Running Probabilistic Programs Backwards

Neil Toronto * Jay McCarthy † David Van Horn *

* University of Maryland † Vassar College

ESOP 2015

2015/04/14

• Probabilistic inference, and why it's hard

- Probabilistic inference, and why it's hard
- Limitations of current probabilistic programming languages (PPLs)

- Probabilistic inference, and why it's hard
- Limitations of current probabilistic programming languages (PPLs)
- Contributions

- Probabilistic inference, and why it's hard
- Limitations of current probabilistic programming languages (PPLs)
- Contributions
 - Uncomputable, compositional ways to not limit language

- Probabilistic inference, and why it's hard
- Limitations of current probabilistic programming languages (PPLs)
- Contributions
 - Uncomputable, compositional ways to not limit language
 - Computable, compositional ways to not limit language


```
(let ([x (flip 0.5)])
x)
```



```
(let ([x (flip 0.5)])
x)
```

0.5


```
(let ([x (flip 0.5)])
x)
```

0.5


```
(let ([x (flip 0.5)]
     [y (flip 0.5)])
  (cons x y))
              0.5
0.5
0.5
```



```
(let ([x (flip 0.5)]
      [y (flip 0.5)])
  (cons x y))
               0.5
                                         0.5
0.5
0.5
```

```
(let ([x (flip 0.5)]
      [y (flip 0.5)])
  (cons x y))
                                         0.5
               0.5
0.5
0.5
```

```
(let* ([x (flip 0.5)]
       [y (flip (if (equal? x heads) 0.5 0.3))])
  (cons x y))
               0.5
                                        0.5
0.5
0.5
```

```
(let* ([x (flip 0.5)]
       [y (flip (if (equal? x heads) 0.5 0.3))])
  (cons x y))
               0.5
                                         0.5
0.5
0.5
          0.3
                                    0.7
```

2

$$Pr[true] = 0.5 \cdot 0.5 + 0.5 \cdot 0.5 + 0.5 \cdot 0.3 + 0.5 \cdot 0.7 = 1$$

2

$$Pr[y = heads] = 0.5 \cdot 0.5 + 0.5 \cdot 0.3 = 0.4$$

Z

$$\begin{aligned} \Pr[\mathbf{x} &= \text{heads} \,|\, \mathbf{y} = \text{heads}] \\ &= \Pr[\langle \mathbf{x}, \mathbf{y} \rangle = \langle \text{heads}, \text{heads} \rangle] / \Pr[\mathbf{y} = \text{heads}] \\ &= 0.25 / 0.4 = 0.625 \end{aligned}$$

0.5

0.3

sto-cha-stic /stō-'kas-tik/ adj. fancy word for "randomized"

sto-cha-stic /stō-'kas-tik/ adj. fancy word for "randomized"

ap·er·ture /'ap-ə(r)-chər/ n. fancy word for "opening"

ap·er·ture /'ap-ə(r)-chər/ n. fancy word for "opening"

Simulate projecting rays onto a sensor...

... and collect them to form an image

Normally thousands of lines of code

- Normally thousands of lines of code
- Bears little resemblance to the physical process

- Normally thousands of lines of code
- Bears little resemblance to the physical process
- In DrBayes, it's simple physics simulation:

- Normally thousands of lines of code
- Bears little resemblance to the physical process
- In DrBayes, it's simple physics simulation:

Other PPLs really aren't up to this yet

- Normally thousands of lines of code
- Bears little resemblance to the physical process
- In DrBayes, it's simple physics simulation:

- Other PPLs really aren't up to this yet
- The issue is one of theory, not engineering effort

• Assume (random) returns a value uniformly in $\left[0,1\right]$

• Assume (random) returns a value uniformly in $\left[0,1\right]$

Density function p for value of (random):

ullet Assume (random) returns a value uniformly in [0,1]

Density function p for value of (random):

$$\Pr[(\text{random}) \in [0.5, 1]]$$

$$= \int_{0.5}^{1} p(x) dx$$

$$= 1 - 0.5$$

$$= 0.5$$

• Assume (random) returns a value uniformly in [0,1]

Density function p for value of (random):

$$\Pr[(\text{random}) \in [0.5, 0.5]]$$

$$= \int_{0.5}^{0.5} p(x) dx$$

$$= 0.5 - 0.5$$

$$= 0$$

• Assume (random) returns a value uniformly in [0,1]

ullet Assume (random) returns a value uniformly in [0,1]

$$Pr[(\max 0.5 (\text{random})) \in [0.5, 0.5]]$$

= 0.5

ullet Assume (random) returns a value uniformly in [0,1]

$$\Pr[(\max 0.5 \; (\text{random})) \in [0.5, 0.5]]$$

$$= 0.5$$

$$= \int_{0.5}^{0.5} p_m(x) \, dx$$

$$= 0$$

ullet Assume (random) returns a value uniformly in [0,1]

$$\Pr[(\max 0.5 \; (\text{random})) \in [0.5, 0.5]]$$

$$= 0.5$$

$$= \int_{0.5}^{0.5} p_m(x) \, dx$$

$$= 0$$

Results of discontinuous functions (bounded measuring devices)

```
(let ([temperature (normal 99 1)])
  (min 100 temperature))
```


Results of discontinuous functions (bounded measuring devices)

```
(let ([temperature (normal 99 1)])
  (min 100 temperature))
```

Variable-dimensional things (union types)

```
(if test? none (just x))
```


Results of discontinuous functions (bounded measuring devices)

```
(let ([temperature (normal 99 1)])
  (min 100 temperature))
```

Variable-dimensional things (union types)

```
(if test? none (just x))
```

Infinite-dimensional things (recursion)

Results of discontinuous functions (bounded measuring devices)

```
(let ([temperature (normal 99 1)])
  (min 100 temperature))
```

Variable-dimensional things (union types)

```
(if test? none (just x))
```

- Infinite-dimensional things (recursion)
- In general: the distributions of program values

• Like already-integrated densities, but a primitive concept

- Like already-integrated densities, but a primitive concept
- Measure of (random) is $P:\mathcal{P}\left[0,1\right] \rightharpoonup \left[0,1\right]$, defined by

$$P[a,b] = \int_{a}^{b} p(x) dx = b - a$$

- Like already-integrated densities, but a primitive concept
- Measure of (random) is $P:\mathcal{P}\left[0,1\right] \rightharpoonup [0,1]$, defined by $P\left[a,b\right] \ = \ b-a$

- Like already-integrated densities, but a primitive concept
- Measure of (random) is $P:\mathcal{P}\left[0,1\right] \rightharpoonup [0,1]$, defined by $P\left[a,b\right] \ = \ b-a$
- Measure of (max 0.5 (random)) defined by

$$P_m[a,b] = \max(0.5,b) - \max(0.5,a) + \begin{cases} 0.5 & \text{if } a \le 0.5 \le b \\ 0 & \text{otherwise} \end{cases}$$

- Like already-integrated densities, but a primitive concept
- Measure of (random) is $P:\mathcal{P}\left[0,1\right] \rightharpoonup [0,1]$, defined by $P\left[a,b\right] \ = \ b-a$
- Measure of (max 0.5 (random)) defined by

$$P_m[a,b] = \max(0.5,b) - \max(0.5,a) + \begin{cases} 0.5 & \text{if } a \le 0.5 \le b \\ 0 & \text{otherwise} \end{cases}$$

This term assigns [0.5, 0.5] probability 0.5

- Like already-integrated densities, but a primitive concept
- Measure of (random) is $P:\mathcal{P}\left[0,1\right] \rightharpoonup [0,1]$, defined by $P\left[a,b\right] \ = \ b-a$
- Measure of (max 0.5 (random)) defined by

$$P_m[a,b] = \max(0.5,b) - \max(0.5,a) + \begin{cases} 0.5 & \text{if } a \le 0.5 \le b \\ 0 & \text{otherwise} \end{cases}$$

This term assigns [0.5, 0.5] probability 0.5

Need a way to derive measures from code

• Interpret (max 0.5 (random)) as $f:[0,1] \to \mathbb{R}$, defined $f(r) = \max(0.5,r)$

• Interpret (max 0.5 (random)) as $f:[0,1] \to \mathbb{R}$, defined $f(r) = \max(0.5,r)$

• Derive measure of (max 0.5 (random)) as

$$P_m B = P (f^{-1} B)$$

• Interpret (max 0.5 (random)) as $f:[0,1] \to \mathbb{R}$, defined $f(r) = \max(0.5,r)$

• Derive measure of (max 0.5 (random)) as

$$P_m B = P (f^{-1} B)$$

where $f^{-1} B = \{r \in [0,1] \mid f \mid r \in B\}$

• Interpret (max 0.5 (random)) as $f:[0,1] \to \mathbb{R}$, defined $f(r) = \max(0.5,r)$

• Derive measure of (max 0.5 (random)) as

$$P_m \ B = P \ (f^{-1} \ B)$$
 where $f^{-1} \ B \ = \ \{r \in [0,1] \mid f \ r \in B\}$

Factored into random and deterministic parts:

$$P_m = P \circ f^{-1}$$

• Interpret (max 0.5 (random)) as $f:[0,1] o \mathbb{R}$, defined $f(r) = \max(0.5,r)$

• Derive measure of (max 0.5 (random)) as

$$P_m \ B = P \ (f^{-1} \ B)$$
 where $f^{-1} \ B \ = \ \{r \in [0,1] \mid f \ r \in B\}$

Factored into random and deterministic parts:

$$P_m = P \circ f^{-1}$$

 In other words, compute measures of expressions by running them backwards

• Seems like we need:

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source
 - Efficient way to compute preimage sets

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source
 - Efficient way to compute preimage sets
 - Efficient representation of arbitrary sets

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source
 - Efficient way to compute preimage sets
 - Efficient representation of arbitrary sets
 - Efficient way to compute areas of preimage sets

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source
 - Efficient way to compute preimage sets
 - Efficient representation of arbitrary sets
 - Efficient way to compute areas of preimage sets
 - Proof of correctness w.r.t. standard interpretation

- Seems like we need:
 - Standard interpretation of programs as pure functions from a random source
 - Efficient way to compute preimage sets
 - Efficient representation of arbitrary sets
 - Efficient way to compute areas of preimage sets
 - O Proof of correctness w.r.t. standard interpretation

Conservative approximation with rectangles:

Conservative approximation with rectangles:

What About Approximating?

Restricting preimages to rectangular subdomains:

What About Approximating?

Sampling: exponential to quadratic (e.g. days to minutes)

What About Approximating?

Sampling: exponential to quadratic (e.g. days to minutes)

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute preimage sets
- Efficient representation of arbitrary sets
- Efficient way to compute volumes of preimage sets

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute abstract preimage subsets
- Efficient representation of arbitrary sets
- Efficient way to compute volumes of preimage sets

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute abstract preimage subsets
- Efficient representation of abstract sets
- Efficient way to compute volumes of preimage sets

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute abstract preimage subsets
- Efficient representation of abstract sets
- Efficient way to sample uniformly in preimage sets

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute abstract preimage subsets
- Efficient representation of abstract sets
- Efficient way to sample uniformly in preimage sets
 - Efficient domain partition sampling

- Standard interpretation of programs as pure functions from a random source
- Efficient way to compute abstract preimage subsets
- Efficient representation of abstract sets
- Efficient way to sample uniformly in preimage sets
 - Efficient domain partition sampling
 - Efficient way to determine whether a domain sample is actually in the preimage (just use standard interpretation)
- Proof of correctness w.r.t. standard interpretation

• Start with pure programs, then lift by threading a random store

- Start with pure programs, then lift by threading a random store
- Nonrecursive, nonprobabilistic programs: $[\![\cdot]\!], [\![\cdot]\!]_{\mathrm{pre}}, [\![\cdot]\!]_{\widehat{\mathrm{pre}}}$

- Start with pure programs, then lift by threading a random store
- Nonrecursive, nonprobabilistic programs: $[\![\cdot]\!], [\![\cdot]\!]_{\mathrm{pre}}, [\![\cdot]\!]_{\widehat{\mathrm{pre}}}$
- Add 3 semantic functions for recursion and probabilistic choice

- Start with pure programs, then lift by threading a random store
- Nonrecursive, nonprobabilistic programs: $[\![\cdot]\!], [\![\cdot]\!]_{\mathrm{pre}}, [\![\cdot]\!]_{\widehat{\mathrm{pre}}}$
- Add 3 semantic functions for recursion and probabilistic choice
- Full development needs 2 more to transfer theorems from measure theory...

- Start with pure programs, then lift by threading a random store
- Nonrecursive, nonprobabilistic programs: $[\![\cdot]\!], [\![\cdot]\!]_{\mathrm{pre}}, [\![\cdot]\!]_{\widehat{\mathrm{pre}}}$
- Add 3 semantic functions for recursion and probabilistic choice
- Full development needs 2 more to transfer theorems from measure theory...
- ... oh, and 1 more to collect information for Monte Carlo integration

- Start with pure programs, then lift by threading a random store
- Nonrecursive, nonprobabilistic programs: $[\![\cdot]\!], [\![\cdot]\!]_{\mathrm{pre}}, [\![\cdot]\!]_{\widehat{\mathrm{pre}}}$
- Add 3 semantic functions for recursion and probabilistic choice
- Full development needs 2 more to transfer theorems from measure theory...
- ... oh, and 1 more to collect information for Monte Carlo integration

Tally: 3+3+2+1 = 9 semantic functions, 11 or 12 rules each

• Moggi (1989): Introduces monads for interpreting effects

- Moggi (1989): Introduces monads for interpreting effects
- Other kinds of categories: idioms, arrows

- Moggi (1989): Introduces monads for interpreting effects
- Other kinds of categories: idioms, arrows
- Arrow defined by type constructor $x \leadsto_a y$ and these combinators:

$$\begin{aligned} & \operatorname{arr}_a: (x \to y) \to (x \leadsto_a y) \\ (\ggg_a): (x \leadsto_a y) \to (y \leadsto_a z) \to (x \leadsto_a z) \\ (\&\&_a): (x \leadsto_a y) \to (x \leadsto_a z) \to (x \leadsto_a \langle y, z \rangle) \\ & \operatorname{ifte}_a: (x \leadsto_a \operatorname{Bool}) \to (x \leadsto_a y) \to (x \leadsto_a y) \to (x \leadsto_a y) \\ & \operatorname{Rlazy}_a: (1 \to (x \leadsto_a y)) \to (x \leadsto_a y) \end{aligned}$$

- Moggi (1989): Introduces monads for interpreting effects
- Other kinds of categories: idioms, arrows
- Arrow defined by type constructor $x \leadsto_a y$ and these combinators:

$$\operatorname{arr}_a: (x \to y) \to (x \leadsto_a y)$$

$$(\ggg_a): (x \leadsto_a y) \to (y \leadsto_a z) \to (x \leadsto_a z)$$

$$(\&\&_a): (x \leadsto_a y) \to (x \leadsto_a z) \to (x \leadsto_a \langle y, z \rangle)$$

$$\operatorname{ifte}_a: (x \leadsto_a \operatorname{Bool}) \to (x \leadsto_a y) \to (x \leadsto_a y) \to (x \leadsto_a y)$$

$$\operatorname{play}_a: (1 \to (x \leadsto_a y)) \to (x \leadsto_a y)$$

Arrows are always function-like

Function arrow: $x \leadsto y$ is just $x \to y$

Function arrow: $x \leadsto y$ is just $x \to y$ $\operatorname{arr} f = f$

Function arrow: $x \leadsto y$ is just $x \to y$

$$arr f = f$$

$$f_1 > > f_2 = \lambda r. f_2 (f_1 r)$$

Function arrow: $x\leadsto y$ is just $x\to y$ $\operatorname{arr} f \ = \ f$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

Function arrow: $x \leadsto y$ is just $x \to y$ $\operatorname{arr} f = f$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

$$f_1 \& x f_2 = \lambda r. \langle f_1 r, f_2 r \rangle$$

Function arrow:
$$x\leadsto y$$
 is just $x\to y$
$$\mathrm{arr}\ f\ =\ f$$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

$$f_1 \&\& f_2 = \lambda r. \langle f_1 r, f_2 r \rangle$$

$$\llbracket \langle e_1, e_2 \rangle \rrbracket = \llbracket e_1 \rrbracket \&\& \llbracket e_2 \rrbracket$$

Function arrow: $x \leadsto y$ is just $x \to y$ $\operatorname{arr} f = f$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

$$f_1 \&\& f_2 = \lambda r. \langle f_1 r, f_2 r \rangle$$

$$\llbracket \langle e_1, e_2 \rangle \rrbracket = \llbracket e_1 \rrbracket \&\& \llbracket e_2 \rrbracket$$

$$\llbracket \mathtt{let} \ e \ e_b \rrbracket \ = \ (\llbracket e \rrbracket \ \&\& \ \mathtt{arr} \ \mathtt{id}) \ggg \llbracket e_b \rrbracket$$

Function arrow:
$$x \leadsto y$$
 is just $x \to y$
$$\operatorname{arr} f = f$$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

$$f_1 \&\& f_2 = \lambda r. \langle f_1 r, f_2 r \rangle$$

$$\llbracket \langle e_1, e_2 \rangle \rrbracket = \llbracket e_1 \rrbracket \&\& \llbracket e_2 \rrbracket$$

$$[\![let \ e \ e_b]\!] = ([\![e]\!] \&\& \ arr \ id) \ggg [\![e_b]\!]$$

$$[\![env \ 0]\!] = arr \ fst$$

Function arrow:
$$x\leadsto y$$
 is just $x\to y$
$$\operatorname{arr} f \ = \ f$$

$$f_1 \ggg f_2 = \lambda r. f_2 (f_1 r)$$

$$\llbracket \mathtt{fst} \ e \rrbracket = \llbracket e \rrbracket \ggg \mathtt{arr} \ \mathtt{fst}$$

$$f_1 \&\& f_2 = \lambda r. \langle f_1 r, f_2 r \rangle$$

$$\llbracket \langle e_1, e_2 \rangle \rrbracket = \llbracket e_1 \rrbracket \&\& \llbracket e_2 \rrbracket$$

$$f_1 = \lambda r$$
. fst $r +$ snd r $f_2 = \lambda r$. fst $r \cdot$ snd r

$$f_1 = \lambda r$$
. fst $r + \operatorname{snd} r$ $f_2 = \lambda r$. fst $r \cdot \operatorname{snd} r$ $f = f_1 \&\& f_2 = \lambda r$. (fst $r + \operatorname{snd} r$, fst $r \cdot \operatorname{snd} r$)

$$f_1=\lambda\,r.\,\mathrm{fst}\;r+\mathrm{snd}\;r$$
 $f_2=\lambda\,r.\,\mathrm{fst}\;r\cdot\mathrm{snd}\;r$
$$f=f_1\,\&\&\,f_2=\lambda\,r.\,\langle\mathrm{fst}\;r+\mathrm{snd}\;r,\mathrm{fst}\;r\cdot\mathrm{snd}\;r\rangle$$

$$f_1^{-1}([0.5,0.7]):$$

 $f_1 = \lambda r. \, \text{fst } r + \text{snd } r \qquad f_2 = \lambda r. \, \text{fst } r \cdot \text{snd } r$ $f = f_1 \, \&\& f_2 = \lambda r. \, \langle \text{fst } r + \text{snd } r, \text{fst } r \cdot \text{snd } r \rangle$ $f_1^{-1}([0.5, 0.7]) \, \text{and } f_2^{-1}([0.05, 0.1]).$

$$f_1=\lambda\,r.\,\mathrm{fst}\,r+\mathrm{snd}\,r$$
 $f_2=\lambda\,r.\,\mathrm{fst}\,r\cdot\mathrm{snd}\,r$
$$f=f_1\,\&\&\,f_2=\lambda\,r.\,\langle\mathrm{fst}\,r+\mathrm{snd}\,r,\mathrm{fst}\,r\cdot\mathrm{snd}\,r\rangle$$

$$f^{-1}([0.5,0.7]\times[0.05,0.1]):$$

Correctness Theorems For Low, Low Prices

• Define lift_{pre} $f = f^{-1}$

Correctness Theorems For Low, Low Prices

- Define lift_{pre} $f = f^{-1}$
- Derive $(\&\&_{pre})$ and others so that lift_{pre} distributes; e.g.

$$lift_{pre} (f_1 \&\& f_2) = (lift_{pre} f_1) \&\&_{pre} (lift_{pre} f_2)$$

Correctness Theorems For Low, Low Prices

- Define lift_{pre} $f = f^{-1}$
- Derive $(\&\&_{pre})$ and others so that lift $_{pre}$ distributes; e.g.

$$lift_{pre} (f_1 \&\& f_2) = (lift_{pre} f_1) \&\&_{pre} (lift_{pre} f_2)$$

• Distributive properties makes proving this very easy:

Theorem (correctness). For all e, $\llbracket e \rrbracket_{\text{pre}} = \text{lift}_{\text{pre}} \llbracket e \rrbracket$.

Correctness Theorems For Low, Low Prices

- Define lift_{pre} $f = f^{-1}$
- Derive $(\&\&_{pre})$ and others so that lift $_{pre}$ distributes; e.g.

$$lift_{pre} (f_1 \&\& f_2) = (lift_{pre} f_1) \&\&_{pre} (lift_{pre} f_2)$$

• Distributive properties makes proving this very easy:

Theorem (correctness). For all e, $\llbracket e \rrbracket_{\text{pre}} = \text{lift}_{\text{pre}} \llbracket e \rrbracket$.

In English: $[e]_{pre}$ computes preimages under [e].

Correctness Theorems For Low, Low Prices

- Define lift_{pre} $f = f^{-1}$
- Derive $(\&\&_{pre})$ and others so that lift $_{pre}$ distributes; e.g.

$$lift_{pre} (f_1 \&\& f_2) = (lift_{pre} f_1) \&\&_{pre} (lift_{pre} f_2)$$

• Distributive properties makes proving this very easy:

Theorem (correctness). For all e, $\llbracket e \rrbracket_{\text{pre}} = \text{lift}_{\text{pre}} \llbracket e \rrbracket$.

In English: $[e]_{pre}$ computes preimages under [e].

Other correctness proofs are similarly easy: prove 5 distributive
 properties

Correctness Theorems For Low, Low Prices

- Define lift_{pre} $f = f^{-1}$
- Derive $(\&\&_{pre})$ and others so that lift $_{pre}$ distributes; e.g.

$$lift_{pre} (f_1 \&\& f_2) = (lift_{pre} f_1) \&\&_{pre} (lift_{pre} f_2)$$

• Distributive properties makes proving this very easy:

Theorem (correctness). For all e, $\llbracket e \rrbracket_{\mathrm{pre}} = \mathtt{lift}_{\mathrm{pre}} \ \llbracket e \rrbracket$.

In English: $\llbracket e \rrbracket_{\mathrm{pre}}$ computes preimages under $\llbracket e \rrbracket$.

- Other correctness proofs are similarly easy: prove 5 distributive properties
- Can add (random) and recursion to all semantics in one shot

Rectangle: An interval or union of intervals, a subset of Bool, or $A\times B$ for rectangles A and B

Rectangle: An interval or union of intervals, a subset of Bool, or $A\times B$ for rectangles A and B

• Easy representation; easy intersection, join (which overapproximates union), empty test, etc.

Rectangle: An interval or union of intervals, a subset of Bool, or $A \times B$ for rectangles A and B

- Easy representation; easy intersection, join (which overapproximates union), empty test, etc.
- Define $(\leadsto_{\widehat{pre}})$ (and therefore $\llbracket \cdot \rrbracket_{\widehat{pre}}$) by replacing sets and set operations with rectangles and rectangle operations

Rectangle: An interval or union of intervals, a subset of Bool, or $A\times B$ for rectangles A and B

- Easy representation; easy intersection, join (which overapproximates union), empty test, etc.
- Define $(\leadsto_{\widehat{pre}})$ (and therefore $\llbracket \cdot \rrbracket_{\widehat{pre}}$) by replacing sets and set operations with rectangles and rectangle operations
- Recursion is somewhat tricky—requires fine control over recursion depth or if choices

In Theory...

Theorem (sound). $[\![\cdot]\!]_{\widehat{\mathrm{pre}}}$ computes overapproximations of the preimages computed by $[\![\cdot]\!]_{\mathrm{pre}}$.

 Consequence: Sampling in abstract preimages doesn't leave anything out

In Theory...

Theorem (sound). $\llbracket \cdot \rrbracket_{\widehat{\mathrm{pre}}}$ computes overapproximations of the preimages computed by $\llbracket \cdot \rrbracket_{\mathrm{pre}}$.

 Consequence: Sampling in abstract preimages doesn't leave anything out

Theorem (decreasing). $[\![\cdot]\!]_{\widehat{pre}}$ never returns preimages larger than the given subdomain.

 Consequence: Refining abstract preimage sets never results in a worse approximation

In Theory...

Theorem (sound). $\llbracket \cdot \rrbracket_{\widehat{\mathrm{pre}}}$ computes overapproximations of the preimages computed by $\llbracket \cdot \rrbracket_{\mathrm{pre}}$.

 Consequence: Sampling in abstract preimages doesn't leave anything out

Theorem (decreasing). $[\![\cdot]\!]_{\widehat{pre}}$ never returns preimages larger than the given subdomain.

 Consequence: Refining abstract preimage sets never results in a worse approximation

Theorem (monotone). $[\![\cdot]\!]_{\widehat{\mathrm{pre}}}$ is monotone.

Consequence: Partitioning and then refining never results in a worse approximation

• Program inputs r are infinite binary trees:

• Program inputs r are infinite binary trees:

Every expression in a program is assigned a node

• Program inputs r are infinite binary trees:

- Every expression in a program is assigned a node
- Implemented using lazy trees of random values

• Program inputs r are infinite binary trees:

- Every expression in a program is assigned a node
- Implemented using lazy trees of random values
- No probability density for domain, but there is a measure

Example: Stochastic Ray Tracing


```
(struct/drbayes float-any ())
(struct/drbayes float (value error))
```


• Idea: sample e where (> (float-error e) threshold)

- Idea: sample e where (> (float-error e) threshold)
- Verified flhypot, flsqrt1pm1, flsinh in Racket's math library, as well as others

Examples: Other Inference Tasks

- Typical Bayesian inference
 - Hierarchical models
 - Bayesian regression
 - Model selection

Examples: Other Inference Tasks

- Typical Bayesian inference
 - Hierarchical models
 - Bayesian regression
 - Model selection
- Atypical
 - Programs that halt with probability < 1, or never halt
 - Probabilistic context-free grammars with context-sensitive
 Constraints

• Probabilistic inference is hard, so PPLs have been popping up

- Probabilistic inference is hard, so PPLs have been popping up
- Interpreting every program requires measure theory

- Probabilistic inference is hard, so PPLs have been popping up
- Interpreting every program requires measure theory
- Defined a semantics that computes preimages

- Probabilistic inference is hard, so PPLs have been popping up
- Interpreting every program requires measure theory
- Defined a semantics that computes preimages
- Measuring abstract preimages or sampling in them carries out inference

- Probabilistic inference is hard, so PPLs have been popping up
- Interpreting every program requires measure theory
- Defined a semantics that computes preimages
- Measuring abstract preimages or sampling in them carries out inference
- Can do a lot of cool stuff that's normally inaccessible

https://github.com/ntoronto/drbayes

