
Scientific Computing with Case Studies
SIAM Press, 2009

http://www.cs.umd.edu/users/oleary/SCCSwebpage
Lecture Notes for Unit VI

Nonlinear Equations and Continuation Methods
Dianne P. O’Leary

c©2008

The problem

Given a function F : Rn → Rn, find a point x ∈ Rn such that

F(x) = 0 .

Note: The one-dimensional case (n = 1) is covered in CMSC/AMSC 460. The
best software for this problem is some variant on Richard Brent’s zeroin,
available in Netlib. In Matlab, it is called fzero.

We’ll assume from now on that n > 1.

Goals

To develop algorithms for solving nonlinear systems of equations.

Note: Solving nonlinear equations is a close kin to solving optimization problems.

• Easier than optimization, since a “local solution” is just fine.

• Harder than optimization, since there is no natural merit function f(x) to
measure our progress.

Important note: If F is a polynomial in the variables x, then use special purpose
software that enables you to find all of the solutions reliably.

Example of a polynomial system:

x2y3 + xy = 2
2xy2 + x2y + xy = 0

Pointers: Watson’s homotopy method; Traub’s software.

What we know
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We already know a lot about solving nonlinear equations. The main tools are
Newton’s method and Newton-like methods.

Differences from the methods we have studied:

• Instead of the Hessian matrix, we have the Jacobian matrix of first
derivatives:

Jik =
∂Fi

∂xk
.

This matrix is generally not symmetric.

• Line searches are more difficult to guide, since we can’t measure progress
using the function f(x). Some attempts have been made to use

‖F(x)‖

as a merit function, but there are difficulties with this approach.

The Plan

• Newton-like methods (for easy problems): Section 24.3

• Globally-convergent continuation methods (for hard problems): Section
24.4

• Case study: Chapter 25 compares these methods on the problem of
determining orientations of a truss.

• Case study: Chapter 26 uses these methods to determine parameters in an
ecological model of a colony of flour beetles.

Note: The nonlinear least squares problem, discussed in Section 24.2 and
Chapter 13, is one approach to solving nonlinear equations for which

• there are more equations than unknowns.

• measurement error contaminates the equations.

Newton-like methods

• applied to nonlinear least squares

• applied to nonlinear equations
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Nonlinear least squares

Note that we can solve F(x) = 0 by solving

min
x
‖F(x)‖22

using any of our methods from Unit 3, looking for a point that gives a function
value of zero.

Advantages:

• Uses all of our old machinery.

• Generalizes to overdetermined systems in which the number of equations is
greater than the number of variables.

Disadvantage: Derivatives are rather expensive: if f(x) = ‖F(x)‖2, then

g(x) = 2J(x)T F(x)
H(x) = 2J(x)T J(x) + Z(x)

where Z(x) involves 2nd derivatives of F.

Newton-like methods for nonlinear equations

Recall our general scheme for function minimization:

Until x(k) is a good enough solution,

Find a downhill search direction p(k).
Set x(k+1) = x(k) + αkp(k), where αk is a scalar chosen to guarantee
that progress is made.

The Newton search direction was defined by H(x(k))p(k) = −g(x(k)).

Complications:

• We derived Newton by fitting a quadratic function to a function that we
were trying to minimize. Equivalently, we fit a linear function to the
gradient g:

g(x(k) + p) ≈ g(x(k)) + H(x(k))p = 0 → H(x(k))p = −g(x(k)) .
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Now we can fit a linear function to F:

F(x(k) + p) ≈ F(x(k)) + J(x(k))p = 0 → J(x(k))p = −F(x(k)) .

• There is no notion of “downhill” because there is no function f .

• There is no notion of “progress” because there is no function f .

But if we still find the Newton direction from solving J(x(k))p(k) = −F(x(k)),
then we are still fitting a linear function to F.

As for the line search, we will just eliminate it and set αk = 1, or we will use
‖F(x)‖ as a merit function.

The resulting algorithm is Newton’s method for nonlinear equations:

Until x(k) is a good enough solution,

Find a direction p(k) by solving J(x(k))p(k) = −F(x(k)).
Set x(k+1) = x(k) + αkp(k) where αk = 1 or αk is determined by a
line search.

Convergence result: Under some “standard assumptions” (2nd derivatives exist,
simple zero, etc.), the algorithm is guaranteed to converge to a solution if started
close enough to it, and the convergence rate is quadratic.

Newton-like methods

• Finite Difference Newton method: If J is not available, we can approximate
it using finite differences. Again, this is not recommended; use the next
method instead.

• Inexact Newton method: Instead of solving the linear system
J(x(k))p(k) = −F(x(k)) exactly, we can use an iterative method to obtain
an approximate solution. The usual choice of iterative method is GMRES,
a relative of conjugate gradients, and matrix-vector products are evaluated
by differencing F.
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• Quasi-Newton methods: If storage is not a problem, then instead of the
inexact Newton method, we can store and update an approximation to J.
The usual formula is Broyden’s method:

B(k+1) = B(k) +
(y− B(k)s)sT

sT s

where y = F(x(k+1))− F(x(k)) and s = x(k+1) − x(k). Then

B(k+1)s = y Secant condition

and if sT v = 0, then
B(k+1)v = B(k)v .

Convergence result: As in the minimization case, we get superlinear convergence
if the direction is (asymptotically) close enough to the Newton direction.

Globally-convergent continuation methods

Globally-convergent continuation methods

The basic idea:

• Want to solve F(x) = 0.

• Know the solution to some easy problem Fa(x) = 0.
Example: Fa(x) = x− a for some constant vector a.

• Formulate the problem

ρa(λ, x) = λF(x) + (1− λ)Fa(x)

where λ is a real number in the interval [0, 1].

• Note that the solution to ρa(0, x) = 0 is known (for our example, it is just
a), and the solution to ρa(1, x) = 0 is the solution to our desired problem.

We have just seen one example of how to construct a homotopy function
ρa(λ, x) so that solving ρa(λ, x) = 0 is easy when λ = 0 and solves the desired
problem when λ = 1.

There are many other useful ways to define a homotopy, and we will use some
alternatives in the case studies.

The basic algorithm

Initialize λ = 0 and x = solution to Fa(x) = 0.

While λ < 1,
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• Increase λ by a small amount.

• Solve ρa(λ, x) = 0 using the previous solution vector as a
starting point to solve the new problem.

The hope

• We also hope that for each of the intermediate problems, a
finite solution exists.

• Because we change λ by just a little each time, we hope that
the solution x(λ) also changes by just a little, so that the new
nonlinear equation can be solved easily at each iteration.

Worries

• turning points (fix by allowing λ to decrease sometimes).

• bifurcations (fix by careful choice of Fa).

• solution might fail to exist for some λ < 1.

• solution curve might wander off to infinity.

Some history

• Theoretical foundation: Chow, Mallet-Paret, Yorke (UMD!)

• Practical implementation: Layne Watson (Virginia Polytechnic
Inst.) and colleagues

The difficult part of the theory: How to construct ρa so that we can
walk all the way from λ = 0 to λ = 1 without failing to find a
solution.

The basis of the theory

A function w is transversal to zero on an open domain U if, for any
point û ∈ U such that w(û) = 0, the Jacobian matrix at û has full
rank.

Note that the Jacobian matrix need not be square. Its dimensions
are length(w)× length(û).

A function z is said to be in Ck on a domain U if the function and
all of its first k derivatives exist at all points in U .

Our mapping is almost always “nice”
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Parameterized Sard’s Theorem: Let U = Rn× [0, 1)×Rn and define
a function ρ : U → Rn in C2 which is transversal to zero on U .
(We’ll call its variables (a, λ, z).) Choose a point a ∈ Rn and define

ρa(λ, z) = ρ(a, λ, z).

Then the map ρa is transversal to zero on [0, 1)×Rn for almost all
a.

What “for almost all” means:

• “except for a set of measure zero”.

• If we choose a point a at random, it has probability zero of
giving a function that is not transversal to zero.

Why we need this:

• If we encounter a zero that does not have a full-rank Jacobian,
then it may be impossible to continue the algorithm:

– The solution path may bifurcate.

– The solution path may end.

• If we write a computer program and choose a at random, it will
almost never fail to give a function that is transversal to zero,
and if it does, choosing a different a will almost always work.

Our solution curve is almost always “nice”

Theorem: In addition to the hypotheses above, assume that the
equation ρa(0, z) = 0 has a unique solution z0. Then for almost all
a ∈ Rm, there is a curve γ of solutions to ρa(λ, z) = 0, emanating
from (0, z0), with the properties:

• The Jacobian matrix has (full) rank n at all points in γ.

• The curve γ is smooth.

• The curve does not intersect itself or any other solution curve.

• The curve does not bifurcate.

• The curve either goes to infinity or reaches the hyperplane
λ = 1.

In summary, the curve is very well-behaved! In fact, we can hope to
walk along it.

Where does the solution curve go?

Theorem: Under the hypotheses above,

• If the solution curve γ is bounded, then it has an accumulation
point (1, ẑ).
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• If the Jacobian is full rank at the accumulation point, then γ
has finite length.

In other words, the curve is going just where we want to go, and it
gets there finitely, as long as the Jacobians are bounded away from
rank-deficient matrices.

Picture. The above theorem means that we have a solution curve
that starts at λ = 0 and goes to our desired solution at λ = 1. But
there may be a countable number of other solution curves, some
closed and some with two endpoints at λ = 1.

Note that we need to be careful not to step onto one of these other
curves.

An example: convex optimization

Suppose we want to find x∗ to solve the problem

min
x

f(x)

where f : Rn → R1 is a C2 convex function that is bounded below.
(This last assumption assures that a bounded solution exists.)

We define the mapping

ρa(λ, x) = λ∇f(x) + (1− λ)(x− a)

Will this homotopy generate a solution curve that terminates in
(1, x∗)?

It is sufficient to verify the hypotheses of our three theorems:

• Let U = Rm × [0, 1)×Rn and define a function ρ : U → Rn

in C2 which is transversal to zero on U . Let’s look at the
Jacobian matrix for the mapping. The Jacobian with respect to
the x variables is

Jx = λH(x) + (1− λ)I ,

where H is the Hessian matrix of f . Now H is positive
semi-definite since f is convex, so Jx has rank n for λ ∈ [0, 1),
so the complete Jacobian has full-rank, as required.
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• The equation ρa(0, z) = 0 should have a unique solution z0.
Since

ρa(0, z) = z− a,

this is clearly satisfied.

• The solution curve γ needs to be bounded. Choose a number
M such that ‖x∗‖ < M and ‖a‖ < M . Consider the ball
defined by ‖x‖ = 3M . For x on this ball, we have

(x− x∗)T (x− a) > 0,

and, because ∇f(x∗) = 0 and f is convex, we have

(x− x∗)T∇f(x) = (x− x∗)T (∇f(x)−∇f(x∗)) ≥ 0 .

(Proof that (x− x∗)T∇f(x) ≥ 0 in note below.) Put these two
inequalities together to get

(x− x∗)T ρa(λ, x) = (x− x∗)T (λ∇f(x) + (1− λ)(x− a)) > 0 .

Therefore, ρa(λ, x) 6= 0 on the ball ‖x‖ = 3M , so the solution
curve γ cannot escape from the ball and remains bounded.

Therefore, this homotopy generates a solution curve that terminates
in (1, x∗) for almost every a.

Proof that (x− x∗)T∇f(x) ≥ 0:

Definition: f is a convex function if and only if

f(αy + (1− α)x) ≤ αf(y) + (1− α)f(x)

for all x, y in the domain of f and all 0 ≤ α ≤ 1.

Let z = y− x. Then

f(αz + x) = f(αy+(1−α)x) ≤ αf(y)+(1−α)f(x) = α(f(y)− f(x)) + f(x)

so
f(x + αz)−f(x) ≤ α(f(y)− f(x)).

Therefore,

f(x + αz)− f(x)−αzT∇f(x)
α

≤ α(f(y)− f(x))−αzT∇f(x)
α

.

Taking the limit as α → 0, the left-hand side is zero, so

0 ≤ (f(y)− f(x))− zT∇f(x) .

If y = x∗, then f(y)− f(x) ≤ 0, so
−zT∇f(x) = (x− x∗)T∇f(x) ≥ 0 as desired.
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Note: This is a nice example, and the result means that the
continuation method is one approach to solving convex optimization
problems, but such problems are generally too easy to require such
heavy machinery. Use one of the Newton-type algorithms to solve
convex optimization problems.

What we have accomplished

To solve the nonlinear system of equations F(x) = 0, under the
above hypotheses, all we need to do is to follow the solution curve

ρa(λ, x) = λF(x) + (1− λ)Fa(x) = 0

until λ = 1.

Following the solution curve

We want to follow the solution curve from λ = 0 to λ = 1.

Note first that we don’t need to be too careful when following the
curve – we don’t care about the values at any points in between
λ = 0 and λ = 1.

Note second that we need to be careful enough that we don’t start
walking along any other solution curve, or we will lose our way!

Method 1

Given a function ρa, we set λ = 0 and x̂ = a. Then

ρa(λ, x̂) = 0.

Until λ = 1,

Increase λ a little bit.
Solve ρa(λ, x) = 0 using your favorite algorithm
(Newton-like, etc.) with x̂ as a starting guess.
Call the solution x̂.

Upon termination, we have computed x̂ so that ρa(1, x̂) = 0, so x̂
solves the problem F(x) = 0.

Issues:

• choosing the stepsize in λ.

• choosing the tolerance in the nonlinear equation solver.
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Method 2

Issues of choosing a stepsize and tolerance are troublesome, and we
also face them in Unit 5, in solving ordinary differential equations
(ode’s). Can we use our ode machinery to solve the homotopy
problem?

Let’s differentiate our curve. We could differentiate with respect to
λ, but then the derivative would fail to exist at any turning point and
we might get in trouble.

Instead, we’ll introduce a new independent variable and differentiate
with respect to it. The most convenient one is s = arc length.

Now
ρa(λ(s), x(s)) = 0 ,

so
d

ds
ρa(λ(s), x(s)) = 0

and we have the intial conditions

λ(0) = 0 , x(0) = a .

When the solution curve reaches λ(s) = 1, we are finished; the
resulting x(s) solves our nonlinear system.

For uniqueness, we normalize so that∥∥∥∥(
dλ

ds
,
dx

ds
)
∥∥∥∥ = 1 .

What does this system of ode’s look like when Fa(x) = x− a?

dλ

ds
F(x) + λJ(x)

dx

ds
+

dλ

ds
(x− a) + (1− λ)

dx

ds
= 0

(
dλ

ds

)2

+
n∑

i=1

(
dxi

ds

)2

= 1

The system is implicit.

In principle, we could just plug the system into our favorite ode
solver, and this is good for prototyping algorithms, but in practice
the ode solver should be tailored to this problem:
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• If the arc length parameter s gets too long, restart with a new
choice of a.

• Take care that we don’t wander too far from the solution curve
but that we don’t work too hard in following it exactly.

• Use inverse interpolation at the end to compute the value ŝ for
which λ(ŝ) = 1.

Software

Hompack, by Layne Watson and co-workers, is a high-quality system
for solving nonlinear equations by continuation algorithms.

Final Words

• Much of our work on optimization algorithms gave us insight
into algorithms for solving nonlinear equations.

• We still need to understand the parameter stepping in
continuation algorithms better; stay tuned for Unit 6.

• There is a lot of high-quality software: choose a good
Newton-like method, or Hompack, or a method tailored to
solving a polynomial system.
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