{j_0}_{\mathcal{L}}. j_0 \quad \quad h' := [\mathcal{P}]^{\mathcal{P}_j}_{\mathcal{L}}. j_0 \quad \quad \text{idxs} := [\mathcal{P}]^{\mathcal{P}_j}_{\mathcal{L}}. j_0
\]

where \(f : \text{Rect} \langle \langle \Omega, T \rangle, \langle \rangle \rangle \rightarrow \bot \)

\[
\text{refine} : \text{Rect} \langle \Omega, T \rangle \Rightarrow \text{Rect} \langle \Omega, T \rangle
\]

\[
\text{refine} \ A := \text{image} \ \text{fst} \ (\text{ap}^{\prime}_{\text{pre}} (h^{\prime} (A \times \{\langle \rangle\}))) \ B
\]

Figure 9.19: Sampling from the preimage of \(B \) under the program \(p \) interpreted as a random variable, using preimage refinement and a uniform candidate distribution.

- For **random-idxs** \(j \), it uses **sample-real-part** to sample from a partition of \(\text{proj} \ j \ \Omega' \).
- It uses **refine** to shrink the part’s covering rectangle after every choice.
- It stops immediately if it receives \(\emptyset \), which **refine** may return.
- It chooses branches from \(\text{proj} \ j \ T' \cup \{\bot\} \) instead of \(\text{Bool}_\bot \), which allows **refine** to rule out branch choices that disagree with \(\Omega' \).

We assume that for each input, **sample-real-part** : \(\text{Rect} \ \mathbb{R} \Rightarrow \langle \mathbb{R}, \text{Rect} \ \mathbb{R} \rangle \) computes a deterministic partition, assigns each part a nonzero probability, and returns the correct probability for the part it chooses. If so, **sample-part** is sound, it partitions, and it terminates; all branch sets have minimum traces, its transformation from random choices to parts is injective, and
it returns the correct probabilities.

Besides \textbf{sample-part}, Figure 9.19 defines \textbf{sample-preimage}, which returns weighted samples of points in the preimage of \(\mathcal{B} \) under program \(p \)'s interpretation as a function. It does so by partitioned importance sampling. It first uses \textbf{sample-part} to return a rectangle covering a part in the partition and the probability with which the part was sampled. If the part is \(\emptyset \), it returns \(\bot \) (i.e. rejects). If the part is nonempty, it samples from the random sources and weights the sample. For sample \(\omega \) and trace \(t \), if \(f \langle \langle \omega, t \rangle \rangle \notin \mathcal{B} \) then \(\langle \omega, t \rangle \) is not in the preimage of \(\mathcal{B} \), so it weights \(\omega \) by 0, which is equivalent to rejecting it.

If the sample’s image is in \(\mathcal{B} \), \textbf{sample-preimage} computes \(1/p_n \cdot 1/q_\omega \) as the sample’s weight. To correctly do partitioned importance sampling, its weight should be \(1/p_n \cdot \text{diff}^+ (\text{subcond } P \Omega'') (Q_n) \omega \), where \(p_n \) is the probability of choosing the part. The leading term is thus correct, so we need to show \(1/q_\omega = \text{diff}^+ (\text{subcond } P \Omega'') (Q_n) \omega \).

To state the theorem, we need some definitions. Let \(h := [p]_{\text{pre}}^\downarrow \) \(j_0 \) be the interpretation of \(p \) as a preimage arrow computation, and \(\Omega'' := \text{image (fst >>> fst)} (\text{ap}_{\text{pre}} (h (\Omega' \times T') \times \{\langle \rangle\}) \mathcal{B}) \) be the exact part under its covering rectangle \(\Omega' \). Let \(J' \subseteq J \) such that \(j \in J' \) if and only if \textbf{sample-part} is applied to \textbf{random-idxs} \(j \). This is the set of indexes of random values in any \(\omega \in \Omega'' \) that are actually used while running the program, and it is finite. Let \(n \) be the partition index of the part covered by \(\Omega' \times T' \).

\textbf{Theorem 9.46.} Let \(Q_n \) have a density \(q \) when restricted to indexes \(J' \) and be uniform on \(J \setminus J' \). Suppose \textbf{sample-source} \((\Omega' \times T') \) chooses \(\omega \in \Omega' \) according to \(Q_n \). If \(\omega \in \Omega'' \), then
\[
\text{diff}^+ (\text{subcond } P \Omega'') (Q_n) \omega = 1/(q \ (\text{restrict } \omega J')).
\]

\textbf{Proof.} This is a straightforward application of Theorem B.26, so we need only meet the conditions. Because \(J' \) is finite,

- The subprobability measure \(\text{subcond } P \Omega'' \) can be factored into \(P' : \text{Set} (J' \to [0, 1]) \Rightarrow [0, 1] \) and a uniform probability measure on \(J \setminus J' \to [0, 1] \).
- The probability measure \(Q_n \) can be factored into \(Q' : \text{Set} (J' \to [0, 1]) \Rightarrow [0, 1] \) and the same uniform probability measure.
A density for \(P' \) that is uniform on \(\Omega'' \) is
\[
p : (J' \to [0,1]) \to [0,\infty)
\]
\[
p \omega := \text{if } (\omega \in \Omega'') 1 0
\]

By assumption, the density of \(Q' \) is \(q : (J' \to [0,1]) \to [0,\infty) \). Therefore, if \(\omega \in \Omega'' \),
\[
diff^+ \text{(subcond P'' (Q n)) } \omega = \frac{p \left(\text{restrict} \ \omega \ J' \right)}{q \left(\text{restrict} \ \omega \ J' \right)} = \frac{1}{q \left(\text{restrict} \ \omega \ J' \right)}
\]

Thus, if \(\text{sample-source} (\Omega' \times T') = (q \left(\text{restrict} \ \omega \ J' \right), \omega) \), then preimage refinement sampling is correct.

9.4.4 Random Source Sampling

An easy way to ensure preimage refinement sampling is correct is to sample uniformly, so that the density at every \(\omega \in \Omega' \) is the reciprocal of the volume of \(\Omega' \). Let \(m : \text{Set } \mathbb{R} \to [0,\infty] \) be Lebesgue measure on \(\mathbb{R} \) (i.e. length). Define

\[
\text{sample-source} : \text{Rect} \langle \Omega, T \rangle \Rightarrow \langle \mathbb{R}, \Omega \rangle
\]

\[
\text{sample-source} (\Omega' \times T') := \text{let } q_\omega := 1 / \prod_{j \in J} m (\text{proj } j \ \Omega') \\omega := \lambda j \in J. \text{sample-uniform} (\text{proj } j \ \Omega') \text{ in } (q_\omega, \omega)
\]

Because \(\text{Rect} \langle \Omega, T \rangle \) is defined so that only finitely many axes of \(\Omega' \) are strict subsets of \([0,1] \), \(q_\omega \) is well-defined whenever the volume of \(\Omega' \) is nonzero.\(^6\) In particular, \(m (\text{proj } j \ \Omega') < 1 \) if \(j \in J' \), otherwise 1.

An implementation of \(\text{sample-source} \) cannot compute a product over all \(J \), nor construct a mapping with domain \(J \). The representations of \(\text{Rect} \ \Omega \) and \(\omega \in \Omega \) given in Figures 9.6 and 9.7 make getting around this easy. The function \(\text{omega-set-sample} \) in Figure 9.7 implements \(\lambda j \in J. \text{sample-uniform} (\text{proj } j \ \Omega') \) by building a lazy tree. Further, because rectangles may

\(^6\)In practice, we do not have to consider this case. The implementation of \(\text{sample-source} \) may return reciprocal densities, so it returns the volume of \(\Omega' \), which is always well-defined.
have only finitely many nonfull axes, it is easy to write a total recursive function to compute \(\prod_{j \in J} m(\text{proj } j \Omega') \) to measure the volumes of \(\Omega \) rectangles. The measure of an Omega-Node instance is the product of its axis’s measure and the measures of its subtrees. The measure of \text{univ-omega-set} is 1.

Figure 9.20a shows the result of sampling within the preimage of \([-0.05, 0.05]\) under the interpretation of this program as a random variable:

```
(define/drbayes diagonal
  (let ([x (random)]
        [y (random)])
    (- y x)))
```

The left plot shows the results returned by the implementation of sample-part: sampled parts from a rectangle covering the true preimage, which surrounds the line \(\omega_1 = \omega_0 \). (There are many duplicates.) The right plot shows the result of sampling once within each part uniformly; in this case, 244 out of 500 samples are inside the preimage set.

Figure 9.20b shows the result of sampling within the preimage of \([-0.002, 0.002]\), for which many fewer samples are in the preimage set; in this case, only 30. In general, for the interpretation of diagonal, the proportion of accepted samples in the preimage of \([-\varepsilon, \varepsilon]\) scales linearly with \(\varepsilon \). We can mitigate this problem using finer partitions of \text{proj } j \Omega'. However, there is a solution that does not require finer partitions and accepts more samples than any repartitioning.

The key insight is that the singleton interval \(\{b\} = [b, b] \) is also a rectangle. To sample within a part, for each axis \(j \in J' \), we choose \(b \in \text{proj } j \Omega' \), update \(\Omega' \) using \text{unproj } j \Omega' \{b\}, and use refine to get better bounds for sampling the other axes.
Figure 9.20: 500 samples using Dr. Bayes’s implementations of sample-part, sample-source and sample-source*.

(a) Results of sample-part and sample-source for the preimage of $[-0.05, 0.05]$. Samples accepted: 244.

(b) Results of sample-part and sample-source for the preimage of $[-0.002, 0.002]$. Samples accepted: 30.

(c) Results of sample-part and sample-source* for the preimage of $[-0.002, 0.002]$. Samples accepted: 500.
The following function implements the idea.

\[
\text{sample-source}^* : [\mathcal{J}] \Rightarrow (\mathbb{R}, \text{Rect} \langle \Omega, T \rangle) \Rightarrow (\mathbb{R}, \Omega_{\perp})
\]

\[
\text{sample-source}^* \langle \rangle \langle q_\omega, \emptyset \rangle := (0, \bot)
\]

\[
\text{sample-source}^* \langle \rangle \langle q_\omega, \Omega' \times T' \rangle := \begin{cases}
\text{let } \omega := \lambda j \in J. \text{sample-uniform} (\text{proj } j \Omega')
& \text{in } \langle q_\omega, \omega \rangle
\end{cases}
\]

\[
\text{sample-source}^* \langle j, js \rangle \langle q_\omega, \Omega' \times T' \rangle := \begin{cases}
\text{let } B := \text{proj } j \Omega'
& b := \text{sample-uniform } B
& A' := \text{refine} (\text{unproj } j \Omega' \{b\} \times T')
& \text{in } \text{sample-source}^* \langle q_\omega \cdot 1/(m B), A' \rangle
\end{cases}
\]

Here, \([\mathcal{J}]\) is the type of lists of \(J\), or \(\langle J, \langle J, \ldots \langle J, \langle \rangle \rangle \rangle \rangle\). The caller is expected to linearize \(J'\), the indexes of random values that are actually used while running the program, as \(js : [\mathcal{J}]\). (Dr. Bayes’s implementation of \text{sample-part} returns \(js\) in addition to the covering rectangle and its probability.) The density of the sampled \(\omega\) is computed as \(\prod_{j \in J'} 1/(m (\text{proj } j \Omega''))\), where \(\Omega''\) are the ever-shrinking inputs to \text{sample-source}^*. Roughly, it is the joint density of dependent uniform random variables evaluated at \text{restrict } \omega J'.

Implementations of \text{sample-source}^* require \text{refine} to compute image and preimage approximations whose intervals are outwardly rounded. As we showed in Section 9.3.3, unsound approximations of singleton intervals that are off by even one floating-point number can cause refinement to falsely return \(\emptyset\).

Figure 9.20c shows the result of using Dr. Bayes’s implementation of \text{sample-source}^* to sample within parts. No samples are rejected: in all cases, choosing an \(\omega_0\) and updating \(\Omega'\) with \(\{\omega_0\}\) allows preimage refinement to determine the range of values for \(\omega_1\) for which \(\omega\) is in the preimage set.

Samples taken using \text{sample-source}^* may still be rejected, when sampling from an overapproximated projection causes \text{refine} to return \(\emptyset\). We demonstrate and characterize the conditions under which this happens in Chapter 10.

9.4.5 Self-Adjusting Probabilistic Search

One way to regard \text{sample-part} is as a search for nonempty sets.
Figure 9.21: A self-adjusting, probabilistic tree search. After \texttt{sch-fail} \texttt{x}_2 is discovered to be a failure node, the path to the root is updated to remove it and maintain the probabilities of the other leaves.

To be correct, \texttt{sample-part} must return the actual probabilities with which it chooses each rectangular part cover. The easiest way to do so is to ensure that the transformation from random choices to part covers is injective: that no two combinations of choices result in the same part cover. Then the part cover’s probability is the product of the choice probabilities.

This unfortunately rules out backtracking search, because many backtracking paths can result in the same rectangular cover. Fortunately, because we invoke \texttt{sample-part} many times, past results can inform future ones.

The main idea is this: instead of just searching by making random choices, build a tree of possible searches. Each child node represents a choice, and parents label their children with probabilities. Leaf nodes contain rectangular part covers. To choose a part cover, repeatedly choose child nodes according to their probabilities. If the resulting leaf’s cover is \emptyset, remove it from the tree and adjust the child probabilities. Thus, choice combinations that lead to failure occur at most once. If child probabilities are correctly adjusted, removing a failure leaf does not change the probabilities of successful ones.

Figure 9.21a illustrates the self-adjusting search more generally. Four boxes represent two failure leaves with values \texttt{x}_0 and \texttt{x}_2, and two success leaves with values \texttt{x}_1 and \texttt{x}_3. Each
Search X ::= sch-fail X
 | sch-succ X
 | sch-node ⟨(0, 1], Search X⟩ ⟨(0, 1], Search X⟩

adjusted-node : (0, 1] ⇒ ⟨(0, 1], Search X⟩ ⇒ ⟨(0, 1], Search X⟩
adjusted-node p_{l} ⟨p_{l}, c_{l}⟩ ⟨p_{r}, c_{r}⟩ := let p_{l} := p_{l} + p_{r}
in ⟨p_{l} · p_{r}, sch-node ⟨p_{l}/p_{r}, c_{l}⟩ ⟨p_{r}/p_{r}, c_{r}⟩⟩

sample-search : ⟨(0, 1], Search X⟩ ⇒ ⟨⟨(0, 1], X⟩ ⟨(0, 1], Search X⟩⟩
sample-search ⟨p_{l}, sch-succ x⟩ := ⟨⟨p_{l}, x⟩ ⟨p_{l}, sch-succ x⟩⟩
sample-search ⟨p_{l}, sch-fail x⟩ := ⟨⟨p_{l}, x⟩ ⟨0, sch-fail x⟩⟩
sample-search ⟨p_{l}, sch-node l r⟩ := let sch-node ⟨p_{l}, c_{l}⟩ r′ := if (sample-bool (fst l))
 (sch-node l r)
 (sch-node r l)
⟨px, ⟨p′_{l}, c′_{l}⟩⟩ := sample-search ⟨p_{l} · p_{l}, c_{l}⟩
p′_{l} := p′_{l}/p_{l}
in ⟨px, adjusted-node p_{l} ⟨p′_{l}, c′_{l}⟩ r′⟩

Figure 9.22: A data type and algorithm for a self-adjusting, probabilistic tree search.

leaf value is distinct. Each node has two children, each with some probability, and the child probabilities sum to 1. The dotted outlines show a random path down the search tree ending on a failure leaf x_{2}. The probability of this failure is \(\frac{1}{1} \cdot \frac{1}{3} \cdot \frac{4}{7} = \frac{4}{21} \).

To remove it, we must update the entire path back up to the root in a way that maintains the probabilities of every other leaf. Figure 9.21b shows the result of having done so. For example, the probability of x_{3} is \(\frac{1}{1} \cdot \frac{1}{3} \cdot \frac{3}{7} = \frac{1}{7} \) in the original tree, and is still \(\frac{17}{21} \cdot \frac{3}{17} = \frac{1}{7} \) in the adjusted tree.

Figure 9.22 defines Search X, the type of search trees with leaf values X. To keep the presentation simple, values with type Search X are finite trees. It is easy to extend it to include lazy trees, and not much harder to change sample-part to build and update an instance of \(\langle R, \text{Search (Rect} \langle \Omega, T \rangle) \rangle \) instead of sampling directly. From here on, we consider only trees in which every pair of child probabilities sums to 1 and every leaf value in the tree is unique.

The sample-search function carries out the self-adjusting probabilistic search. It receives a probability and a Search X instance; for example, searching the tree in Figure 9.21b is
done by \texttt{sample-search} \((17/21, \text{sch-node} \ldots)\). It returns two pairs: \(<p_x, x>\), which is the sampled value and its probability, and \(<p'_t, t'>\), which is the new search tree and its new probability.

We must be sure that \(p_x\) is the probability of \(x\).

\textbf{Theorem 9.47} (\textit{sample-search} returns correct probabilities). Let \(\langle p_t, t \rangle : (\mathbb{R}, \text{Search} X)\). Let \(\langle \langle p_x, x \rangle, _ \rangle := \text{sample-search} \langle p_t, t \rangle\). If the probability of \(t\) is \(p_t\), the probability of \(x\) is \(p_x\).

\textit{Proof.} By induction on \(t\). Base cases \(t = \text{sch-succ} x\) and \(t = \text{sch-fail} x\) follow directly from uniqueness of \(x\). For the inductive case \(t = \text{sch-node} \langle p_l, c_l \rangle \langle p_r, c_r \rangle\), let \(\text{sch-node} \langle p, c \rangle r' := \text{if (sample-bool} p_l) \ldots \text{as in sample-search}\). Because \(p_l + p_r = 1\), \(\Pr[c = c_l] = p_t \cdot p_l\) and \(\Pr[c = c_r] = p_t \cdot p_r\). Apply the inductive hypothesis for cases \(c = c_l\) and \(c = c_r\). \(\square\)

When \textit{sample-search} rebuilds the path from the leaf to the root using \textit{adjusted-node}, we must be sure that \textit{adjusted-node} labels the left and right children with the correct probabilities.

\textbf{Theorem 9.48} (\textit{adjusted-node} returns correct probabilities). Let \(p_t \in (0, 1]\) and \(\langle p'_t, t' \rangle := \text{adjusted-node} p_t \langle p_l, c_l \rangle \langle p_r, c_r \rangle\).

If \(t' = c_r\), then \(p'_t = p_t \cdot p_r\).

If \(t' = \text{sch-node} \langle p'_l, c_l \rangle \langle p'_r, c_r \rangle\), then \(p'_t \cdot p'_l = p_t \cdot p_l\) and \(p'_t \cdot p'_r = p_t \cdot p_r\).

\textit{Proof.} Case \(t' = c_r\). Then \(p'_t = p_t \cdot p_r\) by definition of \textit{adjusted-node}.

Case \(t' = \text{sch-node} \langle p'_l, c_l \rangle \langle p'_r, c_r \rangle\). Let \(p_{lr} := p_l + p_r\), so \(p'_t \cdot p'_l = (p_t \cdot p_{lr}) \cdot (p_l/p_{lr}) = p_t \cdot p_l\) by the definition of \textit{adjusted-node}, and similarly for \(p'_t \cdot p'_r\). \(\square\)

Thus, using \textit{adjusted-node} \(p_t \langle p'_l, c'_l \rangle \langle p_r, c_r \rangle\) to replace child \(c_l\) with \(c'_l\) does not affect the probabilities of leaves below \(c_r\). Further, suppose \(\langle p_x, \langle p'_t, c'_t \rangle \rangle = \text{sample-search} \langle p_t, p_l, c_l \rangle\) and \(p'_t = p'_t/p_t\) as in \textit{sample-search}. By Theorem 9.48, \(c'_l\) will be chosen with probability \(p'_l \cdot p_t = p'_t\), as desired.

A simple extension makes trees converge not just to trees without failures, but to trees
with stated probabilities for each leaf. Consider the base cases in sample-search's definition:

\[
\text{sample-search } \langle p_x, \text{sch-succ } x \rangle := \langle \langle p_x, x \rangle, \langle p_x, \text{sch-succ } x \rangle \rangle
\]

(9.55)

\[
\text{sample-search } \langle p_x, \text{sch-fail } x \rangle := \langle \langle p_x, x \rangle, \langle 0, \text{sch-fail } x \rangle \rangle
\]

In both cases, returning \(\langle p, t \rangle\) in the second of the pair causes the tree to be rebuilt so that \(x\)'s probability becomes \(p\). Now define, instead of \text{sch-succ, sch-fail : X ⇒ Search X}, a constructor \text{sch-leaf : [0, 1] ⇒ X ⇒ Search X} and

\[
\text{sample-search } \langle p_x, \text{sch-leaf } p x \rangle := \langle \langle p_x, x \rangle, \langle p, \text{sch-leaf } p x \rangle \rangle
\]

(9.56)

Suppose \(t := \text{sch-leaf } p_0 x_0\) is a leaf in the tree. Sampling the initial search tree returns \(x_0\) with some probability \(p_x\) that is determined by the path to \(t\). With every subsequent tree after \(x_0\) is first returned, sampling returns \(x_0\) with probability \(p_0\).

A version of \text{sample-part} that builds such trees using \text{sch-leaf} might use the actual measure of the part cover \(\Omega'\) as its probability. Recall, however, that partitioned importance sampling requires \text{sample-part} to choose parts according to a fixed probability measure. We are fairly certain that partitioned importance sampling is correct even when the distribution over parts varies, as long as it converges pointwise, but we have not yet proved it.

9.5 Conclusions

Figure 9.23 again shows the components in the implementation of Dr. Bayes.

Chapter 8 defined the semantic function that transforms programs into their meanings. It derived the approximating preimage* arrow and proved it terminating and correct, provided representations of abstract sets and operations on them are correct, as well as any lifts of primitive functions.

In this chapter, we detailed the implementation of a simple abstract set library. Many of its functions are derived from lattice and set properties. We additionally verified through randomized testing that 21 sufficient lattice and membership properties hold.
We began a general theory of approximate function inversion, and used it to derive correct computations of preimages under one-argument, real bijections such as square roots, and two-argument trijections such as addition on $\mathbb{R} \times \mathbb{R}$ and multiplication on open quadrants. The theory allows simultaneous implementation for functions related by inversion and axial inversion. More complicated functions are built from simpler pieces using arrow combinators.

We developed a partitioned importance sampling algorithm and proved that it preserves expected values. We proved that our implementation of it is correct and terminates, and developed extensions that reduce the rejection rate of sampling within a part, and allow part sampling to avoid reaching \emptyset the same way twice.

With Dr. Bayes implemented and verified, it is time to try programming in it.
Chapter 10

Example Programs

Beware of bugs in the above code; I have only proved it correct, not tried it.

Donald Knuth

The correctness proofs in Chapters 8 and 9 assume an idealized model of the host language. While Dr. Bayes’s core is nearly a transliteration of the λ_{ZFC} terms that define the approximating semantics, we cannot know how well the theorems apply to Dr. Bayes without testing it.

Besides, we must still demonstrate that it is useful.

10.1 Guaranteed Termination

The theorems in Chapter 8 require a program or expression e to be well-defined (Definition 8.5); in particular, any interpretation $\llbracket e \rrbracket^{\dagger}$ must terminate. The syntax transformers that implement $\llbracket \cdot \rrbracket^{\dagger}$ and Racket’s rules for module-level definitions enforce this. For example, the following program is not well-defined according to the semantics:

$$\text{(define/drbayes (loop) (loop))}$$

Further, Racket raises a compile-time error, or more precisely, an expansion-time error. Its interpretation as a bottom* arrow computation is

$$\text{(define loop/bot* (apply/bot* loop/bot* (list)))}$$

222
where \texttt{apply/bot} composes a first-order function’s interpretation with a list of argument interpretations. (Here, the list is empty because there are no arguments.) Racket’s expander does not allow module-level bindings such as \texttt{loop/bot} to be referenced except by subsequent module-level expressions and expressions in the bodies of lambdas.

On the other hand, this program is well-defined according to the semantics because its recurrences are guarded by \texttt{if}:

\begin{verbatim}
(define/drbayes (loop) (if #t (loop) (loop)))
\end{verbatim}

Further, Racket raises no errors. As a \texttt{bottom*} arrow computation, it is

\begin{verbatim}
(define loop/bot*
 (ifte*/bot* (const/bot* #t)
 (lazy/bot* (delay (apply/bot* loop/bot* (list))))
 (lazy/bot* (delay (apply/bot* loop/bot* (list))))))
\end{verbatim}

Racket allows this definition of \texttt{loop/bot*} because the inner reference to \texttt{loop/bot*} is within a \texttt{delay} form, which expands to a lambda. (A \texttt{(delay e)} in Racket is similar to \texttt{\lambda 0. e} in \texttt{\lambda ZFC}, but it caches the value of \texttt{e} when it is first computed, and is applied using \texttt{force}.)

To test termination guarantees, we exhibit a few programs with different termination conditions. The first program never terminates:

\begin{verbatim}
(define/drbayes never-terminate (loop))
\end{verbatim}

When asked for any number of samples in the preimage of any nonempty set, Dr. Bayes simply returns no samples:

\begin{verbatim}
> (drbayes-sample never-terminate 100 univ-set)
'(())
\end{verbatim}

How long sampling takes depends on the probability with which \texttt{⊥} is chosen for branches: a lower probability of \texttt{⊥} increases the average number of loops before \texttt{⊥} is chosen, resulting in longer wait times. Any probability of \texttt{⊥} below \(\frac{1}{3} \) seems reasonable, and we generally use \(\frac{1}{5} \).

The following program returns \texttt{0} with probability \(\frac{1}{2} \), and otherwise loops forever:
With the probability of \(\bot \) branches at \(\frac{1}{5} \) and the probabilities of \(\text{true} \) and \(\text{false} \) at \(\frac{2}{5} \), we should expect perhaps \(\frac{2}{5} \) of the samples we ask for. However, we get almost all of them:

\[
\texttt{> (length (drbayes-sample half-terminate 500 univ-set))}
\]
\[
\texttt{486}
\]

This is due to the self-adjusting tree search. Each \(\bot \) branch choice in the fully inlined \(\text{(loop)} \) results in an empty preimage, which is a search failure, so its corresponding leaf in the search tree is removed. Propagating the necessary adjustments upward through the path to the removed leaf reduces the probability the sampler chooses \(\text{false} \) for \(\text{(< (random) 1/2)} \) in subsequent samples. After many such adjustments, its probability becomes very small.

Roughly, the self-adjusting search “learns” that \(\text{(loop)} \) terminates with low probability and usually avoids it. The more samples are taken, the lower its probability estimate, though it never reaches zero.

With probability 1, the following program returns a geometrically distributed value.

\[
\text{(define/drbayes geometric p)}
\text{(if ((< (random) p) 0 (+ 1 (geometric p))))}
\]

\[
\text{(define/drbayes almost-surely-terminate)}
\text{(geometric 1/2))}
\]

Dr. Bayes rejects some samples:

\[
\texttt{> (length (drbayes-sample almost-surely-terminate 500 univ-set))}
\]
\[
\texttt{493}
\]

The rejected samples are from \(\bot \) branch choices. As with \text{half-terminate}, the self-adjusting search keeps the number of \(\bot \) choices small.

This program always terminates, but abstractly does not seem to:
(define/drbayes abstractly-loop
(let ([x (random)]
 [y (random)])
 (if (< x y)
 (if (>= x y) (loop) 0)
 (if (< x y) (loop) 1))))

When (< x y), (>= x y) is impossible, so the program returns 0. Otherwise, (< x y) is impossible, so the program returns 1. Because loop is never applied, the program terminates.

However, the exact preimage of true-set under the interpretation of (< x y) cannot be represented directly by rectangles, and its smallest cover is univ-omega-set. The same is true for the exact preimage of true-set under (>= x y). In general, Dr. Bayes’s implementation of sample-part can never rule out all branch choices that lead to (loop).

Because sample-part may choose ⊥ for a branch choice, sampling terminates anyway, though for sequences of choices that contain ⊥ it rejects the sample. The proportion of samples accepted depends on how finely the program domain is partitioned. Dr. Bayes has a parameter drbayes-max-splits that determines how many times each projection is split in half: if set to n, the size of each projection’s partition is 2^n. When set to 0, the partition whose cover is sampled from is that induced by the program’s minimal branch traces T_\approx.

With no splits, Dr. Bayes accepts about half the samples:

```
> (drbayes-max-splits 0)
> (length (drbayes-sample abstractly-loop 500 univ-set))
235
```

When set to a larger number, however, splitting the program domain allows preimage refinement to often determine that (< x y) implies not (>= x y):

```
> (drbayes-max-splits 5)
> (length (drbayes-sample abstractly-loop 500 univ-set))
480
```

The only rectangular part covers that allow a later ⊥ branch choice are those that contain ω for which (< x y) is true and others for which it is false; i.e. they straddle the line $\omega j_x = \omega j_y$ where j_x and j_y are the indexes of each (random).
Most of the examples so far require the possibility of ⊥ branch choices to terminate. However, most programs, like almost-surely-terminate, abstractly terminate with probability 1, and thus do not require it. Therefore, we define a parameter drbayes-always-terminate? and implement sample-part so that it chooses ⊥ only when drbayes-always-terminate? is set to #t. For example,

\[
\begin{align*}
> \ (\text{drbayes-always-terminate? } \#f) \\
> \ (\text{length (drbayes-sample almost-surely-terminate 500 univ-set)})
\end{align*}
\]

500

The default value is #f.

10.2 Primitives

The last chapter demonstrates sampling in a preimage under subtraction (Figure 9.20). Addition is no more difficult. In fact, by Theorem 9.9, once we have addition or subtraction it is easy to define the other so that it is just as efficient, because each is an axial inverse of the other. Alternatively, we could derive one from the other using an additional negation primitive and \(a - b = a + (-b)\) or \(a + b = a - (-b)\), but the derived one would be slower.

To help ensure Dr. Bayes is useful, it additionally has comparison primitives, multiplication and division primitives (for which one is easily defined in terms of the other), and various \(\mathbb{R} \rightarrow \mathbb{R}\) function primitives such as \(\text{sqr}, \text{sqrt}, \text{log}, \text{exp}\), and inverse cumulative distribution functions (inverse CDFs) for a few common distributions.

When subtraction and predicates are defined, comparing real numbers is easy. For example, if negative? is defined as in (9.38), then because \(a < b\) if and only if \(a - b < 0\),

\[
\begin{align*}
\text{(define/drbayes (< a b)} \\
\text{(negative? (- a b)))}
\end{align*}
\]

The other comparison operators are defined similarly. We could define real equality by

\[
\begin{align*}
\text{(define/drbayes (= a b)} \\
\text{(and (< a b) (<= b a)))}
\end{align*}
\]
However, real equality is rarely useful because \((= a b)\) is usually a zero-probability event; i.e. the preimage of \(\{\text{true}\}\) under the interpretation of \((= a b)\) usually has zero measure.

Figure 10.1a shows the result of sampling in the preimage of \([-0.1, 0.2]\) under the interpretation of either of the following equivalent programs:

\[
\text{(define/drbayes uniform-mul } \\
(* (uniform -1 1) \\
(uniform -1 1)))
\]

Similarly, Figure 10.1b shows the result of sampling in the preimage of \([-0.5, 1]\) under the interpretation of \((/ (\text{uniform } -1 1) (\text{uniform } -1 1))\).

There are two points of interest here. The first is that the point samples in Figure 10.1 exhibit nonuniformity. (It is in the horizontal arms in the multiplication preimage, and in the
corners in the division preimage.) Nonuniformity arises from the fact that the probabilities with which part covers are chosen can only approximate the covered parts’ true measures (Figure 9.19), and from sampling dependent uniform random variables in sample-source* (9.54). It is adjusted for by weighting the samples, and is further mitigated by the extension to the self-adjusting search that causes the search tree to converge to a tree with stated leaf probabilities (Section 9.4.5). But nonuniformity can lower the samples’ information content in a query-dependent way. We quantify it further on.

The second point of interest is that \((\text{uniform } -1 \ 1)\) is defined by a function that encodes the uniform distribution family:

\[
\text{(define/drbayes (uniform a b)} \\
\quad (+ a (* (- b a) \text{(random)})))
\]

This function transforms uniform random variables on the unit interval into uniform random variables between \(a\) and \(b\). The uniform distribution family is one of the simplest common examples of a location-scale family, which can always be encoded in Dr. Bayes as

\[
\text{(define/drbayes (family-name loc scale)} \\
\quad (+ loc (* scale \text{(standard-inv-cdf (random))})))
\]

For the uniform distribution family, \text{standard-inv-cdf} is the identity function.

Another location-scale family, the normal distribution family, is encoded in Dr. Bayes using the implementation of \text{normal-inv-cdf}_{pre} (9.35):

\[
\text{(define/drbayes (normal } \mu \ \sigma) \\
\quad (+ \mu (* \sigma \text{(normal-inv-cdf (random))})))
\]

Other implemented families include the exponential, Cauchy, and logistic distribution families.

Some distribution families are significantly more difficult to encode. For example, gamma distributions are parameterized on a \textit{shape} and a scale. Because one parameter is a scale, we can reduce the work to implementing a two-argument primitive \texttt{gamma-inv-cdf}:
(define/drbayes (gamma k θ)
 (* θ (gamma-inv-cdf k (random))))

Implementing \texttt{gamma-inv-cdf} requires implementing the following trijection, extended to a compact superdomain.

\[
F_p : (0, \infty) \times (0, \infty) \rightarrow (0, 1) \quad \text{Gamma CDF}
\]

\[
F_x : (0, \infty) \times (0, 1) \rightarrow (0, \infty) \quad \text{Gamma inverse CDF} \quad (10.1)
\]

\[
F_k : (0, 1) \times (0, \infty) \rightarrow (0, \infty) \quad ???
\]

\(F_p\) and \(F_x\) are well-known, and Racket’s \texttt{math/distributions} library exports quite accurate implementations of them. Unfortunately, as far as we can tell, no one else has ever needed an implementation of \(F_k\), which returns the shape parameter \(k\) given a probability \(p\) and a gamma-distributed value \(x\). While the numerical analysis required to implement it accurately on its entire domain is beyond the scope of this work, we plan to do it in the future.

As soon as we have \texttt{gamma}, we can encode other distributions important in Bayesian modeling by encoding sampling algorithms for them that are defined in terms of gamma distributions. For example, the inverse gamma and beta families can be encoded by

\[
\begin{align*}
(\text{define/drbayes} & \ (\text{inv-gamma} \ k \ θ) \\
& (/ 1 (\text{gamma} \ k \ θ)))
\end{align*}
\]

\[
(\text{define/drbayes} \ (\text{beta} \ α \ β) \\
(\text{let} \ ([x \ (\text{gamma} \ α \ 1)] \\
[y \ (\text{gamma} \ β \ 1)]) \\
(/ x (+ x y))))
\]

The Dirichlet distribution family encoding would be similar to \texttt{beta}, but would use structural recursion over a list of parameters to get and normalize an unbounded number of gamma-distributed random variables.

In general, as with \texttt{beta}, the encoding of any sampling algorithm is also an encoding of the distribution or distribution family it samples from. For example, this encoding of the Box-Muller algorithm \cite{box-muller} also encodes the standard normal distribution:
(define/drbayes (normal/box-muller)
 (* (sqrt (* −2 (log (random))))
 (partial-cos (* pi (uniform −1 1))))))

Here, partial-cos is the cosine function defined on \([-\pi, \pi]\), which is implemented by pasting together two symmetric, monotone pieces defined on \([-\pi, 0]\) and \([0, \pi]\).

Using (normal-inv-cdf (random)) instead of (normal/box-muller) is much faster, consisting of one \(\Omega\) projection and one primitive operation instead of two \(\Omega\) projections and nine primitive operations. However, the point of defining (normal/box-muller) is to demonstrate the expressive power of a probabilistic language defined measure-theoretically.

A language based on probability density functions necessarily distinguishes between primitive and derived random variables. The former are simply projections, and conditions are restricted to be primitive random variable equalities so that conditional densities always exist. Conditions referring to a derived random variable such as (normal/box-muller), or even (normal \(\mu\ \sigma\)) using the present definition of normal, are close to unthinkable.

We will explore how to leverage this new expressiveness after showing how Bayesian theories with density models are encoded in Dr. Bayes, and showing how to use its sampling algorithm to answer conditional queries about them.

10.3 Theories With Density Models

10.3.1 Normal-Normal

We start with one of the simplest Bayesian theories, the normal-normal, introduced in Chapter 2. Specified constructively, it is

\[
X ∼ \text{Normal}(0, 1) \tag{10.2}
\]

\[
Y ∼ \text{Normal}(X, 1)
\]

There are many possible encodings in Dr. Bayes whose interpretations are a model of this theory. One of the most straightforward is
(define/drbayes normal-normal
(let* ([x (normal 0 1)]
 [y (normal x 1)])
 (cons x y)))

where let* makes x visible in the definition of y by expanding to nested let expressions, and cons constructs pairs.

In Chapter 2, we used Bayes’ law for densities to find the distribution of X given Y = 2. By not defining the language in terms of densities, we have given up the ability to handle such zero-probability conditions except as limits, and we cannot wait for limits to complete. We will show that not having zero-probability conditions matters little.

But first, from a philosophical standpoint, the condition Y = 2 is hard to support: it is an assertion about all of the countably many digits of Y. If finding the distribution of X|Y = 2 is a typical inference task, this amounts to claiming infinite knowledge about a real-world observation. Still, zero-probability conditions are often convenient, so we intend to investigate supporting them in future work.

To sample within a positive-probability preimage, the condition needs to be wider; e.g. Y ∈ [2 − ε, 2 + ε] where ε > 0 is small. For normal-normal, we must sample within the preimage of \(\mathbb{R} \times [2 - \varepsilon, 2 + \varepsilon] \). Equivalently, we could encode the condition in the program as a proposition about y:

(define/drbayes normal-normal/cond
(let* ([x (normal 0 1)]
 [y (normal x 1)])
 (cons x (<= (- 2 ε) y (+ 2 ε)))))

and sample within the preimage of \(\mathbb{R} \times \{\text{true}\} \).

Figure 10.2 shows the results of sampling 10000 times within the preimage for \(\varepsilon = 0.2 \) and \(\varepsilon = 0.01 \), each of which takes about 3 seconds on current hardware. The last plot is a density estimate of the distribution of X|Y ∈ [1.8, 2.2], wherein \(\varepsilon = 0.2 \), not 0.01. Even so, the density estimate is very good (and is consistently so in multiple tests), suggesting that
Figure 10.2: From left to right, samples from the preimage of $[1.8, 2.2]$, samples from the preimage of $[1.99, 2.01]$, and a density estimate computed from the image of the first set of samples.

we do not need anything close to a zero-probability condition. A fairly wide interval centered on 2 is enough.

For $\varepsilon = 0.2$, sufficient statistics for the computed distribution are

\[
\text{> (mean } xs \; ws) \quad 0.9883685519606158
\]

\[
\text{> (stddev } xs \; ws) \quad 0.7033198741144521
\]

where xs are the first of every sampled $(\text{cons } x \; y)$, and ws are the sample weights. The exact values of these statistics for $X | Y = 2$ are 1 and $\sqrt{\frac{1}{2}} \approx 0.707107$.

Every value we estimate from samples, such as (mean xs ws) and (stddev xs ws), is actually a random variable. The standard way to quantify their uncertainty or information content is by estimating their variance, which is called Monte Carlo variance [21, Chapter 12]. To get Monte Carlo variance of the estimated mean (mean xs ws) in the same units as the mean, we use mc-stddev from Racket’s math/statistics library, which returns the square root of an estimate of Monte Carlo variance, computed from the samples:

\[
\text{> (mc-stddev } xs \; ws) \quad 0.007754889592107897
\]
We continue to follow DeGroot [21]. By the Central Limit theorem, the distribution of \((\text{mean } x s \text{ ws})\) should be approximately normal, and we have so many samples that we may simply fit a normal distribution to it to obtain a confidence interval:

\[
> \text{real-dist-hpd-interval (normal-dist (mean } x s \text{ ws}) (mc-stddev } x s \text{ ws)) 0.95)
\]

0.9731692476559998
1.0035678562652317

Here, \text{real-dist-hpd-interval} finds the High Probability Density (HPD) interval: the narrowest interval containing 95% of the area under the density of the distribution object returned by \text{normal-dist}. Thus, we are 95% confident that the mean of \(X | Y = 2\) is between 0.973 and 1.004.

In this example, weighted samples carry almost as much information as unweighted. For comparison, here are the same results computed from 10000 unweighted samples chosen according to the exact distribution of \(X | Y = 2\):

\[
> \text{define } zs \text{ (sample (normal-dist 1 (sqrt 1/2)) 10000))}
\]

\[
> \text{mean } zs
0.9969732989599994
\]

\[
> \text{stddev } zs
0.7035825345789904
\]

\[
> \text{mc-stddev } zs
0.0070358253457899035
\]

\[
> \text{real-dist-hpd-interval (normal-dist (mean } zs \text{) (mc-stddev } zs)) 0.95)
\]

0.9831833346807372
1.0107632632392618

Monte Carlo variance is a little lower, so the resulting confidence interval is a little tighter.

We can also compute probabilities as expected values, as discussed in Chapter 6. For example, \(\Pr[X \in (0, 1) | Y = 2]\) is approximately

233
where \texttt{indicator} converts \(X \Rightarrow \text{Bool}\) functions into \(X \Rightarrow \{0, 1\}\) functions. As with the mean, this computed probability is also a random variable, but fitting a normal distribution using Monte Carlo variance may be a bad idea: the fitted distribution would give positive probability to sets containing negative “probabilities.” It is better to fit a beta distribution, which has support only in \([0, 1]\), and is well-suited for characterizing distributions over probabilities.

The \texttt{math/statistics} export \texttt{mc-prob-dist} does this for us:

\[
\text{\> (real-dist-hpd-interval (mc-prob-dist (\lambda (x) (< 0 x 1)) xs ws) 0.95)}
\]

\[
0.41066735830660506
0.4300151946469193
\]

Thus, we are 95\% confident that \(\Pr[X \in (0, 1) \mid Y = 2]\) is between about 0.41 and 0.43.

The following encoding of the same normal-normal theory uses the standard normal distribution as defined using the Box-Muller algorithm.

\[
\text{(define/drbayes normal-normal/box-muller}
\text{ (let* ([x (normal/box-muller)]
[y (+ x (normal/box-muller))])
(cons x y)))}
\]

The results (elided) from taking 10000 samples in the preimage of \([1.8, 2.2]\) are nearly identical, except the Monte Carlo standard deviation is higher, at approximately 0.0115 instead of 0.00775, and collecting the samples takes about 22 seconds instead of 3.

10.3.2 Normal-Normals

Extending the normal-normal theory with more observations requires adding more random variables that depend on \(X\). A template for encoding them is

\[
\text{(define/drbayes normal-normals}
\text{ (let ([x (normal \mu \sigma)])
(list x (normal x \sigma_1) \ldots (normal x \sigma_n))))}
\]

234
We sample within preimages of $\mathbb{R} \times [y_1 - \varepsilon_1, y_1 + \varepsilon_1] \times \ldots \times [y_n - \varepsilon_n, y_n + \varepsilon_n] \times \{\emptyset\}$, where y_1, \ldots, y_n are the observed data. (In functional languages, a finite list consists of nested pairs terminated by $\langle \rangle$.) Each observation y_i has its own interval width ε_i.

Figure 10.3 illustrates nested condition sets $[y_1 - \varepsilon_1, y_1 + \varepsilon_1] \times [y_2 - \varepsilon_2, y_2 + \varepsilon_2] \times [y_3 - \varepsilon_3, y_3 + \varepsilon_3]$ as each ε_i decreases. If the condition sets converge to $\{\langle y_1, y_2, y_3 \rangle\}$, then queries with positive-probability conditions $\langle Y_1, Y_2, Y_3 \rangle \in [y_1 - \varepsilon_1, y_1 + \varepsilon_1] \times [y_2 - \varepsilon_2, y_2 + \varepsilon_2] \times [y_3 - \varepsilon_3, y_3 + \varepsilon_3]$ converge to queries with zero-probability conditions $\langle Y_1, Y_2, Y_3 \rangle = \langle y_1, y_2, y_3 \rangle$—under mild assumptions.

It is natural to wonder what these mild assumptions must be. What must the relationships be among $\varepsilon_1, \ldots, \varepsilon_n$? By illustrating with nested rectangles, not cubes, Figure 10.3 suggests they need not be equal. Must they have the same order of magnitude, be proportional, or at least be functions of each other? For which points $\langle y_1, \ldots, y_n \rangle$ can zero-probability conditions be computed using sequences of nested rectangles?

The Lebesgue differentiation theorem [66, Chapter 7] justifies using any sequence of sets that shrinks nicely to any continuous point $\langle y_1, \ldots, y_n \rangle$. Because Dr. Bayes’s primitive operators are continuous almost everywhere, any encoded theory’s discontinuous points

Figure 10.3: Nested rectangular conditions: each axis represents an observation $Y_i \in [y_i - \varepsilon_i, y_i + \varepsilon_i]$.

235
comprise a zero-probability set. Theories with density models have no discontinuous points.

Rudin [66] defines shrinks nicely formally, but also gives an informative example. If, in a sequence of rectangles, for any fixed $c > 0$, the longest edge is (eventually) always no more than c times the shortest edge, then the sequence shrinks nicely.

Rudin’s example suggests something that is possibly counterintuitive, but fortunate: that a wide observation $Y_1 \in [y_1 - 0.2, y_1 + 0.2]$ may affect the distribution of X as much as a narrow observation $Y_2 \in [y_2 - 0.01, y_2 + 0.01]$. Figure 10.4 demonstrates precisely this using the normal-normals template with two observations $y_1 := 2$ and $y_2 := -1$, all standard deviations set to 1, and two different settings for $\varepsilon_1, \varepsilon_2$. The left plot shows 10000 samples from the preimage using $\varepsilon_1 = 0.2, \varepsilon_2 = 0.01$. The middle plot shows 10000 samples using $\varepsilon_1 = 0.01, \varepsilon_2 = 0.2$. Though the preimage sets are visibly different, X’s estimated density is nearly the same either way: close to the true distribution, a normal with $\mu = \frac{1}{3}$ and $\sigma = \sqrt{\frac{1}{3}}$.

In both cases, the μ estimate’s Monte Carlo standard deviation is about 0.006.

10.3.3 Polynomial Fitting

When encoding and computing conditional queries about normal-normal theories, it is easy to notice that the time it takes Dr. Bayes to sample is superlinear in the number of observations. In fact, this is expected. Because Ω subsets are represented by trees that correspond with
the expression tree and projections are looked up and updated starting from the root, a
(random) expression’s image and preimage computation takes time proportional to its depth
in the fully inlined program. Because \((\text{list } e_1 e_2 \ldots e_n)\) is equivalent to \((\text{cons } e_1 (\text{cons } e_2 (\text{cons} \ldots (\text{cons } e_n \text{ null}))))\), if each \(e_i\) has one (random) subexpression at a constant
depth, its overall time complexity is \(O(n^2)\).

We are fine with this for now. At this early stage, theoretical simplicity is more important
than speed. Additionally, it gives us a fresh problem on which to demonstrate using Dr.
Bayes for Bayesian regression, particularly to infer the distribution of a random function
from number of observations to running time.

Figure 10.5 demonstrates using Dr. Bayes to reason about the behavior of Dr. Bayes.
The theory is as follows: let \(a_0, a_1, a_2\) be random coefficients that define a quadratic function
\(f n := a_0 + a_1 \cdot n + a_2 \cdot n^2\), where \(n\) is the number of observations. We assume that the time to
take 1000 samples conditioned on \(n\) observations is \(f n\) seconds plus some normally distributed
noise. We are interested in the distribution of \(f\) (equivalently the distribution of \(⟨a_0, a_1, a_2⟩\))
given some running time observations.

A priori, we do not know much about \(a_0, a_1\) and \(a_2\), so we assume they have Cauchy
distributions, which are bell-shaped like normal distributions but allow much more variation.
We also allow the random noise added to \(f n\) to be fairly large (standard deviation 1 second).

We collected running times for 0 through 15 observations with millisecond accuracy. This
data is encoded as \(\text{ns}\) (numbers of observations) and \(\text{ts}\) (observed times) in Figure 10.5a.
The function \(\text{quadratic-eval}\) evaluates \(f\). The \(\text{generate}\) function returns a list of running
time random variables generated from \(\text{ns}\). The \(\text{condition}\) function returns a boolean random
variable which is \#t only when every \(t\) in \(\text{ts}\) is near its corresponding observation \(t\) in
\(\text{ts}\). Because our times have millisecond accuracy, \(\text{condition}\) requires each \(t\) to be within a
millisecond of \(t\), or it returns \#f.

The encoding of our theory outputs a list containing \(a_0, a_1, a_2\) and the value of the
condition. Sampling within the preimage of \(\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \{\text{true}\} \times \{()\}\), and taking the
(define ns (list 0 1 2 3 4 5 6 7 ...))
(define ts* (list 0.063 0.262 0.493 0.814 1.222 1.708 2.238 2.883 ...))

(define/drbayes (quadratic-eval a0 a1 a2 n)
 (+ a0 (* n (+ a1 (* n a2))))))

(define/drbayes (generate a0 a1 a2 ns)
 (if (null? ns) null (cons (normal (quadratic-eval a0 a1 a2 (first ns)) 1)
 (generate a0 a1 a2 (rest ns))))))

(define/drbayes (condition ts ts*)
 (if (null? ts) #t (and (let ([t (first ts)]
 [t* (first ts*)])
 (<= (- t* 0.001) t (+ t* 0.001)))
 (condition (rest ts) (rest ts*))))))

(define/drbayes normal-normal-running-time
 (let* ([a0 (cauchy 0 0.1)]
 [a1 (cauchy 0 0.1)]
 [a2 (cauchy 0 0.1)]
 [ts (generate a0 a1 a2 ns)])
 (list a0 a1 a2 (condition ts ts*))))

(a) A Bayesian theory of the running time of Dr. Bayes as a quadratic function of the number of observations.

(b) The observations, sampled quadratic polynomials given observations, and a 95% confidence interval for the average quadratic polynomial.

Figure 10.5: Bayesian analysis of Dr. Bayes’s running time, using Dr. Bayes.
image of these samples, results in samples from the distribution of \(f \)'s coefficients given the observations.

Figure 10.5b shows two views of a plot of the observations, the polynomial function samples, and an inferred 95% confidence interval computed by fitting a normal distribution to the computed mean of each coefficient and its Monte Carlo standard deviation. By our prior knowledge and the close fit, we believe the quadratic model is a good one.

In fact, we will use it to make a prediction. By evaluating each sampled quadratic polynomial on \(n = 50 \), we get samples from a distribution over running times with mean 113.5 and standard deviation 15.6. The distribution's upper and lower 2.5% quantiles are approximately 83 and 144; thus, if the model is correct, then given the observations, there is a 95% probability that the running time for 50 normal-normal observations is between approximately 83 and 144 seconds. When we test this prediction (i.e. sample under the normal-normal theory with 50 observations), Dr. Bayes takes 141.5 seconds.

10.3.4 Model Selection

When Bayesian practitioners have two or more competing theories in mind to explain some phenomenon, they perform model selection to determine which is most probable. Of course, we call it theory selection.

As a constructive theory, selecting between two theories is

\[
M \sim \{ m_1 \mapsto p_1, m_2 \mapsto p_2 \}
\]

\[
\Theta \sim \begin{cases}
\text{Prior}_1 & \text{if } M = m_1 \\
\text{Prior}_2 & \text{if } M = m_2
\end{cases}
Y \sim \begin{cases}
\text{Likelihood}_1(\Theta) & \text{if } M = m_1 \\
\text{Likelihood}_2(\Theta) & \text{if } M = m_2
\end{cases}
\]

(10.3)

where \(p_1 \) and \(p_2 \) are the probabilities of theories \(m_1 \) and \(m_2 \), and \(\Theta \) is a random vector of
parameters for one theory or the other. A concrete, though contrived example is

\[
M \sim [cc \mapsto \frac{1}{2}, nn \mapsto \frac{1}{2}]
\]

\[
X \sim \begin{cases}
\text{Cauchy}(0, 1) & \text{if } M = cc \\
\text{Normal}(0, 1) & \text{if } M = nn
\end{cases}
\]

\[
Y \sim \begin{cases}
\text{Cauchy}(X, 1) & \text{if } M = cc \\
\text{Normal}(X, 1) & \text{if } M = nn
\end{cases}
\]

Here, the competing theories are Cauchy-Cauchy and normal-normal.

The major task in theory selection is computing the distribution of \(M | Y = y \), to determine the probabilities of each theory given observed data. Theoretically, it is as simple as applying a version of Bayes’ law for mixed masses and densities: if \(f_Y(y) > 0 \), then

\[
p_{M|Y}(m | y) = \frac{p_M(m) \cdot f_{Y|M}(y | m)}{f_Y(y)} = \frac{p_M(m) \cdot f_{Y|M}(y | m)}{\sum_{m \in \{m_1, m_2\}} p_M(m) \cdot f_{Y|M}(y | m)}
\]

Unlike using Bayes’ law for densities in Chapter 2, this is not conveniently in terms of functions we have on-hand. While we have \(p_M = [m_1 \mapsto p_1, ..., m_n \mapsto p_n] \), we do not have the conditional density \(f_{Y|M} \). Much of the literature on Bayesian theory selection is devoted to efficiently computing \(f_{Y|M} \) or approximations of it that can be used in certain circumstances.

Combining theories with density models results in a theory with a density model. Sometimes the combined density model is amenable to traditional Monte Carlo methods. (An example is our contrived Cauchy-Cauchy vs. normal-normal theory.) Practitioners then need only sample according to the density conditioned on the data, and count the frequencies with which \(M = m_1, M = m_2 \) and so on.

In Dr. Bayes, that always works. For example, suppose we want to determine whether Dr. Bayes’ normal-normal running time is best modeled by a distribution over quadratic functions \(f(n) := a_0 + a_1 \cdot n + a_2 \cdot n^2 \) or exponential functions \(g(n) := b_0 + b_1 \cdot 2^n \). As with \(a_0 \), we assume \(b_0 \) has a Cauchy distribution. But \(b_1 \) should not be negative and we do not expect it

\[1\) Technically, every version of Bayes’ law that Bayesians use is Bayes’ law for Radon-Nikodým derivatives.\]
(define/drbayes quad-or-exp-running-time
 (if (< (random) 1/2)
 ;; Quadratic running time
 (let* ([a0 (cauchy 0 0.1)]
 [a1 (cauchy 0 0.1)]
 [a2 (cauchy 0 0.1)]
 [ts (generate-quad a0 a1 a2 ns)])
 (list #t (list a0 a1 a2)
 (condition ts ts*)))
 ;; Exponential running time
 (let* ([b0 (cauchy 0 0.1)]
 [b1 (exponential 0.5)]
 [ts (generate-exp b0 b1 ns)])
 (list #f (list b0 b1)
 (condition ts ts*))))

(a) Encoding of Bayesian theory selection

Figure 10.6: Bayesian theory selection in Dr. Bayes.

to be large, so instead of a Cauchy distribution, we assume it has an exponential distribution
with scale \(\frac{1}{2} \). A priori, we assume the quadratic and exponential theories are equally likely.

Figure 10.6 shows some of the encoding of the combined theory. (The rest is similar
to quadratic-eval and generate in Figure 10.5a.) It also shows the results of sampling in
the conditioned model. We use only 8 observations, as adding more makes the exponential
theory too unlikely; for example, a typical run with 16 observations returns no exponential
function samples. With 8 observations, we compute

\[
> (\text{real-dist-hpd-interval}
\quad (\text{mc-prob-dist} (\lambda (m) m) ms ws)
\quad 0.95)
\]
\[
0.8543205426853948
0.8858619943029161
\]

where \(ms \) is the list of boolean theory choices, in which \#t represents choosing quadratic. Thus,
we are 95\% confident that the probability of the quadratic theory, given the 8 observations,
is between 0.85 and 0.89. Given 16 observations, the probability of the quadratic theory is
approximately 1.
In general, while Dr. Bayes does not construct density models, it is perfectly capable of expressing and doing inference on theories and queries that have them.

10.4 Theories Without Density Models

10.4.1 Observing Sums

One way to demonstrate that Dr. Bayes properly handles non-axial conditions is to define a query with one, for which transforming the theory allows an equivalent query with a closed-form solution. A suitable theory is

\[
\begin{align*}
X & \sim \text{Normal}(0, 1) \\
Y_1 & \sim \text{Normal}(X, 1) \\
Y_2 & \sim \text{Normal}(X, 1)
\end{align*}
\]

We are interested in the distribution of \(X | Y_1 + Y_2 = 2\). This is equivalent to the distribution of \(X | Y = 2\) using the theory

\[
\begin{align*}
X & \sim \text{Normal}(0, 1) \\
Y & \sim \text{Normal}(2 \cdot X, \sqrt{2})
\end{align*}
\]

which has a closed-form solution: normal with mean \(\frac{2}{3}\) and standard deviation \(\sqrt{\frac{1}{3}}\).

Figure 10.7 shows the result of sampling in the preimage of \([1.9, 2.1]\) in Dr. Bayes with an encoding of the original theory. Sufficient statistics for the computed distribution are

\[
> \text{(mean xs ws)} \\
0.6677390674446246
\]

\[
> \text{(stddev xs ws)} \\
0.5814956773340675
\]

which are close to the true values \(\frac{2}{3}\) and \(\sqrt{\frac{1}{3}} \approx 0.577350\). Figure 10.7b shows that the density estimated from the weighted samples is close to the true density. Figure 10.7a shows that
(a) Samples from the preimage of \([1.9, 2.1]\)

(b) Density estimate computed from the samples

Figure 10.7: Computing the distribution of \(X \mid Y_1 + Y_2 = 2\).

the samples in the preimage of \([1.9, 2.1]\) lie close to a 2-dimensional manifold, as we should expect when effectively constraining one of three variables.

10.4.2 Bounded Measuring Devices

The simplest theories without density models try to faithfully model measuring devices, which in reality cannot output unbounded values.

Suppose we wish to model a thermometer that would display the actual temperature with normally distributed noise, except that it cannot display numbers less than 0 or greater than 100. Here is a theory in which we assume the true temperature is \(F\):

\[
T \sim \text{Normal}(F, 1)
\]

\[
U = \max(0, \min(T, 100))
\]

A typically Bayesian task would be to infer the distribution of the outside temperature given a thermometer reading. An encoding in Dr. Bayes is
(define/drbayes temp-outside
 (let* ([temp (normal 90 10)]
 [therm (max 0 (min 100 (normal temp 1))))])
 (cons temp therm)))

where (normal 90 10) represents our prior knowledge about the outside temperature.

Suppose we see the thermometer pegged at 100. What is the distribution of the outside temperature?

Figure 10.8 plots a density estimate of the image of samples taken in the preimage of $\mathbb{R} \times [100, 100]$. The distribution is skewed positive, as we might expect: its mode is approximately 102, and the temperatures below 102 that can cause the thermometer to display 100 have lower probability than the temperatures above 102 that can cause it. The distribution is wide, corresponding with the fact that reading the maximum value does not tell us much about the probability of temperatures above the maximum value.

With 95% probability, the outside temperature is between about 98.4 and 114.5:
As the result of a random simulation, these are of course random variables. But they are not expected values, so it is more difficult to quantify uncertainty in them. Still, the mean’s Monte Carlo standard deviation is about 0.047, which indicates that they should be close to the true HPD interval.

While it may seem useless to infer that we know very little, it is in these cases that Bayesian inference shines. In low-knowledge situations, prior knowledge becomes more important. Because Bayesian theories explicitly represent prior knowledge, inference can fill in the gaps. See, for instance, Toronto et al [74], wherein defaced portions of a photograph are marked as missing data (i.e. no knowledge). A prior distribution that weakly favors continuous edges and contiguous color regions allows inference to fill in the missing data quite accurately. This work in particular, which tries to faithfully model the process of taking a photograph, could have benefited from not requiring a density model, to account for the fact that each camera sensor, at each image location, is a bounded measuring device. If it had, inference could have found plausible shapes in under- and overbright portions of photographs, and could have been used to undo sensor saturation and fix blooming artifacts.

10.4.3 Non-Axial Conditions

Faithfully modeling the process of taking a photograph also requires non-axial conditions. The quantity measured by each sensor is a weighted sum of random quantities that represent light arriving from slightly different directions. Observing such sums amounts to conditioning on hyperplanes. In general, the result of asserting these and other non-axial, zero-probability conditions must be a measure-theoretic model, not a density model.

The next example conditions on something a little more difficult than sums. Suppose we augment our normal-normal theory encoding with the distance from the origin:

\[> \text{(real-hpd-interval 0.95 temps ws)} \]
\[98.47185450009886 \]
\[114.45483575358433 \]

\(^2\)Quantifying uncertainty about HPD intervals requires more complicated methods than we have discussed, such as bootstrapping.
Figure 10.9: Sampling within circular probabilistic conditions.

(a) 42144 samples from the distribution of $X, Y | \sqrt{X^2 + Y^2} \in [1 - \varepsilon, 1 + \varepsilon]$, overlaid on a contour plot of the unconditioned density model

(b) Density estimate of the distribution of $X | \sqrt{X^2 + Y^2} \in [1 - \varepsilon, 1 + \varepsilon]$

We use $\varepsilon = 0.05$ to make the left plot’s circular band of samples wide, so it is obvious that the point densities correspond with the density model for `normal-normal/distance`. Dr. Bayes samples just as efficiently for any $\varepsilon > 0$. Therefore, while in the limit as ε approaches zero there is no density model, Dr. Bayes can still compute converging sequences of answers to queries.

We requested 50000 samples and received 42144. The rejected samples are from sampling within overapproximations, which sometimes causes preimage refinement to return \emptyset. We illustrate why further on.
10.4.4 Stochastic Ray Tracing

By implementing a small vector math library and some collision detection functions, we can encode a simple theory of light transport in Dr. Bayes for which conditional queries carry out stochastic ray tracing [78]. For example, the following functions compute the dot product between two vectors (represented by lists), and return a random vector with a uniform direction (for emitting light).

\[
\text{(define/drbayes (vec-dot v1 v2)}
\begin{align*}
&(+ (* (list-ref v1 0) (list-ref v2 0))

\text{(*(list-ref v1 1) (list-ref v2 1))}

\text{(*(list-ref v1 2) (list-ref v2 2)))})
\end{align*}
\]

\[
\text{(define/drbayes (uniform-vec)}
\begin{align*}
\text{(list (normal) (normal) (normal)))}
\end{align*}
\]

We have also implemented vec-add, vec-neg (negation) and vec-scale (elementwise multiplication by a constant). We additionally define a structure to represent collisions:

\[
\text{(struct/drbayes collision (time point normal))}
\]
and a function to compute ray-plane intersections:

```
(define/drbayes (ray-plane-intersect p0 v n d)
  (let ([denom (- (vec-dot v n))])
    (if (positive? denom)
      (let ([t (/ (+ d (vec-dot p0 n)) denom)])
        (if (positive? t) (collision t (vec-add p0 (vec-scale v t)) n) #f))
      #f))
```

Figure 10.10a illustrates the main idea behind stochastic ray tracing. Using the vector functions, we simulate casting photons uniformly from a light source and reflect them uniformly when they collide with the walls of a square room, which generates paths. We condition on the paths passing through a small aperture, collect samples, and project them onto a collector plane on the other side of the aperture. Figure 10.10b shows the result of accumulating the collisions on the collector. The smaller the aperture, the smaller the probability a path passes through it, and the more focused the resulting image.

All efficient implementations of stochastic ray tracing to date use sophisticated, specialized sampling methods that bear little resemblance to the physical processes they simulate. The proof-of-concept ray tracer in Dr. Bayes is little more than a simple physics simulation and a conditional query.

10.4.5 Probabilistic Program Verification

Recent work in probabilistic verification recasts it as a probabilistic inference task [32]. We take this idea further, recasting probabilistic verification more specifically as finding the distribution over program inputs given an error condition, in which case it is equivalent to Bayesian inference in particular.

To use Dr. Bayes to compute this conditional distribution for a given program, we

1. Encode the program in Dr. Bayes in a way that propagates errors.
2. Compute an overapproximation of the preimage of an error condition.
3. Sample points in the overapproximation that are also in the preimage.
Sometimes step 2 returns \emptyset, in which case there are no preconditions that produce errors (if the program is encoded correctly). The longer the probabilistic search in step 3 runs without finding a point in the preimage set, the likelier it is that the preimage has zero probability or is empty. The probabilistic search is guided by preimage computation to find errors, and can be guided further by manually adjusting the distribution over inputs.

Because dependent uniform sampling (i.e. `sample-source*` as defined in (9.54)) is so sensitive to floating-point error, we are most interested in verifying error bounds for the outputs of floating-point implementations of real functions.

While Dr. Bayes’s numbers are implemented by floating-point intervals, semantically, they are real numbers. We therefore cannot represent floating-point numbers directly in Dr. Bayes—but we do not want to. We need to represent abstract floating-point numbers, each consisting of an exact, real number and a bound on the relative error with which it is approximated. We regard numbers with catastrophic relative error (i.e. not in $[0, 1)$) as representing any floating-point number, and so define the following two structures.

\[
 \text{(struct/drbayes float-any ())}
\]
\[
 \text{(struct/drbayes float (value error))}
\]

An abstract value `(float v e)` represents every floating-point number between $(* v (- 1 e))$ and $(* v (+ 1 e))$ inclusive.

Abstract floating-point functions compute exact results and use input error to bound output error:

249
(define/drbayes (flsqrt x)
 (if (float-any? x)
 x
 (let ([v (float-value x)]
 [e (float-error x)])
 (cond [(negative? v) (float-any)] ; NaN
 [(zero? v) (float 0 0)] ; exact case
 [else
 ; v is positive
 (make-float (sqrt v) ; exact square root
 (+ (* 1/2 epsilon.0) ; rounding error
 (- 1 (sqrt (- 1 e)))))); exact relative error
]))))

Here, (make-float v e) returns (float-any) when (> e 1). We have also implemented arithmetic and comparison operators, as well as exponentials and logarithms.

Suppose we define an abstract floating-point implementation of the geometric distribution family’s inverse CDF:

(define/drbayes (flgeometric-inv-cdf u p)
 (fl/ (fllog u) (fllog (flneg (fl- (float 1 0) p)))))

We want the distribution of \(x\) and \(y\) in \((0, 1)\) given that the output error

(float-error (flgeometric-inv-cdf (float x 0) (float y 0)))

is in \((3 \cdot \varepsilon, \infty)\), where \(\varepsilon \approx 2.22 \cdot 10^{-16}\) is the smallest 64-bit floating-point number that can be added to 1.0 to yield a different floating-point number. That is, we want the distribution of exact inputs\(^3\) for which the approximate output is more than about three floating-point numbers away from the exact output.

Dr. Bayes overestimates the preimage of \((3 \cdot \varepsilon, \infty)\) as approximately \((0, 1) \times (\varepsilon, 0.284)\) and returns samples within it. Knowing a few common floating-point tricks, we define

(define/drbayes (flgeometric-inv-cdf u p)
 (fl/ (fllog u) (fllog1p (flneg p)))))

\(^3\)Floating-point functions are almost always analyzed assuming exact inputs. Few useful ones reduce error.
where \(\text{fllog1p} \) (abstractly) computes \(\log 1p \times := \log (1 + x) \) with high accuracy. The preimage of \((3 \cdot \varepsilon, \infty)\) is now \(\emptyset \). In fact, the preimage of \((1.51 \cdot \varepsilon, \infty)\) is \(\emptyset \), meaning that this implementation of \(\text{flgeometric-inv-cdf} \) returns approximations that are no more than about 1.51 floating-point numbers away from the exact answers.

Reasoning about subnormal numbers, NaNs, signed zeros, and infinities will require more detailed abstractions, which we are certain we can encode in Dr. Bayes.

10.5 Current Shortcomings

To make progress, we must undertake the painful process of characterizing Dr. Bayes’s shortcomings. We do not believe any of them are insurmountable, so we regard them as a guide for future work.

10.5.1 Engineering Required

The simplest shortcomings require only engineering, and perhaps some numerical analysis.

With Dr. Bayes’s current primitives, we can find no good way to encode the gamma distribution family, beta distribution family and Dirichlet distribution family, all of which are important in Bayesian practice. Dr. Bayes needs a two-argument gamma primitive, from which these families can be defined.

The Bernoulli, multinomial, Poisson and geometric distribution families, and arbitrary discrete distributions can be encoded using \text{if} (or \text{strict-if}), \text{random}, <, and recursive functions. The correctness and termination theorems for Dr. Bayes’s semantics ensure that programs using such encodings work as expected. But defined this way, they are slow.

Bayesians tend to think in terms of propositions, not sets. Encoding conditions as boolean expressions and sampling within the preimage of a rectangle with a \{true\} axis is a good start, but Dr. Bayes should hide these details from users.
10.5.2 Research May Be Required

For the following shortcomings, we do not know yet whether engineering work is sufficient.

When we encode theories as functions, we write them to return every random variable of interest in a list so we can estimate their expected values and study their behavior. Theories assembled from many such functions are quite verbose because function applications must destructure lists of returned values. It seems we need not just functions, but an additional form of abstraction that is more transparent by default.

Lambdas would make the encoding of the theory of quadratic running time in Figure 10.5 shorter. The generate function would be an easy application of map, and condition an easy application of andmap. Adding lambda expressions could be as simple as using well-known techniques for compiling higher-order languages to first-order target languages.

Errors are often hard to find. Consider this bad program:

```lisp
(define/drbayes add-number-to-list
  (+ 1 (list (random)))))
```

If we try to sample, we get this unhelpful error message:

```
  drbayes-sample: cannot sample from the empty set
```

The culprit here is not distinguishing errors and nontermination: for simplicity, they are both \(\perp \) in the semantics. In the exact semantics, computing preimages removes inputs that produce \(\perp \), so errors do not occur. To begin addressing this, Dr. Bayes needs a separate type of error values, as well as a representation for rectangular sets of error values. We do not know whether exception handling is required or desirable, whether it makes sense to ignore errors that happen with zero probability, nor how difficult it is to distinguish between errors that arise only from overapproximation and those that are truly errors.

We have done inference on probabilistic context-free grammars specified very naturally as mutually recursive functions. We did not demonstrate them because Dr. Bayes lacks symbols, so the languages consist of lists of \(\mathbf{t} \) and \(\mathbf{f} \), making them hard to understand.
Dr. Bayes also does not have string and integer data types. Lacking abstract sets of strings, we have encoded no theories containing string manipulation. The obvious representation, rectangular products of sets of characters, may not be precise enough.

10.5.3 Research Required

Addressing the rest of Dr. Bayes’s shortcomings will require quite a lot of research.

While Dr. Bayes is efficient, in the sense that the time complexity of sampling is a polynomial of low degree, it is not fast. In particular, the ray tracer takes around 10000 times the time a hand-coded MCMC sampler would take to produce the same number of samples. Much of the slowdown comes from computing images and preimages for deep (random) expressions, which is quadratic in the depth of the expression.

The ray-traced image in Figure 10.10b is accumulated from 20 million samples. The image is only 256×256, or 65536 pixels, so it could be much less grainy. The culprit is importance sampling, which often suffers from high Monte Carlo variance in high-dimensional spaces.

We could not set `drbayes-max-splits` to 5 before running the query that carried out stochastic ray tracing. The search tree became too large to fit in memory. The explosion in search tree size is similar to the state space explosion problem in model checking, and may be just as hard to solve.

Dr. Bayes repeats computations unnecessarily. Consider this encoding of a theory of independent normal random variables:

```lisp
(define/drbayes independent-normals
  (let ([x (normal 0 1)]
        [y (normal 0 1)])
    (cons x y)))
```

When Ω is split along the axis projected by x, Dr. Bayes carries out image and preimage computation for y as well, even though the results are the same as with the previous Ω. In
Figure 10.11: The dependency problem: falsely assuming independence of variables that occur more than once in an expression causes the rectangular preimage cover to fit loosely. If \(\{\omega_0\} \) is drawn from the left of the part cover in (b), refinement returns \(\emptyset \). Fact, there is a good chance that in most programs, most \(\Omega \) splits along one axis do not affect most image and preimage computations.

For the normal-normal theory encoding with the circular condition, we requested 50000 samples and received 42144. A much simpler program exhibits similar behavior:

\[
\text{(define/drbayes dependency-problem)}
\text{(let ([x (random)])}
\text{[y (random)])}
\text{(/ x (+ x y)))}
\]

Figure 10.11a shows the preimage of [0.4, 0.6] and the rectangular cover Dr. Bayes samples part covers from. When it samples the part cover shown in Figure 10.11b, it fails about half the time because the part cover does not fit the preimage set as tightly as possible.

The loose fit happens because \(x \) occurs twice in \(x/(x + y) \), and image and preimage computation do not account for the fact that each \(x \) occurrence refers to the same value.

To demonstrate how, we reason compositionally about its range. Let \(z := x + y \); then \(z \in [0, 2] \) because \(x, y \in [0, 1] \). Because \(\langle x, z \rangle \in [0, 1] \times [0, 2] \), \(x/z \in [0, \infty) \); therefore \(x/(x + y) \in [0, \infty) \). Each of these statements is true—they even constitute a proof—so our reasoning is sound. But our reasoning is not precise: it is not hard to show that
\(x/(x+y) \in [0,1]\). In particular, \([0,1] \times [0,2]\) is a gross overestimate of the range of \((x,z)\).

Just as in the preceding proof that \(x/(x+y) \in [0,\infty)\), image and preimage computations are carried out compositionally and rectangles represent sets of possible values. If \(h\) is the interpretation of \texttt{dependency-problem} as a preimage* arrow computation, we have

\[
\texttt{> (pre-mapping-range ((h j0) program-domain))}
\]
\[
\texttt{(Real-Set 0.0 +inf.0 #t #f)}
\]

In interval arithmetic, this is called the \texttt{dependency problem}. The fact that preimages are restricted to domain \texttt{parts} mitigates the problem somewhat. We can mitigate it further by partitioning more finely, which works well enough but takes extra time and space.

We can occasionally solve the dependency problem by refactoring expressions. For example, if \(x \neq 0\), then \(x/(x+y) = 1/(1+y/x)\). In our program, \(x = 0\) is a zero-probability event. Therefore, as long as \(x = 0\) is not an asserted condition, we can rewrite the program as

\[
\texttt{(define/drbayes no-dependency-problem}
\]
\[
\texttt{(let ([x (random)]
[y (random)])
(/ 1 (+ 1 (/ y x)))))}
\]

without changing the meaning of any queries. Figure 10.11c shows the resulting rectangular cover Dr. Bayes samples from, which tightly fits the preimage.

The dependency problem is not particular to interval arithmetic, but can be found in many kinds of abstract interpretation and static analysis. As with using Monte Carlo methods instead of enumeration methods to compute preimage measures, we hope that providing only \texttt{probabilistic} guarantees will make solving the problem more tractable.

10.6 Conclusions

Dr. Bayes is a proof-of-concept implementation, designed for exploring the expressive power and utility of the let-calculus whose semantics is defined in Chapter 8. We have shown that it is expressive enough to encode Bayesian theories with and without density models, including
theories that (likely because they lack density models) are rarely regarded as Bayesian. Even at this very early stage, as a mostly direct implementation of the semantics with barely any work put into making it fast, Dr. Bayes is useful, at least for problems with up to 25 or so random variables.

We have demonstrated that allowing only positive-probability conditions matters little: they are philosophically easier to support, interval observations may be quite wide and still be as effectful as point observations, and interval observations’ widths may be specified independently without affecting accuracy.

We have characterized Dr. Bayes’s shortcomings and will use them to drive future work.
Chapter 11

Conclusions and Future Work

11.1 Conclusions

We started by defining λ_{ZFC}, a call-by-value λ-calculus with infinite sets and set operations, so that we could interpret Bayesian notation categorically.

We then investigated a general approach to trustworthy Bayesian languages: defining an exact semantics that interprets notation as measure-theoretic models, and then deriving a directly implementable approximating semantics. We restricted our investigation to countable distributions and theories with finitely many statements, as it is the first point in the design space where approximation is necessary, and requires no deep measure theory.

In a slight change of tactics, we fixed a canonical probability space of uniformly random, infinite binary trees, and interpreted programs as measure-theoretic random variables, and then as computations that compute exact preimages. The approximating semantics interprets programs as computations that compute conservative approximations of preimages, using rectangles instead of sets. We demonstrated that the language is useful by implementing the approximating semantics and encoding typical Bayesian theories. We also encoded theories without density models, which can only be interpreted using measure theory.

In short, we have proved and demonstrated the thesis by developing trustworthy, useful languages for Bayesian modeling and inference, founding them solidly on functional programming theory and measure-theoretic probability.
11.2 Future Work

There are four main categories of future work: adding expressiveness to Dr. Bayes, reducing its runtime costs, providing more and better guarantees, and branching out into related research areas.

11.2.1 Expressiveness

Adding a new feature and its semantics to a Turing-equivalent language makes the language more expressive if the only way to encode the new feature in the original language with the original semantics is by a global transformation [24]. Thus, adding expressive features to Dr. Bayes will allow Bayesian theories to be encoded more succinctly and clearly.

An example is adding lambdas, which at very least can make repetition more succinct and clear using higher-order functions like \texttt{map}. For a first-order language like Dr. Bayes, lambdas may be added by closure conversion and defunctionalization: turning every lambda value into a \texttt{closure}, which contains bound variable values and a function pointer, and changing every application site to apply a global dispatching function that decodes closures [19]. It may be simpler, more efficient, or more elegant to add lambda terms to the language itself, despite the fact that ensuring higher-order application is measurable is difficult. Either way—by a global transformation or an extension to the semantics—Dr. Bayes will have lambdas.

With lambdas added, looping constructs become mere syntactic sugar, because they can be implemented by local transformations into recursive functions. We plan to provide all possible looping constructs and other local features at once, by making Racket syntax transformers, which perform local transformations, available in Dr. Bayes programs.

Other examples of expressive new features are mutation, and exceptions and parameters, or more generally continuations [70] and continuation marks [17]. Once lambdas are available, these can be encoded by globally transforming programs [20, 29]. We want to know whether such global transformations are the simplest, most efficient, or most elegant ways to extend our probabilistic language’s expressiveness.
We suggested in Chapter 10 that functions may be too opaque by default for abstracting the high-level structure of Bayesian theories. It is possible that objects are the right abstraction, or units [25], which are like modules but have runtime parameters. It is also possible that Bayesian theories need an entirely new kind of recursive abstraction. This dimension of probabilistic language design clearly needs study.

In our experience, probabilistic programs are more difficult to debug than other kinds of programs. One way to increase expressiveness while reducing errors is by adding a type system. A type system similar to Typed Racket’s [71] would be a good choice. Because Typed Racket was originally meant for converting untyped programs into typed programs by adding a few annotations, it has true union types, and occurrence typing, which allows identifiers to have different types in each branch of a conditional based on the result of its test expression. Occurrence typing is similar to how the forward phase in preimage computation applies the interpretation of each true branch to the preimage of \{true\} under the test, and the false branch to the preimage of \{false\}. Union types are similar to our representation of disjoint unions of sets of tagged data structures.

11.2.2 Optimization

A type system would not only help reduce programmer error, but would provide information about program terms that an optimizer could use. For example, because our implementation’s sets are monomorphic, every set operation must dispatch to a more specific operation based on the runtime data types of its arguments. If a type system determined that a certain computation consumed and produced only pairs, such dispatch would be unnecessary.

Our semantics trades efficiency for simplicity by threading a constant, tree-shaped random source. This makes each random computation linear-time in the depth it appears in the completely inlined program, which can turn functions that should be linear-time into quadratic-time. Passing subtrees instead would make random constant-time, restoring these functions’ apparent time complexity. Passing subtrees would also allow combinators to detect
lack of change in their received subtrees and return cached values.

Even better than simply returning cached values would be to leverage recent advances in incremental computation [33]. Smarter incrementalization could share results, take advantage of commutativity, avoid recomputing “switched off” values when they are needed again, and recompute only parts of execution that lead to changes in output. There are certainly ways to take advantage of the forward-backward nature of preimage computation, and it should provide interesting challenges as well. Further, we believe preimage computation is a particularly good application for incremental computation, because the potential expense of set operations, especially on high-dimensional products, should easily offset the extra bookkeeping and logic required to avoid recomputing them.

Importance sampling was originally developed to reduce Monte Carlo variance for queries in which sampling according to a random variable’s actual distribution results in high variance. As in most uses in Bayesian inference, we currently use importance sampling to make up for the fact that we cannot sample according to the target distribution; i.e. a uniform distribution restricted to a condition’s preimage. Using importance sampling this way often increases Monte Carlo variance, with “often” becoming “usually” with added complexity and higher dimension, so that ever more samples are required. Using importance sampling to actually reduce variance on a per-query basis is therefore an attractive idea. It has been done on-the-fly in Bayesian inference [16], as the sampler collects information about the task.

Another (but not exclusive) possibility is to try Markov Chain Monte Carlo (MCMC) sampling [21, Chapter 12], which eventually converges to behavior equivalent to sampling directly from a target distribution. We expect the split-and-refine part of sampling to be particularly amenable, because it divides the program domain into an at-most-countable partition. Sampling its parts may sidestep a common problem with MCMC methods: that they often “mix” poorly when sampling within narrow, non-convex shapes. In any case, to use MCMC, we would need to solve this problem, because the preimages of conditions in typical Bayesian queries are narrow and non-convex.
Any sampling method improves if we can leverage detailed knowledge of the target distribution, the query, and their relationship. This seems like a perfect fit for static analysis and precise nonstandard interpretation such as automatic differentiation [23]. We believe probabilistic programming is an especially good area for them because

- Probabilistic programs are complete programs that do not interact with the outside world as they run, so advanced whole-program analysis techniques always apply.
- Repeated execution magnifies time and space gains, which justifies aggressive tactics.
- Large reductions in Monte Carlo variance can justify expensive, concurrently computed nonstandard interpretations.
- As we have seen, even repeated static analysis (e.g. preimage computation) is useful. Basically, inference is so difficult that we can justify throwing anything at it that runs in reasonable time and results in modest gains or provides useful information for a sampler.

Static analysis defined in terms of the exact semantics can identify transformations for probabilistic programs that can only be justified as preserving exact distributions. One example is variable collapse; e.g. for binomial-distributed random variables:

\[
(\text{binomial } n \ p) \ (\text{binomial } m \ p) \rightarrow \text{binomial } (n + m) \ p
\]

Chapter 6’s model equivalence in distribution, which extends readily to uncountable spaces, defines a standard for such optimizations. Distribution-preserving transformations could also allow Dr. Bayes to support zero-probability conditions by propagating them upward. Doing so would likely require continuity analysis [15].

We could also use static analysis to address the dependency problem, by transforming expressions with multiple occurrences of an identifier into equivalent expressions with one. Even simple transformations such as changing \((\times x x)\) to \((\text{sqr } x)\) and simple factoring would be helpful. More complicated transformations, such as changing \((/ x (\times x y))\) to \((/ 1 (\times 1 (/ y x)))\), require deciding probabilistic conditions such as \(\Pr[x = 0] = 0\), or branching on range checks as in \((\text{if } (= x 0) 0 (/ 1 (\times 1 (/ y x))))\).

Partitioning approaches to solving the dependency problem include adaptive partitioning,
and partitioning the program domain into parts on which the program is monotone. The latter would allow computing preimages using axial inversion groups that are like trijections, but of higher order, which would need to be automatically derived. Monotone partitioning may be helped by the fact that Dr. Bayes’s primitives are already piecewise monotone.

Another possibility is trying more expressive set representations. For example, parallelo-
topes [5] are high-dimensional parallelograms and can thus express linear dependence, and they are as easy to sample from as rectangles.

Symbols and characters can already be represented in Dr. Bayes as user-defined data types, but direct support would be better. Sets of strings may be represented by products of character sets, but finite-state automata look more promising [68]. For sets of integers, we intend to try abstracting the string set representation. Doing so would guarantee that the string-length primitive’s image and preimage computations are precise, and may do the same for indexing operations.

The self-adjusting probabilistic tree search presented in Chapter 9 tends to avoid sampling the empty set and reduce variance, but its memory use scales exponentially in the number of if and random expressions. To address it, we intend to try partial-order reduction [30] and sharing equivalent subtrees in a similar way to ordered binary decision diagrams (OBDDs) [54]. For some programs, it may be enough to store only subtrees that are explored with high probability; for example, by storing subtrees in a Least-Frequently Used (LFU) cache [50].

11.2.3 Guarantees

At the most basic level, we would like to formalize the informal type system we use with λ_{ZFC}, to put our type-level reasoning on solid footing. An implementation of the type system would let us run λ_{ZFC} code abstractly; i.e. by checking the types. We could also formalize λ_{ZFC} and the informal type system in Coq [52].

Less ambitiously, we would like to formalize implementation details in Coq and extract proofs of their properties as verified programs. The best first candidate is the abstract set
library, which is large and complicated, and whose functions are already mostly derived from lattice properties.

Chapter 6 contains a theorem of semantic intent: that the interpretation of discrete Bayesian theories as monadic computations that build measure-theoretic models is correct. In this case, “correctness” means random variables have the stated conditional distributions and are no more interdependent than is necessary to have those distributions. In contrast, in Chapter 10, we manually interpret Bayesian theories as Dr. Bayes code and implicitly appeal to syntactic similarity; for example, of this theory and encoding:

\[
\begin{align*}
X & \sim \text{Normal}(0, 1) \\
Y & \sim \text{Normal}(X, 1)
\end{align*}
\]

\[
\text{(let}^* \begin{array}{l}
x \sim \text{normal 0 1} \\
y \sim \text{normal x 1}
\end{array} \ldots \text{)}
\]

We also appeal to the fact that we observe the expected results. This level of rigor is appropriate for demonstrating usefulness, and Dr. Bayes’s semantics is correct on its own terms. But correctness with respect to Bayesian notation requires a mechanical transformation to the let-calculus defined in Chapter 8 and another theorem of semantic intent.

Chapter 8 defines the preimage refinement algorithm, which partitions the domain of probabilistic programs more and more finely, and uses approximate preimage computation to fit a rectangular cover to a preimage set. We do not yet know the conditions under which the measure of the rectangular cover approaches the measure of the preimage set. Finding and proving these conditions would help us determine when preimage refinement sampling, along with the self-adjusting tree search, can be expected to eventually sample covers of only positive-measure parts.

Dr. Bayes’s semantics and sampler guarantee that sampling always terminates, even if it does not always return the requested number of samples. When programs terminate with probability 1 abstractly—i.e. they never evaluate expressions that cannot escape infinite loops—the implementation can sample more efficiently. Currently, users must tell Dr. Bayes whether to do so using the drbayes-always-terminate? parameter. This seems like something
Dr. Bayes should be able to decide automatically by analyzing the call graph, allowing it to guarantee termination with less user involvement.

11.2.4 Branching Out

Though we developed approximate preimage computation only so we could implement a measure-theoretic semantics, there are many similarities between it and type checking and inference [64]. Roughly, computing approximate images corresponds to type checking, and computing approximate preimages corresponds to type inference. The main differences are

- Preimage computation operates only on monomorphic abstract values, while type checking and inference often operate on polymorphic abstract values.
- Preimage computation does not abstractly evaluate if very precisely, while type checking and inference do not abstractly evaluate function application very precisely (though each strategy avoids infinite recursion during analysis).
- Preimage computation overapproximates non-error conditions, while type checking and inference overapproximate error conditions.

It would be extremely interesting to define hybrids of these two approaches to analysis. We would especially like to define preimage computation so that it can operate on polymorphic sets, and use the results of type checking and inference to make image and preimage computation more precise.

Preimage computation is also similar to computing weakest preconditions [22]. The main differences are

- Preimage computation does not join the results of analyzing if branches, but analyzes each combination of possible branches (i.e. each branch trace) separately.
- Preimage computation’s pre- and post- “conditions” are members of a fixed family of abstract sets, while in computing weakest preconditions they are symbolic propositions about program values (and are often defined in terms of propositions found in the program, such as if test expressions).
One striking similarity is regarding programs as functions, though in computing preconditions the functions are from program states to program states; i.e. they are monadic, not applicative. Again, we would like to define hybrids to try to leverage the strengths of each approach.

State-of-the-art probabilistic program verification is quite ad-hoc, with little to no control over randomized searches for preconditions that produce errors, nor even weak guarantees that errors are found with high probability. We showed in Chapter 10 that Dr. Bayes can find errors with high probability, and how we have used it to verify floating-point functions. It works because probabilistic program verification can be recast as Bayesian inference. But it is not Bayesian inference, and the main differences are

- In probabilistic verification, we are more interested in the existence of a counterexample to a correctness statement than in sampling from a distribution over them.
- In floating-point analysis in particular, we are additionally interested in finding the strongest possible correctness statements, not just evaluating a single statement whose negation corresponds with one error condition.

As an example of the second point, in Chapter 10, we had to manually search for the correctness statement “flgeometric-inv-cdf outputs are within 1.51ϵ of exact” by testing a few different error intervals of the form $(e\cdot\epsilon, \infty)$.

Supporting probabilistic program verification better should allow Dr. Bayes to carry out more precise, verified preimage computation. We believe it will extend to other verification tasks as well, from verifying the floating-point functions in Racket’s math library (which we have already started) to verifying concurrent algorithms.

In all, the fact that Dr. Bayes is already capable of going beyond typical Bayesian inference, and the fact that approximate preimage computation is similar to but distinct from other widely applied analysis techniques, suggests that we have found ourselves a big hammer. We are therefore on the lookout for nails. We hope that in pounding them in, for Bayesian practitioners in particular, we can make hard things easy, intractable things simply hard, and unthinkable things thinkable.
Appendix A

Measurability Theorems

Proving measurability is critical in proving correctness, in that it establishes that the outputs of all programs have sensible distributions. While critical, it is somewhat distracting to the main narrative. Instead of ignoring measurability, however, as is so often done, we have moved it to the end, where readers who are somehow still starving for even more mathematics can devour it and—possibly—finally be satiated.

Unsatiated readers may afterward proceed to Appendix B.

A.1 Basic Definitions

For readers familiar with topology, we review the necessary fundamentals by analogy to topology. However, we have tried to include enough of the fundamentals [43] that readers not familiar with basic topology can verify the proofs.

The analogue of a topology of open sets is a σ-algebra of measurable sets.

Definition A.1 (σ-algebra, measurable set). A collection of sets $\mathcal{A} \subseteq \mathcal{P} X$ is called a σ-algebra on X if it contains X and is closed under complements and countable unions. The sets in \mathcal{A} are called measurable sets.

$X \setminus X = \emptyset$, so $\emptyset \in \mathcal{A}$. Additionally, it follows from De Morgan’s law that \mathcal{A} is closed under countable intersections.

The analogue of continuity is measurability.

Definition A.2 (measurable mapping). Let \mathcal{A} and \mathcal{B} be σ-algebras on X and Y. A mapping $g : X \rightarrow Y$ is \mathcal{A}-\mathcal{B}-measurable if for all $B \in \mathcal{B}$, preimage $g^{-1}(B) \in \mathcal{A}$.
When the domain and codomain σ-algebras A and B are clear from context, we will simply say g is **measurable**.

Measurability is usually a weaker condition than continuity. For example, with respect to the σ-algebra generated from \mathbb{R}’s standard topology (i.e. using the standard topology as a sort of “base”), measurable $\mathbb{R} \to \mathbb{R}$ functions may have infinitely many discontinuities. Likewise, real comparison functions such as $(=), (<), (>)$ and their negations are measurable, but not continuous.

Product σ-algebras are defined analogously to product topologies.

Definition A.3 (finite product σ-algebra). Let A_1 and A_2 be σ-algebras on X_1 and X_2, and define $X := X_1 \times X_2$. The **product σ-algebra** $A_1 \otimes A_2$ is the smallest (i.e. coarsest) σ-algebra for which mapping $\text{fst } X$ and mapping $\text{snd } X$ are measurable.

Definition A.4 (arbitrary product σ-algebra). Let A be a σ-algebra on X. The **product σ-algebra** $A^\otimes J$ is the smallest σ-algebra for which, for all $j \in J$, mapping $(\pi j) (J \to X)$ is measurable.

A.2 Measurable Pure Computations

It is easier to prove measurability of pure computations than to prove measurability of partial, probabilistic ones. Further, we can use the results to prove that the interpretations of all partial, probabilistic expressions are measurable.

We must first define what it means for a **computation** to be measurable.

Definition A.5 (measurable mapping arrow computation). Let A and B be σ-algebras on X and Y. A computation $g : X \mapsto Y$ is **A-B-measurable** if $g A^*$ is an A-B-measurable mapping, where A^* is g’s maximal domain.

Theorem A.6 (maximal domain measurability). Let $g : X \mapsto Y$ be an A-B-measurable mapping arrow computation. Its maximal domain A^* is in A.

267
Proof. Because $g A^*$ is measurable, preimage $(g A^*) Y = A^*$ is in \mathcal{A}.

Mapping arrow computations can be applied to sets other than their maximal domains. We need to ensure doing so yields a measurable mapping, at least for measurable subsets of A^*. Fortunately, that is true without any extra conditions.

Lemma A.7. Let $g : X \rightarrow Y$ be an A-B-measurable mapping. For any $A \in \mathcal{A}$, restrict $g A$ is A-B-measurable.

Theorem A.8. Let $g : X \mapsto Y$ be an A-B-measurable mapping arrow computation with maximal domain A^*. For all $A \subseteq A^*$ with $A \in \mathcal{A}$, $g A$ is A-B-measurable.

Proof. By Theorem 8.44 (mapping arrow restriction) and Lemma A.7.

We do not need to prove all interpretations using $[\cdot]_a$ are measurable. However, we do need to prove mapping arrow combinators preserve measurability.

A.2.1 Composition

Proving compositions are measurable takes the most work. The main complication is that, under measurable mappings, while preimages of measurable sets are measurable, images of measurable sets may not be. We need the following four extra theorems to get around this.

Lemma A.9 (images of preimages). If $g : X \rightarrow Y$ and $B \subseteq Y$, image g (preimage $g B$) $\subseteq B$.

Lemma A.10 (expanded post-composition). Let $g_1 : X \rightarrow Y$ and $g_2 : Y \rightarrow Z$ such that range $g_1 \subseteq$ domain g_2, and let $g'_2 : Y \rightarrow Z$ such that $g_2 \subseteq g'_2$. Then $g_2 \circ_{\text{map}} g_1 = g'_2 \circ_{\text{map}} g_1$.

Theorem A.11 (mapping arrow monotonicity). Let $g : X \mapsto Y$. For any $A' \subseteq A \subseteq A^*$, $g A' \subseteq g A$.

Proof. By Theorem 8.44 (mapping arrow restriction).

Theorem A.12 (maximal domain subsets). Let $g : X \mapsto Y$. For all $A \subseteq A^*$, domain $(g A) = A$.

268
Proof. Follows from Theorem 8.45.

Now we can prove measurability.

Lemma A.13 ((\(\circ_{\text{map}}\) measurability). If \(g_1 : X \rightarrow Y\) is \(A\)-\(B\)-measurable and \(g_2 : Y \rightarrow Z\) is \(B\)-\(C\)-measurable, then \(g_2 \circ_{\text{map}} g_1\) is \(A\)-\(C\)-measurable.

Theorem A.14 ((\(\gg \gg \gg_{\text{map}}\) measurability). If \(g_1 : X \gg \gg Y\) is \(A\)-\(B\)-measurable and \(g_2 : Y \gg \gg Z\) is \(B\)-\(C\)-measurable, then \(g_1 \gg \gg_{\text{map}} g_2\) is \(A\)-\(C\)-measurable.

Proof. Let \(A^* \in A\) and \(B^* \in B\) be respectively \(g_1\)'s and \(g_2\)'s maximal domains. The maximal domain of \(g_1 \gg \gg_{\text{map}} g_2\) is \(A^{**} := \text{preimage} (g_1 A^*) B^*\), which is in \(A\). By definition,

\[
(g_1 \gg \gg_{\text{map}} g_2) A^{**} = \begin{cases}
& \text{let } g'_1 := g_1 A^{**} \\
& g'_2 := g_2 \left(\text{range } g'_1\right) \\
& \text{in } g'_2 \circ_{\text{map}} g'_1
\end{cases}
\]

(A.1)

By Theorem A.8, \(g'_1\) is an \(A\)-\(B\)-measurable mapping. Unfortunately, \(g'_2\) may not be \(B\)-\(C\)-measurable when \(\text{range } g'_1 \notin B\).

Let \(g''_2 := g_2 B^*\), which is a \(B\)-\(C\)-measurable mapping. By Lemma A.13, \(g''_2 \circ_{\text{map}} g'_1\) is \(A\)-\(C\)-measurable. We need only show that \(g'_2 \circ_{\text{map}} g'_1 = g''_2 \circ_{\text{map}} g'_1\), which by Lemma A.10 is true if \(\text{range } g'_1 \subseteq \text{domain } g'_2\) and \(g'_2 \subseteq g''_2\).

By Theorem A.12, \(A^{**} \subseteq A^*\) implies \(\text{domain } g'_1 = A^{**}\). By Theorem A.11 and Lemma A.9,

\[
\text{range } g'_1 = \text{image} (g_1 A^{**}) \left(\text{preimage} (g_1 A^*) B^*\right)
\]

(A.2)

\[
= \text{image} (g_1 A^*) \left(\text{preimage} (g_1 A^*) B^*\right)
\]

\[
\subseteq B^*
\]

\(\text{range } g'_1 \subseteq B^*\) implies (by Theorem A.12) that \(\text{domain } g'_2 = \text{range } g'_1\), and (by Theorem A.11) that \(g'_2 \subseteq g''_2\). □
A.2.2 Pairing

Proving pairing preserves measurability is straightforward given a corresponding theorem about mappings.

Lemma A.15 \((\langle \cdot, \cdot \rangle \mapsto \text{measurability})\). If \(g_1 : X \mapsto Y_1\) is \(\mathcal{A} \to \mathcal{B}_1\)-measurable and \(g_2 : X \mapsto Y_2\) is \(\mathcal{A} \to \mathcal{B}_2\)-measurable, then \(\langle g_1, g_2 \rangle \mapsto \text{measurability}\) is \(\mathcal{A} - (\mathcal{B}_1 \otimes \mathcal{B}_2)\)-measurable.

Theorem A.16 \(((\& \& \&_\mapsto \text{measurability})\) measurability\). If \(g_1 : X \mapsto Y_1\) is \(\mathcal{A} - \mathcal{B}_1\)-measurable and \(g_2 : X \mapsto Y_2\) is \(\mathcal{A} - \mathcal{B}_2\)-measurable, then \(g_1 \& \& \&_\mapsto g_2\) is \(\mathcal{A} - (\mathcal{B}_1 \otimes \mathcal{B}_2)\)-measurable.

Proof. Let \(A_1^*\) and \(A_2^*\) be respectively \(g_1\)'s and \(g_2\)'s maximal domains. The maximal domain of \(g_1 \& \& \&_\mapsto g_2\) is \(A^{**} := A_1^* \cap A_2^*\), which is in \(\mathcal{A}\). By definition, \((g_1 \& \& \&_\mapsto g_2) A^{**} = \langle g_1 A^{**}, g_2 A^{**} \rangle \mapsto \text{measurability}\), which by Lemma A.15 is \(\mathcal{A} - (\mathcal{B}_1 \otimes \mathcal{B}_2)\)-measurable. \(\square\)

A.2.3 Conditional

Conditionals can be proved measurable given a theorem that ensures the measurability of finite unions of disjoint, measurable mappings. We will need the corresponding theorem for countable unions further on, however.

Lemma A.17 (union of measurable mappings). The union of a countable set of \(\mathcal{A} - \mathcal{B}\)-measurable mappings with disjoint domains is \(\mathcal{A} - \mathcal{B}\)-measurable.

Theorem A.18 (ifte\(_\mapsto\) measurability). If \(g_1 : X \mapsto \mathbb{P} \text{ Bool}\) and \(g_2 : X \mapsto Y\) and \(g_3 : X \mapsto Y\) are respectively \(\mathcal{A} - (\mathcal{P} - \mathbb{P} \text{ Bool})\)-measurable and \(\mathcal{A} - \mathcal{B}\)-measurable, then \(\text{ifte}_\mapsto g_1 g_2 g_3\) is \(\mathcal{A} - \mathcal{B}\)-measurable.

Proof. Let \(A_1^*, A_2^*\) and \(A_3^*\) be \(g_1\)'s, \(g_2\)'s and \(g_3\)'s maximal domains. The maximal domain of \(\text{ifte}_\mapsto g_1 g_2 g_3\) is \(A^{**}\), defined by

\[
A_2^{**} := A_2^* \cap \text{preimage} (g_1 A_1^*) \{\text{true}\} \\
A_3^{**} := A_3^* \cap \text{preimage} (g_1 A_1^*) \{\text{false}\} \quad (A.3) \\
A^{**} := A_2^{**} \cup A_3^{**}
\]

270
Because \(\text{preimage} \left(g_1 \ A_1^* \right) B \in A \) for any \(B \subseteq \text{Bool} \), \(A^{**} \in A \). By definition,

\[
\text{ifte}_{\text{map}} \ g_1 \ g_2 \ g_3 \ A^{**} = \begin{cases}
\text{let} \ g'_1 := g_1 \ A^{**} \\
\quad \ g'_2 := g_2 \ (\text{preimage} \ g'_1 \ \{\text{true}\}) \\
\quad \ g'_3 := g_3 \ (\text{preimage} \ g'_1 \ \{\text{false}\}) \\
\quad \ \text{in} \ g'_2 \ \sqcup_{\text{map}} \ g'_3
\end{cases} \tag{A.4}
\]

By hypothesis, \(g'_1, g'_2 \) and \(g'_3 \) are measurable mappings. By Theorem 8.44 (mapping arrow restriction), \(g'_2 \) and \(g'_3 \) have disjoint domains. Apply Lemma A.17. \(\square \)

A.2.4 Laziness

We must first prove measurability of an often-ignored corner case.

Theorem A.19 (measurability of \(\emptyset \)). For any \(\sigma \)-algebras \(A \) and \(B \), the empty mapping \(\emptyset \) is \(A-B \)-measurable.

Proof. For any \(B \in B \), \(\text{preimage} \ \emptyset \ B = \emptyset \), and \(\emptyset \in A \). \(\square \)

Theorem A.20 (measurability under \(\text{lazy}_{\text{map}} \)). Let \(g : 1 \Rightarrow (X \xleftarrow{\text{map}} Y) \). If \(g \ 0 \) is \(A-B \)-measurable, then \(\text{lazy}_{\text{map}} \ g \) is \(A-B \)-measurable.

Proof. The maximal domain \(A^{**} \) of \(\text{lazy}_{\text{map}} \ g \) is that of \(g \ 0 \). By definition,

\[
\text{lazy}_{\text{map}} \ g \ A^{**} = \begin{cases}
\text{if} \ (A^{**} = \emptyset) \ \emptyset \ (g \ 0 \ A^{**}) \\
\end{cases} \tag{A.5}
\]

If \(A^{**} = \emptyset \), then \(\text{lazy}_{\text{map}} \ g \ A^{**} = \emptyset \); apply Theorem A.19. If \(A^{**} \neq \emptyset \), then \(\text{lazy}_{\text{map}} \ g = g \ 0 \), which is \(A-B \)-measurable. \(\square \)

A.3 Measurable Probabilistic Computations

As with pure computations, we must first define what it means for an effectful computation to be measurable.
Definition A.21 (measurable mapping* arrow computation). Let \mathcal{A} and \mathcal{B} be σ-algebras on $(\Omega \times T) \times X$ and Y. A computation $g : X \mapsto Y$ is \mathcal{A}-\mathcal{B}-measurable if g_{j_0} is an \mathcal{A}-\mathcal{B}-measurable mapping arrow computation.

Theorem A.22. If $g : X \mapsto Y$ is \mathcal{A}-\mathcal{B}-measurable, then for all $j \in J$, g_j is an \mathcal{A}-\mathcal{B}-measurable mapping arrow computation.

Proof. By induction on J: if g_j is measurable, so are g (left j) and g (right j).

To make general measurability statements about computations, whether they have flat or product types, it helps to have a notion of a standard σ-algebra.

Definition A.23 (standard σ-algebra). For a set X used as a type, ΣX denotes its standard σ-algebra, which must be defined under the following constraints:

$$\Sigma \langle X_1, X_2 \rangle = \Sigma X_1 \otimes \Sigma X_2$$ (A.6)

$$\Sigma (J \to X) = (\Sigma X)^{\otimes J}$$ (A.7)

From here on, when no σ-algebras are given, “measurable” means “measurable with respect to standard σ-algebras.”

The following definitions allow distinguishing the results of conditional expressions and any two branch traces:

$$\Sigma \text{Bool} ::= \mathcal{P} \text{Bool}$$ (A.8)

$$\Sigma \text{T} ::= \mathcal{P} \text{T}$$ (A.9)

Lemma A.24 (measurable mapping arrow lifts). $\text{arr}_{\text{map}} \text{id}$, $\text{arr}_{\text{map}} \text{fst}$ and $\text{arr}_{\text{map}} \text{snd}$ are measurable. $\text{arr}_{\text{map}} (\text{const} b)$ is measurable if $\{b\}$ is a measurable set. For all $j \in J$, $\text{arr}_{\text{map}} (\pi j)$ is measurable.

Corollary A.25 (measurable mapping* arrow lifts). $\text{arr}_{\text{map}}^* \text{id}$, $\text{arr}_{\text{map}}^* \text{fst}$ and $\text{arr}_{\text{map}}^* \text{snd}$ are measurable. $\text{arr}_{\text{map}}^* (\text{const} b)$ is measurable if $\{b\}$ is a measurable set. $\text{random}_{\text{map}}^*$ and $\text{branch}_{\text{map}}^*$ are measurable.
Theorem A.26 (AStore combinators preserve measurability). Every AStore arrow combinator produces measurable mapping* computations from measurable mapping* computations.

Proof. AStore’s combinators are defined in terms of the base arrow’s combinators and \(\text{arr}_{\text{map}} \text{ fst} \) and \(\text{arr}_{\text{map}} \text{ snd} \).

Theorem A.27 (ifte\(_{\text{map}} \) measurability). ifte\(_{\text{map}} \) is measurable.

Proof. branch\(_{\text{map}} \) is measurable, and arr\(_{\text{map}} \) agrees is measurable by (A.8).

We can now prove all nonrecursive programs measurable by induction.

Definition A.28 (finite expression). A \textbf{finite expression} is any expression for which no subexpression is a first-order application.

Theorem A.29 (all finite expressions are measurable). For all finite expressions \(e \), \(J e \mapsto \text{map}^* \) is measurable.

Proof. By structural induction and the above theorems.

Now all we need to do is represent recursive programs as a collection of finite expressions interpreted as mappings, and take their union.

Theorem A.30 (approximation with finite expressions). Let \(g := [e]_{\mapsto} : X \mapsto Y \) and \(t \in T \). Define \(A := (\Omega \times \{t\}) \times X \). There is a finite expression \(e' \) for which \([e']_{\text{map}} j_0 A = g j_0 A \).

Proof. Let the index prefix \(J' \) contain every \(j \) for which \(t_j \neq \perp \). To construct \(e' \), exhaustively apply first-order functions in \(e \), but replace any ifte\(_{\text{map}} \) whose index \(j \) is not in \(J' \) with the equivalent expression \(\perp \). Because \(e \) is well-defined, recurrences must be guarded by if, so this process terminates after finitely many first-order applications.

Theorem A.31 (all probabilistic expressions are measurable). For all expressions \(e \), \([e]_{\mapsto} \) is measurable.
Proof. Let \(g := \llbracket e \rrbracket^\delta_{\text{map}} \) and \(g' := g \circ_0 ((\Omega \times T) \times X) \). By Corollary 8.51 (correct computation everywhere), \(g' = g \circ_0 A^* \) where \(A^* \) is \(g \)'s maximal domain; thus we need only show \(g' \) is a measurable mapping.

By Theorem 8.44 (mapping arrow restriction),

\[
g' = \bigcup_{t \in T} g \circ_0 ((\Omega \times \{t\}) \times X) \tag{A.10}
\]

By Theorem A.30 (approximation with finite expressions), for every \(t \in T \), there is a finite expression whose interpretation agrees with \(g \) on \((\Omega \times \{t\}) \times X\). Therefore, by Theorem A.29 (all finite expressions are measurable), \(g \circ_0 ((\Omega \times \{t\}) \times X) \) is a measurable mapping. By Theorem 8.44 (mapping arrow restriction), they have disjoint domains. By Lemma A.17 (union of measurable mappings), their union is measurable.

Theorem A.31 remains true when \(\llbracket \cdot \rrbracket_{\text{map}}^\delta \) is extended with any rule whose right side is measurable, including rules for real arithmetic, equality, inequality and limits. More generally, any continuous or (countably) piecewise continuous function can be made available as a language primitive, as long as its domain’s and codomain’s standard \(\sigma \)-algebras are generated from their topologies.

\(\llbracket \cdot \rrbracket_{\text{map}}^\delta \) may be composed with another semantic function that defunctionalizes lambda expressions. Thus, the interpretations of all expressions in higher-order languages are measurable.

A.4 Measurable Projections

If \(g := \llbracket e \rrbracket^\delta_{\text{map}} : X \leadsto Y \), the probability of a measurable output set \(B \in \Sigma Y \) is

\[
\mathbb{P} \left(\text{image (fst >>> fst) (preimage (g \circ_0 A^*) B)} \right) \tag{A.11}
\]

Unfortunately, projections are generally not measurable. Fortunately, for interpretations of programs \(\llbracket p \rrbracket_{\text{map}}^\delta \), for which \(X = \{\langle \rangle \} \), we have a special case.

274
Theorem A.32 (measurable finite projections). Let \(A \in \Sigma \langle X_1, X_2 \rangle \). If \(X_2 \) is at most countable and \(\Sigma X_2 = \mathcal{P} X_2 \), then image \(\text{fst} \ \mathcal{A} \in A_1 \).

Proof. Because \(\Sigma X_2 = \mathcal{P} X_2 \), \(A \) is a countable union of rectangles of the form \(A_1 \times \{ a_2 \} \), where \(A_1 \in \Sigma X_1 \) and \(a_2 \in X_2 \). Because image \(\text{fst} \) distributes over unions, image \(\text{fst} \ A \) is a countable union of sets in \(\Sigma X_1 \).

\[\square \]

Theorem A.33. Let \(g : X \xrightarrow{\text{map*}} Y \) be measurable. If \(X \) is at most countable and \(\Sigma X = \mathcal{P} X \), for all \(B \in \Sigma Y \), image \((\text{fst} \gg\gg \gg \text{fst}) \ (\text{preimage} \ (g_0 A^*) \ B) \in \Sigma \Omega \).

Proof. \(T \) is countable and \(\Sigma T = \mathcal{P} T \) by (A.9); apply Theorem A.32 twice.

\[\square \]

In particular, for \(\llbracket p \rrbracket_{\text{map*}} : \{ () \} \xrightarrow{\text{map*}} Y \), the probabilities of \(\Sigma Y \) are well-defined.
Appendix B

Sampling Theorems

This chapter contains proofs of measure-theoretic theorems stated in Chapter 9.

B.1 Basic Definitions

While the following review is necessarily incomplete, we have tried to include enough discussion for readers unfamiliar with measure theory, and enough formalism that the proofs can be verified without consulting an outside text. For example, we do not define measure-theoretic integration, but we contrast it with integration typically learned in differential calculus, and import theorems about its properties and interactions with other operations we use.

B.1.1 Measures

Measure theory is named for its primary abstraction of length, area, volume and probability—and anything else for which assigning reals to sets in an additive way makes sense.

Definition B.1 (measure). A partial function \(m : \text{Set} \times [0, \infty] \) with domain \(A := \text{domain} \ m \) is a measure if

- \(A \) is a \(\sigma \)-algebra
- \(m \emptyset = 0 \)
- It is \(\sigma \)-additive: for any disjoint collection \(A : \mathbb{N} \Rightarrow \text{Set} \times \text{sets in } A \),

\[
m \left(\bigcup_{n \in \mathbb{N}} A_n \right) = \sum_{n \in \mathbb{N}} m(A_n) \quad \text{(B.1)}
\]
From here on, we rely again on the notion of a set X's standard σ-algebra ΣX, and assume the domain of a measure $m : \text{Set } X \to [0, 1]$ is ΣX.

We will need to distinguish three kinds of measures.

Definition B.2 (probability, finite, and σ-finite measures). A measure $m : \text{Set } X \to [0, \infty]$ may be

- A **probability measure** if $m X = 1$.
- A **finite measure** if $m X < \infty$.
- A **σ-finite measure** if there is a collection $A : \mathbb{N} \Rightarrow \Sigma X$ such that $m (A n) < \infty$ for all $n \in \mathbb{N}$, and $\bigcup_{n \in \mathbb{N}} A n = X$.

Trivially, probability measures are also finite measures, which in turn are also σ-finite.

A ubiquitous example of a σ-finite measure is **Lebesgue measure**, which maps sets of \mathbb{R}^n (for $n \geq 1$) to their lengths, areas and volumes. Indeed, the Lebesgue measure of \mathbb{R} is ∞, but \mathbb{R} is the union of countably many sets with finite measure; e.g. $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n]$.

Counting measure simply returns the cardinality of a set. If X is countable and $m : \text{Set } X \to [0, \infty]$ is counting measure, then m is σ-finite. If X is finite, m is finite.

Image measure defines measures over the outputs of functions in terms of measures over their inputs.

Definition B.3 (image measure). Let $m : \text{Set } X \to [0, \infty]$ be a measure and $g : X \to Y$ be measurable. Then g’s **image measure** with respect to m is $m^\prime : \text{Set } Y \to [0, \infty]$, defined by $m^\prime B = m \left(\text{preimage } g B \right)$.

Measures provide a way to differentiate between propositions that are always true, and propositions that may be false, but are true for certain practical purposes. To determine the latter, we need the concept of a **null set**: a set of measure zero. For example, with Lebesgue measure, $\{4\}$, or any other singleton, is a null set. In general, so is any countable union of null sets.
Definition B.4 (almost everywhere). A measurable predicate \(p ? \) holds \textit{almost everywhere} with respect to measure \(m : \text{Set} \ X \rightarrow [0, \infty] \) when it holds on the complement of a null set:

\[
\text{ae?} : (\text{Set} \ X \rightarrow [0, \infty]) \Rightarrow (X \rightarrow \text{Bool}) \Rightarrow \text{Bool}
\]

\[
\text{ae?} \ m \ p ? := m (\text{preimage} p ? \{\text{false}\}) = 0
\]

(B.2)

If \(m \) is a probability measure, \(\text{ae?} \ m \ p ? \) is equivalent to \(m (\text{preimage} p ? \{\text{true}\}) = 1 \), or to \(p ? \) holding on a set of measure 1. If \(m \) is a finite measure, it is equivalent to \(p ? \) holding on a set of measure \(m X \). If \(m \) is any other kind of measure, \(\text{ae?} \ m \ p ? \) must be determined using null sets. If we were to say \(p ? \) holds almost everywhere when \(m (\text{preimage} p ? \{\text{true}\}) = m X = \infty \), we would have to say \(\lambda x \in \mathbb{R} \cdot x > 0 \) holds almost everywhere with respect to Lebesgue measure.

In this chapter, we are most interested in almost-everywhere equality of mappings.

Definition B.5 (almost-everywhere equality). \textit{Two total mappings are equal almost everywhere} with respect to a measure \(m : \text{Set} \ X \rightarrow [0, \infty] \) when they are not equal only on a null set, or \(\text{ae-equal?} \ m \ g_1 \ g_2 \) where

\[
\text{ae-equal?} : (\text{Set} \ X \rightarrow [0, \infty]) \Rightarrow (X \rightarrow Y) \Rightarrow (X \rightarrow Y) \Rightarrow \text{Bool}
\]

\[
\text{ae-equal?} \ m \ g_1 \ g_2 := \text{ae?} \ m \ \lambda a \in \text{domain} \ g_1 : g_1 \ a = g_2 \ a
\]

(B.3)

From here on, we use the more common “\(g_1 = g_2 \) (m-a.e.)” instead of \(\text{ae-equal?} \ m \ g_1 \ g_2 \).

B.1.2 Integration

While measure-theoretic integration—called \textit{Lebesgue integration}—is \(\lambda_{\text{ZFC}} \)-definable, defining it will not illuminate the proofs further on. The main things to know are:

- Lebesgue integration is done with respect to any base measure for the integration domain. In contrast, Riemann integration\(^1\) (as taught in differential calculus) is done only with respect to length, area or volume in \(\mathbb{R}, \mathbb{R}^2 \) and other finite products \(\mathbb{R}^n \).

\(^1\)Pronounced “REEmahn,” and named after the German mathematician Bernhard Riemann.
• Lebesgue integration with respect to Lebesgue measure is strictly more general than Riemann integration on \(\mathbb{R}^n \), as it can integrate more functions. Further, a Lebesgue integral is equivalent to a corresponding Riemann integral when the latter exists.

• Lebesgue integration with respect to counting measure is summation.

We only functionalize Lebesgue integration: we assume it has been defined, and turn it from special notation into a lambda. Using the notation for Lebesgue integration, we define

\[
\int g \, m := \lambda A \in \text{domain } m. \int_A g \, dm \tag{B.4}
\]

Now \(\int g \, m \) is an indefinite integral of \(g \): another partial function, defined on the domain of \(m \), that returns the definite integral on a given set \(A \). For example, if \(g x := x^2 \) and \(m : \text{Set } \mathbb{R} \rightarrow [0, \infty] \) is Lebesgue measure, \(\int g \, m \) measures areas under the curve \(y = x^2 \).

We can compute areas under the curve \(y = x^2 \) using Riemann integration:

\[
\int g \, m \, [0,1) = \int_{[0,1)} g \, dm = \int_0^1 x^2 \, dx = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \tag{B.5}
\]

Of course, \(\int g \, m \) accepts any \(A \in \text{domain } m \). Because \(\text{domain } m \) is a \(\sigma \)-algebra, this includes countable unions, countable intersections, and complements of intervals.

For real-valued functions, Lebesgue integration gives another, sometimes more convenient way to characterize almost-everywhere equality: two functions are equal almost everywhere if and only if their indefinite integrals are equal.

Lemma B.6 (real function a.e. equality). If \(m : \text{Set } X \rightarrow [0, \infty] \) is a \(\sigma \)-finite measure and \(g_1, g_2 : X \rightarrow \mathbb{R} \) are measurable, then \(g_1 = g_2 \) (m-a.e) if and only if \(\int g_1 \, m = \int g_2 \, m \).

The type of \(\int \) might suggest its intended use; in particular, \(\text{Set } X \rightarrow [-\infty, \infty] \) is similar to \(\text{Set } X \rightarrow [0, \infty] \), which we use as the type of measures.\(^2\) We have functionalized indefinite integration to emphasize that, in this chapter and much of measure-theoretic

\(^2\)In fact, \(\text{Set } X \rightarrow [-\infty, \infty] \) is the type we would use for signed measures if we needed them.
practice, integration’s primary purpose is not to compute concrete areas and volumes, but to *transform measures*. Doing so is justified by the following imported theorem.

Lemma B.7 (indefinite integration yields measures). *If* \(g : X \to [0, \infty) \) *is measurable and* \(m : \text{Set } X \to [0, \infty] \) *is a measure, then* \(\int g \ m \) *is a measure.*

For example, if \(g : \mathbb{R} \to [0, \infty) \) is a probability density function and \(m \) is Lebesgue measure on \(\mathbb{R} \), then \(\int g \ m \) is a probability measure.

Lemma B.7 implies there is a function

\[
\text{int}^+ : (X \to [0, \infty)) \Rightarrow (\text{Set } X \to [0, \infty]) \Rightarrow (\text{Set } X \to [0, \infty])
\]

(B.6)

that agrees with \(\text{int} \) for all nonnegative, measurable functions \(g : X \to [0, \infty) \). We thus begin defining an algebra of measures and operations on them with \(\text{int}^+ \).

We should expect integration to be positive linear, and it is. In the following, assume that arithmetic is lifted to operate pointwise on mappings.

Lemma B.8. *Let* \(g_1, g_2 : X \to [0, \infty) \) *be measurable and* \(m : \text{Set } X \to [0, \infty] \) *be a measure. Then* \(\text{int} \ (g_1 + g_2) \ m = \text{int} g_1 \ m + \text{int} g_2 \ m \).

Lemma B.9. *Let* \(g : X \to [0, \infty) \) *be measurable, \(\alpha \geq 0 \) *and* \(m : \text{Set } X \to [0, \infty] \) *be a measure. Then* \(\text{int} \ (\alpha \cdot g) \ m = \alpha \cdot \text{int} g \ m \).

Lastly, compositions within integrals can be moved into the base measure.

Lemma B.10 (image measure integration). *Let* \(m : \text{Set } X \to [0, \infty] \) *be a measure, \(g_1 : X \to Y \) *and* \(g_2 : Y \to \mathbb{R} \) *be measurable, and* \(m_1 \) *be* \(g_1 \) *’s image measure with respect to* \(m \). *If* \(g_2 \) *is* \(m_1 \)-integrable or nonnegative, *then* \(\text{int} \ (g_2 \circ \text{map } g_1) \ m \ (\text{preimage } g_1 \ B) = \text{int} g_2 \ m_1 \ B \) *for all* \(B \in \Sigma Y \).

B.1.3 Differentiation

In differential calculus, indefinite integration has an inverse: differentiation. In measure theory, indefinite Lebesgue integration also has an inverse, which is also called differentiation.
One significant difference is that, because indefinite Lebesgue integration returns measures, differentiation operates on measures.

In differential calculus, differentiation is defined only for differentiable functions. In measure theory, the analogous property is absolute continuity.

Definition B.11 (absolute continuity). *Given measures \(m_1, m_2 : \text{Set } X \rightarrow [0, \infty] \), we say \(m_1 \) is **absolutely continuous** with respect to \(m_2 \) if \(m_1 \ll m_2 \), where

\[
(\ll) : (\text{Set } X \rightarrow [0, \infty]) \Rightarrow (\text{Set } X \rightarrow [0, \infty]) \Rightarrow \text{Bool}
\]

\[
m_1 \ll m_2 := \forall A \in \text{domain } m_2. m_2 A = 0 \implies m_1 A = 0 \quad (B.7)
\]

By Definition B.11, \(m_1 \ll m_2 \) means \(m_1 \) has at least as many measure-zero sets as \(m_2 \), and is therefore, in a sense, smaller. If \(P \) and \(Q \) are probability measures, \(P \ll Q \) essentially means \(P \)'s support is no larger than \(Q \)'s support.

As for integration, for differentiation, we functionalize special notation:

\[
diff^+ : (\text{Set } X \rightarrow [0, \infty]) \Rightarrow (\text{Set } X \rightarrow [0, \infty]) \Rightarrow (\text{X} \rightarrow [0, \infty])
\]

\[
diff^+ m_1 m_2 := \frac{dm_1}{dm_2} \quad (B.8)
\]

This returns a **Radon-Nikodým derivative**. Such derivatives are named after the following theorem, which gives circumstances under which \(\text{diff}^+ m_1 m_2 \) exists, and states that \(\text{int}^+ \) is the left inverse of \(\text{diff}^+ \) (with second arguments held constant).

Lemma B.12 (Radon-Nikodým). *If \(m_1, m_2 : \text{Set } X \rightarrow [0, \infty] \) are \(\sigma \)-finite measures and \(m_1 \ll m_2 \), then \(\text{diff}^+ m_1 m_2 \) exists, is measurable, and \(m_1 = \text{int}^+ (\text{diff}^+ m_1 m_2) m_2 \).*

The function \(\text{diff}^+ m_1 m_2 : X \rightarrow [0, \infty) \) is often called the *density* of \(m_1 \) with respect to \(m_2 \), but we call them *derivatives*, reserving *density* for derivatives with respect to Lebesgue measure. By Lemma B.6, any \(g : X \rightarrow [0, \infty) \) for which \(g = \text{diff}^+ m_1 m_2 \) (\(m_2 \)-a.e.) meets the Radon-Nikodým theorem’s conclusion \(m_1 = \text{int}^+ g m_2 \). We therefore say that Radon-Nikodým derivatives are unique up to equality \(m_2 \)-a.e.
By analogy to differential calculus, we should expect $\text{diff}^+ \text{ to be the left inverse of } \text{int}^+$ (with second arguments held constant). It is, up to equality m_2-a.e.

Lemma B.13. If $g_1 : X \to [0, \infty)$ is measurable and $m_2 : \text{Set} X \to [0, \infty]$ is a σ-finite measure, then $\text{int}^+ g_1 m_2 \ll m_2$ and $g_1 = \text{diff}^+ (\text{int}^+ g_1 m_2) m_2$ (m_2-a.e.).

The proceeding two theorems are analogous to the fundamental theorem of calculus.

We should expect differentiation to be positive linear, and it is.

Lemma B.14. Let $m_1, m_2, m : \text{Set} X \to [0, \infty]$ be σ-finite measures with $m_1 \ll m$ and $m_2 \ll m$. Then $m_1 + m_2 \ll m$ and $\text{diff}^+ (m_1 + m_2) m = \text{diff}^+ m_1 m + \text{diff}^+ m_2 m$ (m-a.e.).

Lemma B.15. Let $m_1, m_2 : \text{Set} X \to [0, \infty]$ be σ-finite measures with $m_1 \ll m_2$. For all $\alpha \geq 0$ and $\beta > 0$, $\alpha \cdot m_1 \ll \beta \cdot m_2$ and $\text{diff}^+ (\alpha \cdot m_1) (\beta \cdot m_2) = \frac{\alpha}{\beta} \cdot \text{diff}^+ m_1 m_2$ (m-a.e.).

As in differential calculus, there is a chain rule.

Lemma B.16 (chain rule). Let $m_1, m_2, m_3 : \text{Set} X \to [0, \infty]$ be σ-finite measures with $m_1 \ll m_2$ and $m_2 \ll m_3$. Then $m_1 \ll m_3$ and $\text{diff}^+ m_1 m_2 \cdot \text{diff}^+ m_2 m_3 = \text{diff}^+ m_1 m_3$ (m_3-a.e.).

We need two more differentiation rules, which have no direct analogues in differential calculus. Importing them makes our algebra of measures complete enough to prove importance sampling correct. The first is a rule for reciprocals.

Lemma B.17 (reciprocal rule). Let $m_1, m_2 : \text{Set} X \to [0, \infty]$ be σ-finite measures with $m_2 \ll m_1$ and $m_1 \ll m_2$. Then $\text{diff}^+ m_1 m_2 = 1 / \text{diff}^+ m_2 m_1$ (m_1-a.e. and m_2-a.e.).

The second provides a way to integrate out derivatives, or to use differentiation to change the base measure in Lebesgue integration.

Lemma B.18 (change of measure). Let $m_1, m_2 : \text{Set} X \to [0, \infty]$ be σ-finite measures with $m_1 \ll m_2$, and $g : X \to \mathbb{R}$ be measurable. Then $\text{int} g m_1 = \text{int} (g \cdot \text{diff}^+ m_1 m_2) m_2$.

282
Suppose we have a joint and candidate probability densities \(p, q : \mathbb{R}^n \rightarrow [0, \infty) \), and we sample according to \(q \) and weight the samples by \(p / q \). The weighted samples represent \(p \) if expected values estimated using them are correct; i.e. for all measurable \(g : \mathbb{R}^n \rightarrow \mathbb{R} \),

\[
\int g \, P = \int (g \cdot p / q) \, Q
\]

where \(P := \int^+ p \, m \) and \(Q := \int^+ q \, m \), and \(m \) is Lebesgue measure on \(\mathbb{R}^n \).

The density route to a proof is simple, and requires that \(q \) be nonzero everywhere. By definition and Lemma B.13 (\(\text{diff}^+ \) is a left inverse of \(\int^+ \)), \(q = \text{diff}^+ Q \, m \) (m-a.e.), so by Lemma B.18 (change of measure) with \(m_1 = Q \),

\[
\int (g \cdot p / q) \, Q = \int (g \cdot p / q \cdot q) \, m
\]

\[
= \int (g \cdot p) \, m
\]

which again by Lemmas B.13 and B.18 is \(\int g \, P \).

Taking the measure route demonstrates how to prove more general importance sampling theorems. We again require \(q \) to be nonzero everywhere; then

\[
p / q = p \cdot 1 / q = \text{diff}^+ P \, m \cdot 1 / \text{diff}^+ Q \, m \quad \text{(m-a.e.)} \quad \text{Lemma B.13}
\]

\[
= \text{diff}^+ P \, m \cdot \text{diff}^+ m \, Q \quad \text{(m, Q-a.e.)} \quad \text{Lemma B.17}
\]

\[
= \text{diff}^+ P \, Q \quad \text{(Q-a.e.)} \quad \text{Lemma B.16}
\]

Because \(g \cdot p / q = g \cdot \text{diff}^+ P \, Q \) (Q-a.e.),

\[
\int (g \cdot p / q) \, Q = \int (g \cdot \text{diff}^+ P \, Q) \, Q \quad \text{Lemma B.6}
\]

\[
= \int g \, P \quad \text{Lemma B.18}
\]

The more general method is this: instead of densities \(p \) and \(q \), define measures \(P \) and \(Q \), derive \(\text{diff}^+ P \, Q \), and apply Lemma B.18.

The proof of correctness of *partitioned* importance sampling proceeds this way, but requires more machinery to construct a measure-theoretic model of the sampling process.
B.1.4 Transition Kernels

In naïve probability theory, conditional density functions model probabilistic processes that depend on the outcome of another. In measure-theoretic probability, this is accomplished using transition kernels, which are not much more than functions that return measures.

Definition B.19 (transition kernel). A function \(k : X \rightarrow \text{Set } Y \rightarrow [0, \infty] \) is a **transition kernel** when both of the following hold.

- For all \(a \in X \), \(k a \) is a measure.
- For all \(B \in \Sigma Y \), \(\lambda a \in X. k a B \) is measurable.

For any measure property, we say \(k \) has that property when it holds for all \(k a \). Therefore, \(k \) is a **probability kernel**, **finite kernel**, or **\(\sigma \)-finite kernel** when for all \(a \in X \), \(k a \) is respectively a probability measure, finite measure, or \(\sigma \)-finite measure.

Product models of dependent processes can be built by starting with a probability measure and iteratively extending it using probability kernels.

Lemma B.20 (finite kernel products). Let \(m : \text{Set } X \rightarrow [0, \infty] \) be a finite measure and \(k : X \rightarrow \text{Set } Y \rightarrow [0, \infty] \) be a finite kernel. There exists a unique \(\sigma \)-finite measure \(m \times k \) : \(\text{Set } (X, Y) \rightarrow [0, \infty] \) that is determined by its output on rectangles; i.e. defined by extending the following to a product measure: for all \(A \in \Sigma X \) and \(B \in \Sigma Y \),

\[
(m \times k)(A \times B) = \text{int}^+ (\lambda a \in X. k a B) m A
\]

(B.13)

If \(m \) is a probability measure and \(k \) a probability kernel, \(m \times k \) is a probability measure.

For example, if \(k : \mathbb{R} \rightarrow \text{Set } \mathbb{R} \rightarrow [0, 1] \) takes a mean \(\mu \) and returns a normal probability measure centered on \(\mu \) with standard deviation 1, then the interpretation of

\[
X \sim \text{Normal}(0, 1)
\]

(B.14)

\[
Y \sim \text{Normal}(X, 1)
\]

as a measure-theoretic joint distribution is \((k 0) \times k \).
For the proofs in the next section, we need a way to turn integrals with respect to $m \times k$ measures into nested integrals.

Lemma B.21 (Fubini’s for transition kernels). Let $m : \text{Set } X \to [0, \infty]$ be a finite measure and $k : X \to \text{Set } Y \to [0, \infty]$ be a finite kernel. If $g : X \times Y \to \mathbb{R}$ is measurable, and nonnegative or $(m \times k)$-integrable, then

$$
\int g (m \times k) (X \times Y) = \int (\lambda a \in X. \int (\lambda b \in Y. g (a, b)) (k a) Y) m X
$$

(B.15)

B.2 Sampling Proofs

Recall the setup for partitioned importance sampling (Definition 9.25): we have

- An arbitrary probability space X, P.
- An at-most-countable index set N.
- A probability mass function $p : N \to [0, 1]$ such that $p n > 0$ for all $n \in N$.
- A partition $s : N \to \text{Set } X$ of X into $|N|$ measurable parts.
- Candidate probability measures $Q : N \to \text{Set } X \mapsto [0, 1]$, one for each partition.

Note that Q is a transition kernel. Recall $\text{subcond } P A' := \lambda A \in \text{domain } P. P (A' \cap A)$.

Theorem B.22 (partitioned importance sampling correctness). Suppose $\text{subcond } P (s n) \ll Q n$ for all $n \in N$. Define $P_N : \text{Set } N \to [0, 1]$ by integrating p with respect to counting measure. If $g : X \to \mathbb{R}$ is a P-integrable mapping, and

$$
g' : N \times X \to \mathbb{R}
g' (n, a) := g a \cdot \frac{1}{p n} \cdot \text{diff}^+ (\text{subcond } P (s n)) (Q n) a
$$

(B.16)

then $\int g' (P_N \times Q) (N \times X) = \int g P X$.

Proof. Let $w_1 n := \frac{1}{p n}$ and $w_2 n := \text{diff}^+ (\text{subcond } P (s n)) (Q n)$. Starting from the left side,

$$
\int g' (P_N \times Q) (N \times X)
= \int (\lambda (n, a) \in N \times X. g a \cdot w_1 n \cdot w_2 n a) (P_N \times Q) (N \times X) \quad \text{Def of } g'
$$

(B.17)
\[\begin{align*}
= & \ \int (\lambda n \in \mathbb{N}. \int (\lambda a \in X. g \cdot a \cdot w_1 n \cdot w_2 n a) (Q n) X) P_N N \quad \text{Lemma B.21} \\
= & \ \int (\lambda n \in \mathbb{N}. \int (g \cdot w_1 n \cdot w_2 n) (Q n) X) P_N N \quad \text{Lift (\cdot)} \\
= & \ \int (\lambda n \in \mathbb{N}. w_1 n \cdot \int (g \cdot w_2 n) (Q n) X) P_N N \quad \text{Lemma B.9} \\
= & \ \int (\lambda n \in \mathbb{N}. w_1 n \cdot \int g \text{ (subcond } P (s n)) X) P_N N \quad \text{Def } w_2, \text{ Lemma B.18}
\end{align*} \]

Because \(P_N \) is defined with respect to counting measure, turn integration into summation:

\[\begin{align*}
= & \ \sum_{n \in \mathbb{N}} p n \cdot \frac{1}{p n} \cdot \int g \text{ (subcond } P (s n)) X \quad \text{Def of } w_1 \\
= & \ \sum_{n \in \mathbb{N}} \int g \text{ (subcond } P (s n)) X \quad p n > 0 \\
= & \ \sum_{n \in \mathbb{N}} \int g P (s n) \quad \text{Def of subcond} \\
= & \ \int g P (\bigcup_{n \in \mathbb{N}} (s n)) \quad \sigma\text{-additivity} \\
= & \ \int g P X \quad \text{Def of } s \quad \square
\end{align*} \]

When \(m_1 \) and \(m_2 \) are measures on infinite spaces, it is not clear that \(\text{diff}^+ m_1 \ m_2 \) exists or how to compute it. It seems it should exist when \(m_1 \) and \(m_2 \) differ only on a finite projection of their domains, and that it should be easy to compute when the distributions of those finite projections can be defined by densities.

We will start with a theorem that says we may ignore \(k \) in computing \(\text{diff}^+ (m_1 \times k) \ (m_2 \times k) \). But first, to apply \(\text{diff}^+ \), we need to have absolute continuity; i.e. \(m_1 \times k \ll m_2 \times k \).

Theorem B.23. If \(m_1, m_2 : \text{Set } X \rightarrow [0, \infty] \) are finite measures such that \(m_1 \ll m_2 \), and \(k : X \rightarrow \text{Set } Y \rightarrow [0, \infty] \) is a finite kernel, then \(m_1 \times k \ll m_2 \times k \).

Proof. Let \(C \in \Sigma \langle X, Y \rangle \) such that \((m_2 \times k) C = 0 \), and \(1_C \langle a, b \rangle := \text{if } (\langle a, b \rangle \in C) 1 0 \). Then

\[\begin{align*}
0 = & \ (m_2 \times k) C \\
= & \ \int^+ 1_C (m_2 \times k) (X \times Y) \quad \text{Def of } 1_C \\
= & \ \int^+ (\lambda a \in X. \int^+ (\lambda b \in B. 1_C \langle a, b \rangle) (k a) Y) m_2 X \quad \text{Lemma B.21}
\end{align*} \]
Because $m_1 \ll m_2$, $\int^+ g m_2 X = 0$ implies $\int^+ g m_1 X = 0$, so

$$\int^+ (\lambda a \in X. \int^+ (\lambda b \in B. 1_C \langle a, b \rangle) (k a) Y) m_1 X = 0 \quad (B.19)$$

Apply Fubini’s theorem (Lemma B.21) again to get $(m_1 \times k) C = 0$.

Theorem B.24. Let $m_1, m_2 : \text{Set} \to [0, \infty]$ be finite measures such that $m_1 \ll m_2$, and $k : \text{Set} \to \text{Set} \to [0, \infty]$ be a finite kernel. Then $\text{diff}^+ (m_1 \times k) (m_2 \times k) = (\lambda \langle a, b \rangle \in X \times Y. \text{diff}^+ m_1 m_2 a) (m_2 \times k)\text{-a.e.}$.

Proof. By Theorem B.23, $m_1 \times k \ll m_2 \times k$, so $\text{diff}^+ (m_1 \times k) (m_2 \times k)$ is well-defined.

Let $A \in \Sigma X$ and $B \in \Sigma Y$. Integrating the left-hand side, by Lemma B.12,

$$\int (\text{diff}^+ (m_1 \times k) (m_2 \times k)) (m_2 \times k) (A \times B) = (m_1 \times k) (A \times B) \quad (B.20)$$

Integrating the right-hand side,

$$\int (\lambda \langle a, b \rangle \in X \times Y. \text{diff}^+ m_1 m_2 a) (m_2 \times k) (A \times B) \quad (B.21)$$

$$= \int (\lambda a \in X. \int (\lambda b \in Y. \text{diff}^+ m_1 m_2 a) (k a) B) m_2 A \quad \text{Lemma B.21}$$

$$= \int (\text{diff}^+ m_1 m_2 \cdot \lambda a \in X. \int (\lambda b \in Y. 1) (k a) B) m_2 A \quad \text{Lemma B.9, Lift (\cdot)}$$

$$= \int (\lambda a \in X. k a B) m_1 A \quad \text{Lemma B.18}$$

$$= (m_1 \times k) (A \times B) \quad \text{Lemma B.20}$$

Therefore, because $m_1 \times k$ is uniquely defined by its output on all such $A \times B$,

$$\int (\text{diff}^+ (m_1 \times k) (m_2 \times k)) (m_2 \times k) \quad (B.22)$$

$$= \int (\lambda \langle a, b \rangle \in X \times Y. \text{diff}^+ m_1 m_2 a) (m_2 \times k)$$

Apply Lemma B.6 (real function a.e. equality).

It is not hard to extend the preceding theorem to arbitrary sublists of finite lists, or to arbitrary finite substructures of any algebraic data type, by induction. But we need a
version of it for arbitrary finite substructures of infinite binary trees, which we have defined
non-inductively as mappings \(\Omega := J \rightarrow [0, 1] \) from tree indexes to reals.

One solution is to define an injective transformation \(g \) from any \(\omega \in \Omega \) to a pair \(\langle \omega_{\text{fin}}, \omega_{\text{inf}} \rangle \),
where \(\omega_{\text{fin}} \) is a finite substructure of \(\omega \) and \(\omega_{\text{inf}} \) is the rest of it, and apply Theorem B.24.
The proof is easier to do first in generality, without specifying the structure of \(\omega \), requiring
the substructure to be finite, or requiring the pairs to contain projections.

Theorem B.25. Let \(\mu_1, \mu_2 : \text{Set } Z \rightarrow [0, \infty] \) be \(\sigma \)-finite measures. If there exist finite
measures \(m_1, m_2 : \text{Set } X \rightarrow [0, \infty] \) such that \(m_1 \ll m_2 \), a finite kernel \(k : X \rightarrow \text{Set } Y \rightarrow [0, \infty] \),
and an injective, measurable function \(g : Z \rightarrow X \times Y \) such that for all \(D \in \Sigma \langle X, Y \rangle \),

\[
(m_1 \times k) D = \mu_1 \left(\text{preimage } g D \right) \quad (\text{B.23})
\]

\[
(m_2 \times k) D = \mu_2 \left(\text{preimage } g D \right)
\]

then \(\mu_1 \ll \mu_2 \) and \(\text{diff}^+ \mu_1 \mu_2 = \lambda z \in Z. \text{diff}^+ m_1 m_2 \left(\text{fst } (g z) \right) \) \((\mu_2\text{-a.e.}) \).

Proof. By \(g \)'s injectivity, \(\mu_1 C = (m_1 \times k) \left(\text{image } g C \right) \) for all \(C \in \Sigma Z \), and similarly for \(\mu_2 \).

Let \(C \in \Sigma Z \) such that \(\mu_2 C = 0 \); then \((m_2 \times k) \left(\text{image } g C \right) = 0 \). By Theorem B.23,
\((m_1 \times k) \left(\text{image } g C \right) = 0 \), so \(\mu_1 C = 0 \). Therefore \(\mu_1 \ll \mu_2 \).

Let \(C \in \Sigma Z \) and \(D := \text{image } g C \); then

\[
\text{int } \left(\text{diff}^+ \mu_1 \mu_2 \right) \mu_2 C \quad \text{(B.24)}
\]

\[
= \mu_1 C \quad \text{Lemma B.12}
\]

\[
= (m_1 \times k) D \quad \text{Injectivity of } g
\]

\[
= \text{int } \left(\text{diff}^+ (m_1 \times k) (m_2 \times k) \right) (m_2 \times k) D \quad \text{Lemma B.12}
\]

\[
= \text{int } \left(\lambda \langle a, b \rangle \in X \times Y. \text{diff}^+ m_1 m_2 a \right) (m_2 \times k) D \quad \text{Theorem B.24}
\]

\[
= \text{int } \left(\left(\lambda \langle a, b \rangle \in X \times Y. \text{diff}^+ m_1 m_2 a \right) \circ_{\text{map}} g \right) \mu_2 C \quad \text{Lemma B.10}
\]

\[
= \text{int } \left(\lambda z \in Z. \text{diff}^+ m_1 m_2 \left(\text{fst } (g z) \right) \right) \mu_2 C \quad \text{Def of } \circ_{\text{map}}
\]

Apply Lemma B.6 (real function a.e. equality).
Thus, two measures \(\mu_1 \) and \(\mu_2 \) on infinite structures that can be decomposed into products \(m_1 \times k \) and \(m_2 \times k \) such that \(\text{diff}^+ m_1 m_2 \) exists—using any measurable, injective transformation—have a Radon-Nikodým derivative that can be defined in terms of \(\text{diff}^+ m_1 m_2 \).

Application to infinite binary trees mostly requires defining the transformation.

Theorem B.26. Let \(J' \subseteq J \) be finite, and define \(X := J' \to [0, 1] \) and \(Y := (J \setminus J') \to [0, 1] \). Let \(P', Q' : \text{Set} X \to [0, 1] \) be finite measures such that \(P' \ll Q' \), and let \(k : X \to \text{Set} Y \to [0, 1] \) be a finite kernel. Define \(g : \Omega \to X \times Y \) by \(g \omega := \langle \text{restrict } \omega J', \text{restrict } \omega (J \setminus J') \rangle \). If \(P, Q : \text{Set} \Omega \to [0, 1] \) are defined so that for all \(\Omega' \in \Sigma \Omega \),

\[
P \Omega' = (P' \times k) \text{ (image } g \Omega')
\]

\[
Q \Omega' = (Q' \times k) \text{ (image } g \Omega')
\]

then \(P \ll Q \) and \(\text{diff}^+ P Q = \lambda \omega \in \Omega. \text{diff}^+ P' Q' \text{ (restrict } \omega J') \) (Q-a.e.).

Proof. The inverse of \(g \) is \(g^{-1} : X \times Y \to \Omega \), defined by

\[
g^{-1} \langle \omega_{\text{fin}}, \omega_{\text{inf}} \rangle = \lambda j \in J. \text{if } (j \in J') \langle \omega_{\text{fin}} j \rangle \langle \omega_{\text{inf}} j \rangle \quad (B.26)
\]

Thus \((P' \times k) D = P \text{ (preimage } g D)\) for all \(D \in \Sigma \langle X, Y \rangle \); similarly for \((Q' \times k) D \). Apply Theorem B.25.

In particular, if additionally \(P' \) and \(Q' \) can be defined by densities \(p : (J' \to [0, 1]) \to [0, \infty) \)

and \(q : (J' \to [0, 1]) \to [0, \infty) \), then

\[
\text{diff}^+ P Q \omega = \frac{p \langle \text{restrict } \omega J' \rangle}{q \langle \text{restrict } \omega J' \rangle} \quad (Q-a.e.) \quad (B.27)
\]

Theorem 9.46 uses this fact to prove correct the algorithms Dr. Bayes uses to sample points inside a sampled part.
References

[72] Neil Toronto and Jay McCarthy. From Bayesian notation to pure Racket, via measure-theoretic probability in λ_{ZFC}. In Impl. and Appl. of Functional Languages, 2010.

