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Suppose you work for the Food and Drug Administration (FDA). A manufac-
turer wants approval for a new computerized tomography (CT or CAT) machine
that is claimed to be better than a currently used machine at detecting lung cancer.
How can you tell whether the claim is true?

Ideally, we would like to take a set of patients, use both machines to scan
for lung cancer, wait 6 months, and then see which machine gave a better answer.
This is not practical; it is not even ethical to use both machines on a single patient,
because that gives an X-ray dose higher than necessary and risks harm to the
patient. Similar experiments with animals also raise ethical questions.

The common alternative is to use both machines on a phantom, an object
with characteristics (size, shape, density, etc.) similar to typical lung cancer tumors.
The phantom is positioned inside a model of the human chest. The machine that
can more closely estimate the phantom’s location and size (volume) is said to be
“better”.

To assess this, we first need a very accurate estimate of the volume of the
phantom. So the goal of this project is to determine how to compute a reliable
estimate, with error bounds, of the volume of an object that is tumor-like.

The “gold-standard” way to measure volume is to use Archimedes’ principle.
Take a very precisely calibrated flask (i.e., a measuring cup), add a known volume
of water, drop the solid object in, and measure the resulting volume. The change
in volume is the volume of the object.

Unfortunately, in order to better match the characteristics of a tumor, the
phantom is porous and absorbs water, so the gold-standard cannot be applied.
Instead, what we have are a set of rather precise coordinates of points on the
surface of the phantom, with uncertainties, and from that we need to estimate the
volume, knowing that the phantom is close to spherical in shape.

To make things more difficult, the points are not at all equally distributed on
the surface, because the measurements were made by clamping the phantom to hold
it steady and then using a laser to measure at convenient points given the clamped
position. It was difficult to measure points near the “north and south poles”; most
measurements are close to the “equator”.

I have the data for two phantoms measured at the National Institute of Stan-

1



2

Figure 1. The 50 measured points for the phantom.

dards and Technology (NIST), courtesy of David Gilsinn,1 so we could estimate the
volumes and compare with his estimates. But 3-D datafitting is rather difficult to
program, so for the purposes of this case study, I’ve artificially generated 50 points
on the surface of a 2-D phantom that is close to circular in shape, and we will use
that “phantom phantom” in our study.

You can find the coordinates xi, i = 1, . . . ,M , with M = 50, in the file
measuredpts, and they are shown in Figure 1. The error in each measured value is
normally distributed with mean 0 and standard deviation 10−4.

We start by determining how close to circular the phantom is, resulting in our
first estimates of its area.

CHALLENGE 0.1. Use the coordinates xi, i = 1, . . . ,M , to estimate the center
of the phantom and the radius r. (The units are centimeters.) For a circle, the
center point c = [c1, c2] has the property that its distance from any point equals
the radius, so let’s estimate the “center” of the phantom by minimizing

M∑
i=1

(‖xi − c‖2 − r2)2

1David E. Gilsinn, Bruce R. Borchardt, and Amelia Tebbe, “Estimating Volumes of Near-
Spherical Molded Artifacts,” Journal of Research of the National Institute of Standards and
Technology 115(3), 149–177 (2010) http://nvl.nist.gov/pub/nistpubs/jres/115/3/V115.N03.

A01.pdf.
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over all choices of r > 0 and c. This is a nonlinear least squares problem that
can be solved using Matlab’s lsqnonlin.

• Report your estimates for c and r.

• Make a quantitative statement of how close to circular the phantom is.

• Using the largest and smallest distances di = ‖xi − c‖, give upper and lower
bounds on what you think the area of the phantom is.

Next, we will use our 50 measured points to generate an approximation to the
boundary of the phantom.

Imagine drawing a line segment at angle θ, starting from c and ending at the
boundary of the phantom. Let d(θ), for 0 ≤ θ ≤ 2π, be the length of that line
segment.2

CHALLENGE 0.2.

• (a) For each data point xi, determine the corresponding angle θi. Fit an
interpolating cubic spline to the datapoints (θi, di), i = 1, . . . ,M to obtain an
approximation d̂(θ). (Set up the coordinate system so that the first datapoint
in measuredpts corresponds to θ = 0, and repeat this datapoint at θ = 2π to
make the function 2π periodic.)

• (b) Make a plot with θ on the horizontal axis and d̂(θ) on the vertical. Graph
the 50 data points as circles, and graph the function d̂(θ) (evaluated at 500
equally-spaced points) as a curve.

• (c) The function d̂(θ) can be used to define an approximation to the boundary
b(θ) of the phantom. Make a plot like Figure 1. Graph the 50 datapoints xi as
circles, and graph the boundary approximation b̂(θ) (evaluated at 500 equally-
spaced points) as a curve.

Having a definition for b̂ gives us many ways to estimate the area. We will
experiment with three ways.

2If any line through c intersects the boundary of the phantom exactly twice, once on each
side of c, then d(θ) is a well-defined function. This is true for a circle, and we assume it for our
near-circular phantom.
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POINTER 0.1. Stokes Theorem
The Stokes Theorem (also called the Green’s Theorem, or, in 3-D, the Divergence
Theorem) relates an integral over the interior of a region to an integral over the
boundary of the region. We can use it to estimate the area of the phantom. The
resulting formula for the area is

1
2

∫ 2π

0

z(θ)Tx(θ)dθ,

where x(θ) is a point on the boundary and

z(θ) =

 dx2(θ)
dθ

−dx1(θ)
dθ

 .

In other words, the area is

1
2

∫ 2π

0

[
x1(θ)

dx2(θ)
dθ

− x2(θ)
dx1(θ)

dθ

]
dθ .

CHALLENGE 0.3.

• (a) Use Monte Carlo integration with 1000, 5000, and 10000 points to estimate
the area enclosed by b̂(θ). Estimate the variance for each of the estimates by
repeating the integration several times.

• (b) Use Matlab’s quad function to estimate the area by partitioning the
phantom into 2 halves (rectangular coordinates) and summing the area that
quad estimates for each. Estimate the error by varying the tolerance input to
quad.

• (c) Use the Stokes Theorem and quad to estimate the area.

• (d) Since the function is a cubic spline, what is the best way to find the area?

We obtained d̂ and b̂ by interpolating our datapoints. But the datapoints
had measurement error, so this might not be the right strategy. Instead, we might
seek smoother functions d̃ and b̃ that are close to the measured values but do not
necessarily pass through them. We’ll repeat our experiments with a smoother spline.
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CHALLENGE 0.4. Matlab has several functions in the Spline Toolbox for
approximating datapoints using a spline. Choose one of spap2, spaps, or csaps,
document any choices you make for parameters, and use the Matlab function to
determine d̃. Plot d̂ and d̃ and compare them. Then repeat the previous challenge
using d̃ and the resulting b̃.

Now that you have many estimates of the area, it is time to commit to a single
answer to report for the area of the phantom.

CHALLENGE 0.5.

• (a) Make a table containing all of your area estimates, your corresponding es-
timate of the errors, and your estimates of the number of function evaluations
used to obtain the estimates. Note that the error is the difference between
the computed area and the area of the phantom. The difference between the
computed area and the area enclosed by the spline is related to this but not
the same.

• (b) Which method do you think gave the best estimate? Why?

• (c) List all the sources of error that you can think of, in order of importance.


