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Optimization: Fundamentals

Our goal is to develop algorithms to solve the problem

Problem P: Given a function f : S → R, find

min
x∈S

f(x)

with solution xopt.

The point xopt is called the minimizer, and the value f(xopt) is the
minimum.

For unconstrained optimization, the set S is usually taken to be Rn, but
sometimes we make use of upper or lower bounds on the variables,
restricting our search to a box

{x : ℓ ≤ x ≤ u}
for some given vectors ℓ,u ∈ Rn.
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The plan

1. Basics of unconstrained optimization

2. Alternatives to Newton’s method

3. Fundamentals of constrained optimization
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Part 1: Basics of unconstrained optimization

Reference: Section 9.1
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Plan for Part 1:

The plan:

• How do we recognize a solution?

• Some geometry.

• Our basic algorithm for finding a solution.

• The model method: Newton.

• How close to Newton do we need to be?

• Making methods safe:

– Descent directions and line searches.

– Trust regions.
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How do we recognize a solution?
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What does it mean to be a solution?

The point xopt is a local solution to Problem P if there is a δ > 0 so that if
x ∈ S and ‖x − xopt‖ < δ, then f(xopt) ≤ f(x).

In other words, xopt is at least as good as any point in its neighborhood.

The point xopt is a global solution to Problem P if for any x ∈ S, then
f(xopt) ≤ f(x).

Note: It would be nice if every local solution was guaranteed to be global.
This is true if f is convex. We’ll look at this case more carefully in the
”Geometry” section of these notes.
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Some notation

We’ll assume throughout this unit that f is smooth enough that it has as
many continuous derivatives as we need. For this section, that means 2
continuous derivatives plus one more, possibly discontinuous.

The gradient of f at x is defined to be the vector

g(x) = ▽f(x) =





∂f/∂x1
...

∂f/∂xn



 .

The Hessian of f at x is the derivative of the gradient:

H(x) = ▽2f(x), with hij =
∂2f

∂xi∂xj

Note that the Hessian is symmetric, unless f fails to be smooth enough.
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How do we recognize a solution?

Recall from calculus Taylor series: Suppose we have a vector p ∈ Rn with
‖p‖ = 1, and a small scalar h. Then

f(xopt + hp) = f(xopt) + hpTg(xopt) +
1

2
h2pTH(xopt)p + O(h3) .
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First Order Necessary Condition for Optimality

f(xopt + hp) = f(xopt) + hpTg(xopt) +
1

2
h2pTH(xopt)p + O(h3) .

Now suppose that g(xopt) is nonzero. Then we can always find a descent or
downhill direction p so that

pTg(xopt) < 0 .

(Take, for example, p = −g(xopt)/‖g(xopt)‖.)

Therefore, for small enough h, we can make 1
2h

2pTH(xopt)p small enough
that

f(xopt + hp) < f(xopt).

Therefore, a necessary condition for xopt to be a minimizer is that
g(xopt) = 0.
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Second Order Necessary Condition for Optimality

So we know that if xopt is a minimizer, then g(xopt) = 0, so

f(xopt + hp) = f(xopt) +
1

2
h2pTH(xopt)p + O(h3) .

Now suppose that we had a direction p so that pTH(xopt)p < 0. (We call
this a direction of negative curvature.) Then again, for small enough h, we
could make f(xopt + hp) < f(xopt).

Therefore, a necessary condition for xopt to be a minimizer is that there be
no direction of negative curvature.

From linear algebra, this is equivalent to saying that the matrix H(xopt)
must be positive semidefinite. In other words, all of its eigenvalues must be
nonnegative.
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Are these conditions sufficient?

Not quite.

Example: Let f be a function of a single variable:

f(x) = x3.

Then f ′(x) = 3x2 and f ′′(x) = 6x, so f ′(0) = 0 and f ′′(0) = 0, so x = 0
satisfies the first- and second-order necessary conditions for optimality, but
it is not a minimizer of f . []

We are very close to sufficiency, though: Recall that a symmetric matrix is
positive definite if all of its eigenvalues are positive.

If g(x) = 0 and H(x) is positive definite, then x is a local minimizer.
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Some geometry
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What all of this means geometrically

Imagine you are at point x on a mountain, described by the function f(x),
and it is foggy. (So x ∈ R2.)

The direction g(x) is the direction of steepest ascent. So if you want to
climb the mountain, it is the best direction to walk.

The direction −g(x) is the direction of steepest descent, the fastest way
down.

Any direction p that makes a positive inner product with the gradient is an
uphill direction, and any direction that makes a negative inner product is
downhill.
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If you are standing at a point where the gradient is zero, then there is no
ascent direction and no descent direction, but a direction of positive
curvature will lead you to a point where you can go uphill, and a direction
of negative curvature will lead you to a point where you can descend.

If you can’t find any of these, then you are at the bottom of a valley!
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The basic algorithm
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The basic algorithm

Our basic strategy is inspired by the foggy mountain:

Take an initial guess at the solution x(0), our starting point on the
mountain. Set k = 0.

Until x(k) is a good enough solution,

Find a search direction p(k).
Set x(k+1) = x(k) + αkp

(k), where αk is a scalar chosen to guarantee
that progress is made.
Set k = k + 1.

Initially, we will study algorithms for which αk = 1.
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Unresolved details:

• testing convergence.

• finding a search direction.

• computing the step-length αk.
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The model method: Newton

Reference: Section 9.2
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Newton’s method

Newton’s method is one way to determine the search direction p(k). It is
inspired by our Taylor series expansion

f(x + p) ≈ f(x) + pTg(x) +
1

2
pTH(x)p ≡ f̂(p).

Suppose we replace f(x + p) by the quadratic model f̂ (p) and minimize
that.

In general, the model won’t fit f well at all ... except in a neighborhood of
the point x where it is built. But if our step p is not too big, that is ok!

So let’s try to minimize f̂ with respect to p. If we set the derivative equal
to zero

g(x) + H(x)p = 0

we see that we need the vector p defined by

H(x)p = −g(x) .
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This vector is called the Newton direction, and it is obtained by solving the
linear system involving the Hessian matrix and the negative gradient.

Picture.
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Note that if the Hessian H(x) is positive definite, then this linear system is
guaranteed to have a unique solution (since H(x) is nonsingular) and, in
addition,

0 < pTH(x)p = −g(x)Tp,

so in this case p is a downhill direction.

If H(x) fails to be positive definite, then the situation is not as nice.

• We may fail to have a solution to the linear system.

• We may walk uphill.

We can also get into trouble if H(x) is close to singular, since in that case
it will be difficult to get a good solution to the linear system using floating
point arithmetic, so the computed direction may fail to be downhill.
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Bottom line:

To run the basic Newton method successfully, we need the Hessian H(x) to
be positive definite everywhere we need to evaluate it.

Later, we will need to put in safeguards to handle these bad cases when H

fails to be positive definite, but for now, we’ll just study the basic Newton
algorithm, in which we step from x to x − H(x)−1g(x).
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How well does the Newton Method work?

When it is good, it is very, very good!

Let e(k) = x(k) − xopt be the error at iteration k.
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Theorem: Suppose f ∈ C2(S) and there is a positive scalar λ such that

‖H(x) − H(y)‖ ≤ λ‖x − y‖
for all points x, y in a neighborhood of xopt. Then if x(k) is fficiently close
to xopt and if H(xopt) is positive definite, then there exists a constant c
such that

‖e(k+1)‖ ≤ c‖e(k)‖2 .

This rate of convergence is called quadratic convergence and it is
remarkably fast. If we have an error of 10−1 at some iteration, then two
iterations later the error will be about 10−4 (if c ≈ 1). After four iterations
it will be about 10−16, as many figures as we carry in double precision
arithmetic!

Newton’s quadratic rate of convergence is nice, but Newton’s method is
not an ideal method:

• It requires the computation of H at each iteration.
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• It requires the solution of a linear system involving H.

• It can fail if H fails to be positive definite.

So we would like to modify Newton’s method to make it cheaper and more
widely applicable without sacrificing its fast convergence.
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An important result

We can get superlinear convergence (convergence with rate r > 1) without
walking exactly in the Newton direction.
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Making the Newton method safe
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When does Newton get into trouble?

We want to modify Newton whenever we are not sure that the direction it
generates is downhill.

If the Hessian is positive definite, we know the direction will be downhill,
although if H is nearly singular, we may have some computational
difficulties.

If the Hessian is semidefinite or indefinite, we might or might not get a
downhill direction.

29



Our strategy:

• We’ll use the Hessian matrix whenever it is positive definite and not
close to singular, because it leads to quadratic convergence.

• We’ll replace H(x) by Ĥ(x) = H(x) + Ê whenever H is close to
singularity or fails to be positive definite.

Conditions on Ĥ:

• Ĥ is symmetric positive definite.

• Ĥ is not too close to singular; in other words, its smallest eigenvalue is
bounded below by a constant bigger than zero.
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Modifying Newton’s method

Sample Strategy: Levenberg-Marquardt method. This one was actually
proposed for least squares problems, but it works here, too.

Replace H by
Ĥ = H + γI .

This shifts every eigenvalue up by γ.

How do we choose γ? It is usually done by trial and error: seek a γ so that
Ĥ is positive definite and ‖p(k)‖ ≤ h(k) where {h(k)} is a given sequence of
numbers.

Note: If the h’s are small enough, then we can avoid using a line search.
(Line searches will be discussed later, but their disadvantage is that they
require the function to be evaluated many times.)
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Better Strategy: Cholesky Strategies: developed by Gill and Murray.

Background: Any symmetric positive definite matrix A can be factored as

A = LDLT

where D is a diagonal matrix and L is lower triangular with ones on its
main diagonal.

Idea:

• While factoring, if any dii ≤ 0, modify it so that it is positive. This
changes the factored matrix from H to Ĥ.

• If modification is needed, try to keep ‖H − Ĥ‖ small so that we will
have an almost-Newton direction.

• To keep close to Newton, we want ‖H − Ĥ‖ = 0 if H is positive

definite, and we want Ĥ to be a continuous function of H.

• Making ‖H − Ĥ‖ = 0 if H is positive definite is not really possible,
since we also need to modify H if any eigenvalue is positive but too
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close to zero.

• We choose to make Ĥ = H + E, where E is diagonal.
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Two ways to modify H using Cholesky

1. Ê = γI for some γ ≥ 0. This is akin to Levenberg-Marquardt.

2. Ê = a general diagonal matrix computed in the course of the Cholesky
factorization.
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What our algorithm now looks like

Recall: Until x(k) is a good enough solution,

Find a search direction p(k).
Set x(k+1) = x(k) + αkp

(k), where αk is a scalar chosen to guarantee
that progress is made.
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Now we have some details for Newton’s method.
Find a search direction p(k) means

Calculate g(k), H(k).
Factor H(k) = LD̂LT − Ê.
If ‖g(k)‖ < ǫ and Ê = 0, then halt with an approximate solution.
Otherwise find a direction:

If ‖g(k)‖ > ǫ, then solve LD̂LTp(k) = −g(k) to get a downhill
direction.
Otherwise get a direction of negative curvature. (The details of
this are different for each algorithm to modify L, but the cost is
O(n2).)

What is missing? How long a step should we take in the direction p?
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Descent directions and line searches.

Reference: Section 9.3
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A backtracking line search

We take
x(k+1) = x(k) + α(k)p(k) .

How do we choose α(k)?

Let
F (α) = f(x + αp) .

Then
F ′(α) = pTg(x + αp) .
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Backtracking line search:

Choose α = 1 (to give the full Newton step).
While α is not good enough,

Choose a new αnew ∈ [0, α] by interpolation, and set α = αnew.

Note: If p is not the Newton direction, then we may need an initial
braketing phase to find a good upper bound on α by testing larger values.

Reference: See Section 9.3 for details.
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How do we decide that α is good enough?
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Our situation

• Have a downhill direction p, so we know that for very small α,
F (α) < F (0).

• If p = the Newton direction, then we predict that α = 1 is the
minimizer.

• We want an upper bound on the αs to consider, since Newton’s method
is based on a quadratic model and is not expected to fit the function
well if we go too far.

• We might have F ′ available.

• We really can’t afford an exact line search. In an exact linesearch we
find the value of α that exactly minimizes f(x + αp). We can do this
for quadratic functions, since in that case a formula for α can be
derived, but in general exact linesearch is impossible and is only
interesting because a lot of theorems demand it.
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What do we do?

• Goldstein conditions

• Wolfe(1968)-Powell(1976) conditions
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What do these conditions buy for us?

It can be shown that acceptable points exist as long as the minimizer is
finite.

Typical theorem: Global convergence of descent methods. If

• f is continuously differentiable and bounded below,

• g is Lipschitz continuous for all x, i.e., there exists a constant L such
that, for all x and y,

‖g(x) − g(y)‖ ≤ L‖x − y‖

Then either g(k) = 0 for some k or g(k) → 0.

[]
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Trust regions.

Reference: Section 9.4
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Trust regions: an alternative to linesearch

Trust region methods determine α and p simultaneously.

Idea: Use g and H to form a quadratic model

f(x + p) ≈ q(p) = f(x) + pTg +
1

2
pTHp .

But we should only trust the model when ‖p‖ < h for some small scalar h.

Let xnew = x + popt where popt solves

min
‖p‖≤h

q(p) .

Note: Depending on the norm we choose, this gives us different geometries
for the feasible set defined by ‖p‖ < h.
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Still to be determined:

• How to determine h and adapt it.

• How to find popt.
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How to find popt

The answer changes, depending on norm we choose.

Suppose we choose the infinity norm:

min
|pi|≤h

q(p) .

This is a quadratic programming problem with bound constraints.
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How to choose h

Idea: h determines the region in which our model q is known to be a good
approximation to f :

r ≡ f(x + p) − f(x)

q(p) − q(0)
≈ 1 .

Heuristic suggested by Powell:

• If r too small (< 1/4) then reduce h by a factor of 4.

• If r close to 1 (> 3/4) then increase h by a factor of 2.

Note that this can be done by modifying γ, the parameter in the
Levenberg-Marquardt algorithm.

Pitfall in trust region methods: If the problem is poorly scaled, then the
trust region will remain very small and we will never be able to take large
steps to get us close to the solution.
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Example: f(x) = f1(x1) + f1(10000x2) where f1 is a well-behaved
function. []
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Convergence of trust region methods

Typical theorem: Global convergence of trust region methods.
If

• S = {x : f(x) ≤ f(x(0))} is bounded.

• f ∈ C2(S)

Then the sequence {x(k)} has an accumulation point xopt that satisfies the
first- and second-order necessary conditions for optimality.
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Final words

We now know how to recognize a solution and compute a solution using
Newton’s method.

We have added safeguards in case the Hessian fails to be positive definite,
and we have added a linesearch to guarantee convergence.

The resulting algorithm converges rather rapidly, but each iteration is quite
expensive.

Next, we want to investigate algorithms that have lower cost per iteration.
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Part 2: Alternatives to Newton’s method
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The plan:

Recall that Newton’s method is very fast (if it converges) but it requires
the gradient and the Hessian matrix to be evaluated at each iteration.

Next we develop some alternatives to Newton’s method:

• Some alternatives that avoid calculation of the Hessian:

– Quasi-Newton methods

– finite-difference Newton methods

• Algorithms that avoid calculation of the Hessian and storage of any
matrix:

– steepest descent

– nonlinear conjugate gradient methods

– limited-memory Quasi-Newton methods

– truncated Newton methods
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• Technology that helps in the calculation of the Hessian: automated
differentiation.

• Methods that require no derivatives

– finite difference methods

– Nelder&Meade simplex

– pattern search
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Methods that require only first derivatives

Reference: Section 9.5.1
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If the Hessian is unavailable...

Notation:

• H = Hessian matrix.

• B is its approximation.

• C is the approximation to H−1.

Problem: Solve
min
x

f(x)

when g(x) can be computed, but not H(x).

Two options:

• Estimate H(x) using finite differences: discrete Newton. This can work
well.

• Approximate H(x) using Quasi-Newton methods. (Also called variable
metric.)
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No Hessian Method 1: Quasi-Newton Method

Quasi-Newton methods could be the basis for a full course; there is a
textbook by Dennis and Schnabel. We’ll just hit the high points.
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The idea behind Quasi-Newton methods

The Newton step:
p = −H−1g

(H and g evaluated at x(k).)

The Quasi-Newton step: accumulate an approximation

B(k) ≈ H(x(k))

using free information!
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What information comes free?

At step k, we know g(x(k)) and we compute g(x(k+1)) where
x(k+1) = x(k) + s(k).

H(x(k)) satisfies

H(k)s(k) = lim
h→0

g(x(k) + hs(k)) − g(x(k))

h
,

In fact, if f is quadratic, then

H(k)s(k) = g(x(k) + s(k)) − g(x(k))

We’ll ask the same property of our approximation B(k+1) and call this the
secant equation:

B(k+1)s(k) = g(k+1) − g(k) .
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So we know how we want B(k+1) to behave in the direction g(k+1) − g(k),
and we have no new information in any other direction, so we could require

B(k+1)v = B(k)v, if vTs(k) = 0 .

There is a unique matrix B(k+1) that satisfies the secant equation and the
no-change conditions. It is called Broyden’s good method:

B(k+1) = B(k) − (B(k)s(k) − y(k))
s(k)T

s(k)Ts(k)

where

s(k) = x(k+1) − x(k) ,

y(k) = g(k+1) − g(k) .

Unquiz: Verify that Broyden’s good method satisfies the secant equation
and the no-change conditions. []
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Notes: For Broyden’s good method,

• B(k+1) is formed from B(k) by adding a rank-one matrix.

• B(k+1) is not necessarily symmetric, even if B(k) is. This is undesirable
since we know H is symmetric.

In order to regain symmetry, we need to sacrifice the no-change conditions.
Instead, we formulate the problem in a least change sense:

min
B(k+1)

‖B(k+1) − B(k)‖

subject to the secant condition

B(k+1)s(k) = y(k) .

The solution (again) depends on the choice of norm.
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A refinement to this idea: We can impose other constraints, too.

• Perhaps we know that H is sparse, and we want B to have the same
structure.

• We might want to keep B(k+1) positive definite.
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Some history

An alphabet soup of algorithms:

• DFP: Davidon 1959, Fletcher-Powell 1963

• BFGS: Broyden, Fletcher, Goldfarb, Shanno 1970

• Broyden’s good method and Broyden’s bad

• ...
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An example: DFP

Still one of the most popular because it has many desirable properties.

We accumulate an approximation C to H−1 rather than to H.

C(k+1) = C(k) − C(k)y(k)y(k)TC(k)

y(k)TC(k)y(k)
+

s(k)s(k)T

y(k)Ts(k)
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An example: BFGS

The most popular method.

B(k+1) = B(k) − B(k)s(k)s(k)TB(k)

s(k)TB(k)s(k)
+

y(k)y(k)T

y(k)Ts(k)
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Use of Quasi-Newton methods

The algorithm looks very similar to Newton’s method:

Until x(k) is a good enough solution,

Compute a search direction p(k) from p(k) = −C(k)g(k) (or solve
B(k)p(k) = −g(k)).
Set x(k+1) = x(k) + αkp

(k), where αk satisfies the Goldstein-Armijo or
Wolfe linesearch conditions.
Form the updated matrix C(k+1) (or B(k+1)).
Increment k.

Initialization: Now need to initialize B(0) (or C(0)) as well as x(0). Take
B(0) = I or some better guess.
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Unanswered questions

• Near a stationary point, H−1 does not exist. How do we keep C from
deteriorating?

• What happens if H is indefinite?

• How do we check optimality?

The first two questions concern stability of the algorithm.
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Answering concerns about stability

Our dilemma:

• Updating C can be hazardous when H is close to singular.

• Updating B leaves the problem of solving a linear system at each
iteration to determine the search direction.

An alternative: Update a factorization of B. This makes it easy to enforce
symmetry and positive definiteness.
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Example: BFGS This algorithm updates the approximate Hessian B. There
are two economical alternatives for solving the necessary linear systems

1. Updating the inverse.

B(k+1) = B(k) − B(k)s(k)s(k)TB(k)

s(k)TB(k)s(k)
+

y(k)y(k)T

y(k)Ts(k)

so, by the Sherman-Morrison-Woodbury formula for computing inverses
of matrices updated by a rank-2 correction, we can obtain

B(k+1)−1 = B(k)−1 +
y(k)T (B(k)−1y(k) + s(k))

(y(k)Ts(k))2
s(k)s(k)T

−s(k)y(k)TB(k)−1 + B(k)−1y(k)s(k)T

(y(k)Ts(k))
.
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2. Updating a factorization. If we have a Cholesky factorization of B(k) as

B(k) = L(k)D(k)L(k)T , then we want B(k+1) = L(k+1)D(k+1)L(k+1)T . This
can be formed by formulas analogous to the
Sherman-Morrison-Woodbury formula, and we can use the ideas in the
previous set of notes to modify it to preserve positive definiteness. The
algorithms are O(n2). Details are given, for example, in a paper by Gill,
Golub, Murray, and Saunders, Math. Comp. 28 (1974) pp.505-535, and
in some textbooks.
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Answering concerns about convergence

It is an unfortunate fact that software packages do not check the
second-order optimality conditions. They just return a point at which the
gradient is approximately zero and they can find no descent direction or
direction of negative curvature.
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Convergence rate

All of these methods have an n-, 2n-, or (n + 2)-step quadratic
convergence rate if the line search is exact. An n-step quadratic
convergence rate, for example, means that

lim
k→∞

‖x(k+n) − xopt‖
‖x(k) − xopt‖2

< ∞ .

Weakening the line search to a Wolfe or Goldstein-Armijo search generally
gives superlinear convergence.
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No Hessian Method 2: Finite-difference Newton Method
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Finite-difference Newton methods

One of our major time-sinks in using Newton’s method is to evaluate the
Hessian matrix, with entries

hij =
∂gi

∂xj
.

One way to avoid these evaluations is to approximate the entries:

hij ≈
gi(x + τej) − gi(x)

τ
where τ is a small number and ej is the jth unit vector.

Cost: n extra gradient evaluations per iteration. Sometimes this is less
than the cost of the Hessian evaluation, but sometimes it is more.
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Practical matters:

• How to choose τ .

– If τ is large, the approximation is poor and we have large truncation
error.

– If τ is small, then there is cancellation error in forming the numerator
of the approximation, so we have large round-off error.

Usually we try to balance the two errors by choosing τ to make them
approximately equal.

• If the problem is poorly scaled, we may need a different τ for each j.
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Convergence rate

There are theorems that say that if we choose τ carefully enough, we can
get superlinear convergence.
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Methods that require only first derivatives and store no matrices

Reference: Section 9.5.2

Sometimes problems are too big to allow n2 storage space for the Hessian
matrix.

Some alternatives:

• steepest descent

• nonlinear conjugate gradient

• limited memory Quasi-Newton

• truncated Newton
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Low-storage Method 1: Steepest Descent

Back to that foggy mountain

If we walk in the direction of steepest descent until we stop going downhill,
we clearly are guaranteed to get to a local minimizer.

The trouble is that the algorithm is terribly slow.

If we apply steepest descent to a quadratic function of n variables, then
after many steps, the algorithm takes alternate steps approximating two
directions: those corresponding to the eigenvectors of the smallest and the
largest eigenvalues of the Hessian matrix.
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The convergence rate on quadratics is linear:

f(x(k+1)) − f(xopt) ≤
(

κ − 1

κ + 1

)2

(f(x(k)) − f(xopt))

where κ is the ratio of the largest to the smallest eigenvalue of H.

If steepest descent is applied to non-quadratic functions, using a good line
search, then convergence is local and linear.
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Advantages of steepest descent:

• No need to evaluate the 2nd derivative or to solve a linear system.

• Low storage: no matrices.

Disadvantages of steepest descent:

• Very slow.

• Very, very slow.

Use nonlinear conjugate gradients instead. Same advantages but better
convergence.
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Low-storage Method 2: Nonlinear conjugate gradient methods
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Linear conjugate gradients

Reference: Section 28.2

The conjugate gradient method (Hestenes&Stiefel, 1952) is a method for
solving linear systems of equations Ax = b when A is symmetric and
positive definite.

There are many ways to understand it, but for us, we think of it as
minimizing the function

f(x) =
1

2
xTAx − xTb

which has gradient g(x) = Ax − b. So a minimizer of f is a solution to
our linear system.

We could use steepest descent, but we want something faster.

See the notes on the linear algorithm to understand how conjugate gradient
combines the concepts of descent and conjugate directions.
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Summary of the linear conjugate gradient algorithm

Given x(0), form −g(x(0)) = b − Ax(0) = p(0).

For k = 0, 1, . . ., until convergence,

Use a line search to determine x(k+1) = x(k) + α(k)p(k).

Set p(k+1) = −g(x(k+1)) + β(k+1)p(k).
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Linear conjugate gradients in more detail

Purpose: To solve Ax = b when A is symmetric and positive definite. The
only access to A is through a function call that returns the product of A

with any given vector.

Given x(0), form r(0) = b − Ax(0) and s(0) = −g(x(0)) (Note that r is the
negative gradient of f(x) = 1/2 xTAx − xTb, and I am using s for the
search direction to avoid confusion later). For k = 0, 1, . . ., until

convergence,

Let z(k) = As(k).
Let the step length be α(k) = (r(k)Ts(k))/(s(k)Tz(k)).
Let x(k+1) = x(k) + α(k)s(k).
Update the negative gradient r(k+1) = r(k) − α(k)z(k).

Let β(k+1) = (r(k+1)T r(k+1))/(r(k)T r(k)).
Let the new search direction be s(k+1) = r(k+1) + β(k+1)s(k).
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The nonlinear conjugate gradient algorithm

Given x(0), form p(0) = −g(x(0)).

For k = 0, 1, . . ., until convergence,

Use a line search to determine x(k+1) = x(k) + α(k)p(k).

Set p(k+1) = −g(x(k+1)) + β(k+1)p(k).

The parameter α is determined by a line search.

The parameter β has many definitions that are equivalent for the linear
problem but different when we minimize nonlinear functions:

β(k+1) =
g(k+1)Tg(k+1)

g(k)Tg(k) Fletcher-Reeves

β(k+1) =
y(k)Tg(k+1)

g(k)Tg(k) Polak-Ribiére

β(k+1) =
y(k)Tg(k+1)

y(k)Tp(k) Hestenes-Stiefel
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Good theorems have been proven about convergence of Fletcher- Reeves,
but Polak-Ribiére is generally better performing.

Note that this method stores no matrix. We only need to remember a few
vectors at a time, so it can be used for problems in which there are
thousands or millions of variables.

The convergence rate is linear, unless the function has special properties,
but generally faster than steepest descent: for quadratics, the rate is

f(x(k+1)) − f(xopt) ≤
(√

κ − 1√
κ + 1

)2

(f(x(k)) − f(xopt))

where κ is the ratio of the largest to the smallest eigenvalue of H.
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An important property of conjugate gradients:

If we run cg on a quadratic function, then it generates the same iterates as
the Huang family of Quasi-Newton algorithms.
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Low-storage Method 3: Limited-memory Quasi-Newton methods

Consider as an example the DFP formula

C(k+1) = C(k) − C(k)y(k)y(k)TC(k)

y(k)TC(k)y(k)
+

s(k)s(k)T

y(k)Ts(k)

We’ve thought of this as a matrix stored in memory. Let’s develop a
different view.

How do we use this matrix? All we need to do is to multiply vectors, such
as the gradient g(k), by it.

Suppose we store C(0). Then if we stored C(0)y(0) and s(0), plus the scalar
values y(0)TC(0)y(0) and y(0)Ts(0), we would be able to form products of
C(1) with any vector:

C(1)z = C(0)z − y(0)TC(0)z

y(0)TC(0)y(0)
C(0)y(0) − s(0)Tz

y(0)Ts(0)
s(0) .
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We can play this game again for C(2): if we store (C(0)y(0), s(0)) and
(C(1)y(1), s(1)), with 4 scalars, then we can form products of C(2) with any
vector.

What have we accomplished? Recall that C(0) is usually chosen to be the
identity matrix, which requires no storage. Therefore, instead of taking n2

storage locations for C(2), we only need 4n + 4!

The idea behind limited memory quasi-Newton algorithms is to continue
this process ℓ steps, until we don’t want to store any more vectors. Then,
we start storing the new vectors in place of the oldest ones that we
remember, always keeping the ℓ most recent updates.

For various more refined strategies, see reference 4 at the end of these
notes.
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Low-storage Method 4: Truncated Newton methods

Again we return to the way the Hessian approximation is used.

If we have the Hessian matrix, how do we use it? Newton’s method
determines the search direction by solving the linear system

Hp = −g

We usually think of solving this by factoring H and then using forward- and
back- substitution.
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But if H is large, this might be too expensive, and we might choose to use
an iterative method, like linear conjugate gradients, to solve the system.

If we do, How do we use the Hessian? All we need to do is to multiply a
vector by it at each step of the algorithm.

Now Taylor series tells us that, if v is a vector of length 1, then

g(x + hv) = g(x) + hH(x)v + O(h2) ,

so

H(x)v =
g(x + hv) − g(x)

h
+ O(h) .

Therefore, we can get an O(h) approximation of the product of the
Hessian with an arbitrary vector by taking a finite difference approximation
to the change in the gradient in that direction.

This is akin to the finite-difference Newton method, but much neater,
because we only evaluate the finite difference in directions in which we
need it.
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The Truncated Newton strategy

So we’ll compute an approximation to the Newton direction p = −H−1g

by solving the linear system Hp = −g using the conjugate gradient
method, computing approximate matrix-vector products by extra
evaluations of the gradient.

We hope to obtain a superlinear convergence rate, so we need, by the
theorem of Sec. 9.2.1, that

‖our direction − Newton direction‖
‖our direction‖ → 0

as the iteration number → ∞.
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We ensure this by

• taking enough iterations of conjugate gradient to get a small residual to
the linear system.

• choosing h in the approximation carefully, so that the matrix- vector
products are accurate enough.
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Automated differentiation
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Automated differentiation

The most tedious and error-prone part of nonlinear optimization: writing
code for derivatives.

An alternative: let the computer do it.

Automatic differentiation is an old idea:

• The forward (bottom-up) algorithm was proposed in the 1970s.

• The backward (top-down) algorithm was proposed in the 1980s.

• Reliable software (Adifor, etc., by Bischof, Griewank, ...) was
developed in the 1990s.
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No-derivative methods

Reference: Section 9.5.3

These are methods of last resort, generally used when

• derivatives are not available.

• derivatives do not exist.

This is an area of very active research currently. We’ll consider three
classes of methods.

96



No-derivative Method 1: Finite difference methods

We could do finite differences on the function to get an approximate
gradient, but this is not usually a good idea, given that automatic
differentiation methods exist.
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No-derivative Method 2: Simplex-based methods

(Not to be confused with the simplex method for linear programming.)

The most popular of these is the Nelder-Meade algorithm, and Matlab has
an implementation of this.

Idea:

• Suppose we have evaluated the function at the vertices of a simplex. (In
2-dimensions, this is a triangle, in 3, it is a tetrahedron, etc.)

• We would like to move one vertex of this simplex, reflecting it around its
current position, until we have enclosed the minimizer in the simplex.

• Then we would like to shrink the size of the simplex to hone in on the
minimizer.
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Simplex-based algorithms have rather elaborate rules for determining when
to reflect and when to shrink, and no algorithm that behaves well in
practice has a good convergence proof.

For that reason, it looks as if they will fade in popularity, being supplanted
by pattern search methods.
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No-derivative Method 3: Pattern search methods

Idea:

• Suppose we are given an initial guess x at the solution and a set of at
least n + 1 directions vi, i = 1, . . . , N , that form a positive basis for
Rn: this means that any vector can be expressed as a linear
combination of these vectors, where the coefficients in the combination
are positive numbers.

• At each step, we do a line search in each of the directions to obtain
f(x + αivi) and replace x by the point with the smallest function value.

This is a remarkably simple algorithm, but works well in practice and is
provably convergent!

Another desirable property is that it is easy to parallelize, and this is crucial
to making a no-derivative algorithm effective when n is large.
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Final words

• We have discussed a variety of algorithms for solving optimization
problems.

• For least squares problems, use a specialized algorithm, as discussed in
Chapter 13.

• Another class of algorithms (randomized algorithms) is discussed in
Chapter 17.

• To choose among algorithms, see Section 9.6.
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