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Since the late 1990s, the world of genomics has exploded. Beginning with
the bacterium Haemophilus influenzae in 1995, researchers have sequenced the
genomes of thousands of different organisms, which include dog, rat, mouse, and
two versions of human.

The central dogma of molecular biology is that DNA is transcribed to RNA
which is then translated to an amino acid sequence or protein. As the protein
is translated, it folds into a distinct shape that determines its function. Under
stable conditions, a protein will always fold the same way because its folded
shape has minimum free energy.

A mutation in a gene at the DNA level has the potential to change the
amino acid composition of the resulting protein. This new protein may not
fold in the same way as the original, and the function of the protein may be
destroyed. Many diseases are linked to protein misfolding such as: Alzheimer’s,
Huntington’s, Parkinson’s, and several types of cancer.

The pharmaceutical industry depends on knowing the structure of a folded
protein. After determining the structure, they can create drugs to interact with
a specific region of the protein. Current methods such as X-ray crystallography
are tremendously expensive and time-consuming. It can take years to decipher
the structure of a single protein.

In an effort to accelerate the pace of research, several groups are working to
develop computational methods to determine the three-dimensional structure of
a protein from its amino acid sequence. No sufficiently accurate methods have
been developed yet, but databases of known structures are helping researchers
gain insight into the major features of new proteins. The intuition is, if you
know the structure of one protein, and you want to know how a similar protein
folds, then use the structure you know as a starting guess.

This paradigm of computational protein folding fits the concept of homotopy
very well. In this case study, we will use the Homotopy Optimization Method
(HOM) to predict how chains of particles fold in two dimensions. In addition,
we shall implement a new extension of HOM known as Homotopy Optimization
using Perturbations and Ensembles or HOPE. The HOPE algorithm was de-
veloped by Daniel Dunlavy at the University of Maryland, and this case study
parallels the experiments in his thesis. See pointer for additional information.



The Free Energy of 2-D Charged Particle Chains

Suppose that we have a chain of n charged particles in two dimensions. The
charges on each particle can be +1 or -1 and each particle in the chain has a
fixed bond length of 7. Then, the angles between all pairs of adjacent bonds
define the structure of the chain. Let x = (x1,...,x,) € R?*" be the vector
of coordinates in the xy plane with x; € R? representing the two-dimensional
coordinates of the k" particle. For example, the five particles x, ..., x5, are
represented in the following figure:

Figure 1: An example of particle structure with bond angles.

Let the first particle in the chain be fixed at (7, 0) and the second particle
be fixed at (0,0). Therefore, given an n — 2 vector of angles, § = (01, ...,60,_2),
where 6; € [0,27) represents the bond angle between x;, x;+1, and X;42, we
can use the following recursion to compute the positions of every particle in the
chain.
cos(fx—2) —sin(fx_2)
sin(@x—2)  cos(fx_2)

X = Xp—1+ ( > (Xp—2 — Xp—1)

CHALLENGE 1 To familiarize yourself with the recursion, write a function in
MATLAB that plots the coordinates of a particle chain given a vector of bond angles.
Let T = 1.5. Recall that we fix the first and second particles at (7,0) and (0,0),
respectively. To get a balanced view of the chain, use axis equal when plotting.
Plot the coordinates of the chain for the following input bond angle vectors:

0o = [pi/2; 7*pi/8; 7xpi/81, [pi; pi/2; pi/3; pi/4; pi/5], and
[4xpi/5; T7*pi/b; 4xpi/5; T*pi/b; 4*pi/5; T+*pi/b].

We shall declare the distance between two particles x; and x; to be r;; =
[|x; — x;||2. Now that we have a way to construct the chain’s position from its



internal bond angles, we may define the potential energy function, F : R" "2 —
R as:

where

and

Eel(e) = Z Z %

Py
i=1 j=i+2

Eyaw(0) is the van der Waals equation, which is the sum of all interactions
between particles along the chain. F.;(6) is the equation for electrostatic po-
tential, and ¢; equals the charge of particle x; (+1 or -1). Note that although 6
is the input of the energy equation, it is nowhere to be found on the right side.
We must use the recursion to calculate the coordinates given the vector of bond
angles in order to solve this equation.

Figure 2 shows a chain of 40 particles of alternating charges which has a
very high energy value. A natural chain would quickly unfold from this state
because it seeks its minimum free energy.

So, given a chain of charged particles, we are trying to find 6., € R™" 2 such
that

E(0op:) = mingE(6).

CHALLENGE 2 Use the code from the previous challenge to write a function
which calculates E(0) of a chain of particles assuming all particles are positively
charged. Let eplison = 0.4 and sigma = 3.6 in the van der Waals equation. Find
the energy of a chain of particles with each of the following starting values: 60
= [pi/2; 7xpi/8; 7*pi/81, [pi; pi/2; pi/3; pi/4; pi/5], and [4*pi/5;
T4pi/5; 4%pi/5; T#pi/5; 4%pi/5; T+pi/5].

Defining a Homotopy

To design a proper homotopy for the free energy function, we must think about
which terms are actually changing in the equations as we transition from the
equation for our initial chain, E°(#), to our final chain, E*(f). We assume that
the initial and final chains both have the same number of particles. Therefore,
the only thing that changes from one molecule to the next are the charges on
each particle. This means we do not need to define the homotopy with respect
t0 Eyqw (). We are only concerned with deforming the initial charges ¢° to the
final charges ¢'. For clarity, we consider qg to be the charge of the k" particle
in the initial chain.
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Figure 2: A chain of particles organized in a structure with energy 3.6320e+03.
This is nowhere near the natural state of the chain, it just looks cool.

Thus, we define the homotopy function as:

n—2 n 1 0 1 0
Ag; + (1 =N )(Ag; + (1 = N)g;
o=y 3 QErANDOGEAZNG) )
i=1 j=i+2 K

The Homotopy Optimization Method (HOM)

Recall in Chapter 24, we discussed the homotopy method for solving nonlinear
equations. The following variation allows us to use the homotopy function to
solve an unconstrained minimization problem. To illustrate the application to
our problem, we use our homotopy equation in the description.



Algorithm 1 HOM Algorithm
Begin with a homotopy function H(#, A), and a local minimizer of H(6,0),
6°.
Set A = 0, and let m be some integer such that m > 1.
for k=1,...m
Increase A by 1/m.
Using your favorite algorithm, minimize H (6, \) starting with =1 ob-
taining 0(%).
end
At the end, we have computed (™) which minimizes H (6, 1), so #(™) mini-
mizes our original problem.

CHALLENGE 3 For the free energy equation, let 0 = 3.6, € = 0.4, andT = 1.5.
(a) Use the Quasi-Newton BFGS method (fminunc) to find a global minimizer of
the energy of the molecule: ¢° = [+1 +1 +1 +1 +1 +1]. Turn off the ‘LargeScale’
option for (fminunc). The minimum energy of this chain is 0.7741. Give an
example of a starting value for which Quasi-Newton does not converge to a global
minimizer, and one example for which it does converge to a global minimizer.

(b) Implement the HOM algorithm to solve for the minimum energy of the molecule
qt = [-1-1+1 +1 +1 +1] using the global minimizer of part (a) as your starting
value and q° as your starting molecule. Use Quasi-Newton BFGS for minimiza-
tion. Let m = 10, so the method takes 10 steps. After finishing the algorithm, plot
(side-by-side) the initial molecule at its global minimizer, and the final molecule at
its minimizer. Mark negatively charged particles with a red circle, and positively
charged particles with a blue circle with a ‘+’ in the center. At the top of the plots,
give the minimum energy found for that chain.

Do the same starting with the non-global minimizer from (a).

The global minimum energy of q* is -3.4178. Did you find a global minimizer in
both cases?

The HOPE Method

Despite the improvement of HOM over standard Newton-like methods, we usu-
ally seek the global minimizer of the problem. HOM effectively creates a set of
points which converge to a local minimizer, but if it is not the global minimizer,
then the structure of the chain of particles will not be correct.

In an effort to improve the probability of finding the true global minimizer,
there exists an extension of HOM that generates an ensemble of paths which
converge to different local minimizers simultaneously. The HOPE algorithm
takes a set of minimizers found from a previous step, and creates several per-
turbations of each minimizer. Then, it minimizes the problem starting at each
of these perturbed versions and selects a set of points that generate the lowest
unique values of the function.



For the perturbation of each minimizer in our problem, we denote a function
€: RN — RN where £(6) is a stochastically perturbed version of the minimizer
0. As shown below, there are a few additional variables that must be considered
in the HOPE algorithm. c¢y,q, is an integer describing the maximum size of an
ensemble allowed for each step. This is important because if we had no upper
bound on ensemble size, then it would increase exponentially. ¢ is the number
of perturbed versions of a minimizer to create for each step.

Algorithm 2 HOPE Algorithm
Begin with a homotopy function H (6, \), and a local minimizer of H(6,0),
6°.
Set A = 0, ¢ = 0, and let m, ¢maz, and ¢ be integers such that m > 1,
Cmaz > 1, and ¢ > 0.
for k=1,...m
Increase A by 1/m.
fori=1,.. ¢k
Minimize H (0, A) starting with ng_l), obtaining 957%).
if ¢ > 0 then

for j=1,...,¢
Minimize H (6, \) starting with f(é)gk_l)), obtaining Gf_kj).
end /
end
end
) = min{c®*D (¢ + 1), Cnas }
9§k), ...,05?,3) = the “best” (unique) local minimizers out of Qg?,i =
1,..,ckD j=0,..¢
end

At the end, we choose the minimizer with the lowest function value of Hgm), 1=
1,...,c¢™) to be our output.

By creating an ensemble of different minimizers, the HOPE algorithm in-
creases the likelihood of finding the true global minimizer. This method is very
effective for problems that have many local minima, but due to the number of
minimization calls, there may be a strain on computational resources. Tuning
the variables appropriately for each situation is essential.



CHALLENGE 4 (a) For the HOPE algorithm, if ¢mar was oo, what would be
the value of ¢ after the k" iteration of the program? What values of ¢ and Cpmaz
reduce the HOPE algorithm to HOM?

(b) Consider our problem of folding, and choose a stochastic permutation function
which will be used to generate perturbed versions of minimizers found in previous
steps of HOPE. Discuss why you chose this function over other possibilities.

(¢) Implement the HOPE algorithm with your permutation function from (b). Let
m =5, ¢ =38, and ¢par = 6. Begin by finding a local minimizer of the energy
for:

@ = [+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1] given a starting guess of
0o = [9%pi/10; 9%pi/10; 9%pi/10; 9%*pi/10; 9*pi/10; 9*pi/10; 9*pi/10; 9*pi/10;
9*pi/10]. Then, use HOPE to find a minimizer for the energy of

@t = [+1 +1 +1-1-1-1+1+1+1-1-1-1].

Turn off the ‘LargeScale’ option for (fminunc). After finishing the algorithm, plot
(side-by-side) the initial molecule at its local minimizer, and the final molecule at
its minimizer. Mark negatively charged particles with a red circle, and positively
charged particles with a blue circle with a ‘+’ in the center. At the top of the plots,
give the minimum energy found for that chain.

(d) Using the same input parameters as in part (c), compare your results with the
HOM function from the previous challenge. Which method resulted in the better
structure prediction? Can HOPE ever do worse than HOM? Why?




POINTER.

The HOPE method was developed at the University of Maryland by Dunlavy in
2005.

For extensive results on 2-D folding of charged particles, see

Dulavy, D. (2005) Homotopy Optimization Methods and Protein Structure Pre-
diction. PhD thesis - University of Maryland - College Park.

For information on the extension of HOPE to 3-D advanced protein folding prob-
lems, see

Dunlavy, D. et al. (2005) HOPE: A Homotopy Optimization Method for Protein
Structure Prediction. Journal of Computational Biology, 12, 1275-1288.

For other information on computational protein folding:

Li, H. et al. (1996) Emergence of Preferred Structures in a Simple Model of
Protein Folding. Science 273, 666-669.

Radford, S. and C. Dobson. (1999) From Computer Simulations to Human Dis-
ease: Emerging Themes in Protein Folding. Cell, 97, 291-298.

and http://folding.stanford.edu//.

The Critical Assessment of Techniques for Protein Structure Prediction (CASP)
is a competition held every two years in which groups try to predict a structure
of a new protein whose true folding shape has been secretly and experimentally
determined. See http://predictioncenter.org/casp7/




