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• In DrBayes, it’s simple physics simulation:

(define/drbayes (ray-plane-intersect p0 v n d)
  (let ([denom  (- (dot v n))])

  (if (> denom 0)
(let ([t  (/ (+ d (dot p0 n)) denom)])
  (if (> t 0)

(collision t (vec+ p0 (vec* v t)) n)
#f))
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• Normally thousands of lines of code

• Bears little resemblance to the physical process

• In DrBayes, it’s simple physics simulation:

(define/drbayes (ray-plane-intersect p0 v n d)
  (let ([denom  (- (dot v n))])

  (if (> denom 0)
(let ([t  (/ (+ d (dot p0 n)) denom)])
  (if (> t 0)

(collision t (vec+ p0 (vec* v t)) n)
#f))

#f)))

• Other PPLs really aren’t up to this yet

• The issue is one of theory, not engineering effort
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What Can’t Densities Model?What Can’t Densities Model?What Can’t Densities Model?

• Results of discontinuous functions (bounded measuring devices)

(let ([temperature  (normal 99 1)])
  (min 100 temperature))

• Variable-dimensional things (union types)

(if test? none (just x))

• Infinite-dimensional things (recursion)

• In general: the distributions of program values
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Probability MeasuresProbability MeasuresProbability Measures

• Like already-integrated densities, but a primitive concept

• Measure of (random) is , defined by

• Measure of (max 0.5 (random)) defined by

This term assigns  probability 

• Need a way to derive measures from code
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Probability Measures Via PreimagesProbability Measures Via PreimagesProbability Measures Via Preimages

• Interpret (max 0.5 (random)) as , defined

• Derive measure of (max 0.5 (random)) as

where  

• Factored into random and deterministic parts:

• In other words, compute measures of expressions by running
them backwards
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Crazy Idea is Feasible If...Crazy Idea is Feasible If...Crazy Idea is Feasible If...

• Seems like we need:

Standard interpretation of programs as pure functions from a
random source

Efficient way to compute preimage sets

Efficient representation of arbitrary sets

Efficient way to compute areas of preimage sets

Proof of correctness w.r.t. standard interpretation

• WAT
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• Standard interpretation of programs as pure functions from a
random source

• Efficient way to compute preimage sets

• Efficient representation of arbitrary sets

• Efficient way to compute volumes of preimage sets

• Proof of correctness w.r.t. standard interpretation
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Contribution: Making This Crazy Idea FeasibleContribution: Making This Crazy Idea FeasibleContribution: Making This Crazy Idea Feasible

• Standard interpretation of programs as pure functions from a
random source

• Efficient way to compute abstract preimage subsets

• Efficient representation of abstract sets

• Efficient way to sample uniformly in preimage sets

Efficient domain partition sampling

Efficient way to determine whether a domain sample is
actually in the preimage (just use standard interpretation)

• Proof of correctness w.r.t. standard interpretation
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How Many Meanings?How Many Meanings?How Many Meanings?

• Start with pure programs, then lift by threading a random store

• Nonrecursive, nonprobabilistic programs:  , , 

• Add 3 semantic functions for recursion and probabilistic choice

• Full development needs 2 more to transfer theorems from
measure theory...

• ... oh, and 1 more to collect information for Monte Carlo
integration

Tally: 3+3+2+1 = 9 semantic functions, 11 or 12 rules each
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Enter Category TheoryEnter Category TheoryEnter Category Theory

• Moggi (1989): Introduces monads for interpreting effects

• Other kinds of categories: idioms, arrows

• Arrow defined by type constructor  and these
combinators:

• Arrows are always function-like
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Theorem (correctness). For all , .

In English:   computes preimages under .
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Theorem (correctness). For all , .
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Correctness Theorems For Low, Low PricesCorrectness Theorems For Low, Low PricesCorrectness Theorems For Low, Low Prices

• Define 

• Derive  and others so that  distributes; e.g.

• Distributive properties makes proving this very easy:

Theorem (correctness). For all , .

In English:   computes preimages under .

• Other correctness proofs are similarly easy: prove 5 distributive
properties

• Can add (random) and recursion to all semantics in one shot
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AbstractionAbstractionAbstraction

Rectangle: An interval or union of intervals, a subset of , or
 for rectangles  and 

• Easy representation; easy intersection, join (which
overapproximates union), empty test, etc.

• Define  (and therefore ) by replacing sets and set
operations with rectangles and rectangle operations

• Recursion is somewhat tricky—requires fine control over
recursion depth or if choices
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In Theory...In Theory...In Theory...

Theorem (sound).  computes overapproximations of the
preimages computed by .

• Consequence: Sampling in abstract preimages doesn’t leave
anything out
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Theorem (decreasing).  never returns preimages larger than
the given subdomain.

• Consequence: Refining abstract preimage sets never results in a
worse approximation
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In Theory...In Theory...In Theory...

Theorem (sound).  computes overapproximations of the
preimages computed by .

• Consequence: Sampling in abstract preimages doesn’t leave
anything out

Theorem (decreasing).  never returns preimages larger than
the given subdomain.

• Consequence: Refining abstract preimage sets never results in a
worse approximation

Theorem (monotone).  is monotone.

• Consequence: Partitioning and then refining never results in a
worse approximation 14141414141414141414141414141414
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Program Domain ValuesProgram Domain ValuesProgram Domain Values

• Program inputs  are infinite binary trees:

• Every expression in a program is assigned a node

• Implemented using lazy trees of random values

• No probability density for domain, but there is a measure 16161616161616161616161616161616



Example: Stochastic Ray TracingExample: Stochastic Ray TracingExample: Stochastic Ray Tracing
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Example: Probabilistic VerificationExample: Probabilistic VerificationExample: Probabilistic Verification

(struct/drbayes float-any ())
(struct/drbayes float (value error))
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Example: Probabilistic VerificationExample: Probabilistic VerificationExample: Probabilistic Verification

(struct/drbayes float-any ())
(struct/drbayes float (value error))

(define/drbayes (flsqrt x)
  (if (float-any? x)

x
(let ([v  (float-value x)]

[e  (float-error x)])
  (cond [(negative? v)  (float-any)]

[(zero? v)      (float 0 0)]
[else  (float (sqrt v)

(+ (- 1 (sqrt (- 1 e)))
(* 1/2 epsilon)))]))))
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(struct/drbayes float (value error))

(define/drbayes (flsqrt x)
  (if (float-any? x)

x
(let ([v  (float-value x)]

[e  (float-error x)])
  (cond [(negative? v)  (float-any)]

[(zero? v)      (float 0 0)]
[else  (float (sqrt v)

(+ (- 1 (sqrt (- 1 e)))
(* 1/2 epsilon)))]))))

• Idea: sample e where (> (float-error e) threshold)
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Example: Probabilistic VerificationExample: Probabilistic VerificationExample: Probabilistic Verification

(struct/drbayes float-any ())
(struct/drbayes float (value error))

(define/drbayes (flsqrt x)
  (if (float-any? x)

x
(let ([v  (float-value x)]

[e  (float-error x)])
  (cond [(negative? v)  (float-any)]

[(zero? v)      (float 0 0)]
[else  (float (sqrt v)

(+ (- 1 (sqrt (- 1 e)))
(* 1/2 epsilon)))]))))

• Idea: sample e where (> (float-error e) threshold)

• Verified flhypot, flsqrt1pm1, flsinh in Racket’s math
library, as well as others
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Examples: Other Inference TasksExamples: Other Inference TasksExamples: Other Inference Tasks

• Typical Bayesian inference

Hierarchical models

Bayesian regression

Model selection
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Examples: Other Inference TasksExamples: Other Inference TasksExamples: Other Inference Tasks

• Typical Bayesian inference

Hierarchical models

Bayesian regression

Model selection

• Atypical

Programs that halt with probability < 1, or never halt

Probabilistic context-free grammars with context-sensitive
constraints
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• Probabilistic inference is hard, so PPLs have been popping up
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SummarySummarySummary

• Probabilistic inference is hard, so PPLs have been popping up

• Interpreting every program requires measure theory

• Defined a semantics that computes preimages

• Measuring abstract preimages or sampling in them carries out
inference

• Can do a lot of cool stuff that’s normally inaccessible

20202020202020202020202020202020



https://github.com/ntoronto/drbayes
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